1932

Abstract

Notable findings point to the significance of the dynorphin peptide neurotransmitter in chronic pain. Spinal dynorphin neuropeptide levels are elevated during development of chronic pain and sustained during persistent chronic pain. Importantly, knockout of the dynorphin gene prevents development of chronic pain in mice, but acute nociception is unaffected. Intrathecal (IT) administration of opioid and nonopioid dynorphin peptides initiates allodynia through a nonopioid receptor mechanism; furthermore, antidynorphin antibodies administered by the IT route attenuate chronic pain. Thus, this review presents the compelling evidence in the field that supports the role of dynorphin in facilitating the development of a persistent pain state. These observations illustrate the importance of elucidating the control mechanisms responsible for the upregulation of spinal dynorphin in chronic pain. Also, spinal dynorphin regulation of downstream signaling molecules may be implicated in hyperpathic states. Therapeutic strategies to block the upregulation of spinal dynorphin may provide a nonaddictive approach to improve the devastating condition of chronic pain that occurs in numerous human diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010715-103042
2016-01-06
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/56/1/annurev-pharmtox-010715-103042.html?itemId=/content/journals/10.1146/annurev-pharmtox-010715-103042&mimeType=html&fmt=ahah

Literature Cited

  1. Katz J, Seltzer Z. 1.  2009. Transition from acute to chronic postsurgical pain: risk factors and protective factors. Expert Rev. Neurother. 9:723–44 [Google Scholar]
  2. Kehlet H, Rathmell JP. 2.  2010. Persistent postsurgical pain: the path forward through better design of clinical studies. Anesthesiology 112:514–15 [Google Scholar]
  3. Harstall C, Ospina M. 3.  2003. How prevalent is chronic pain?. Pain Clin. Updat. 11:21–4 [Google Scholar]
  4. Elliott AM, Smith BH, Penny KI, Smith WC, Chambers WA. 4.  1999. The epidemiology of chronic pain in the community. Lancet 354:1248–52 [Google Scholar]
  5. Blyth FM, March LM, Brnabic AJ, Jorm LR, Williamson M, Cousins MJ. 5.  2001. Chronic pain in Australia: a prevalence study. Pain 89:127–34 [Google Scholar]
  6. Baron R. 6.  2009. Neuropathic pain: a clinical perspective. Handb. Exp. Pharmacol. 194:3–30 [Google Scholar]
  7. Voscopoulos C, Lema M. 7.  2010. When does acute pain become chronic?. Br. J. Anaesth. 105:Suppl. 1i69–85 [Google Scholar]
  8. Sorkin LS, Yaksh TL. 8.  2009. Behavioral models of pain states evoked by physical injury to the peripheral nerve. Neurotherapeutics 6:609–19 [Google Scholar]
  9. Calvino B, Crepon-Bernard MO, Le Bars D. 9.  1987. Parallel clinical and behavioural studies of adjuvant-induced arthritis in the rat: possible relationship with ‘chronic pain.’. Behav. Brain Res. 24:11–29 [Google Scholar]
  10. Millan MJ. 10.  1999. The induction of pain: an integrative review. Prog. Neurobiol. 57:1–164 [Google Scholar]
  11. Willis WD Jr. 11.  2007. The somatosensory system, with emphasis on structures important for pain. Brain Res. Rev. 55:297–313 [Google Scholar]
  12. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. 12.  1994. Quantitative assessment of tactile allodynia in the rat paw. J. Neurosci. Methods 53:55–63 [Google Scholar]
  13. Hucho T, Levine JD. 13.  2007. Signaling pathways in sensitization: toward a nociceptor cell biology. Neuron 55:365–76 [Google Scholar]
  14. Latremoliere A, Woolf CJ. 14.  2009. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J. Pain 10:895–926 [Google Scholar]
  15. Vallejo R, Tilley DM, Vogel L, Benyamin R. 15.  2010. The role of glia and the immune system in the development and maintenance of neuropathic pain. Pain Pract. 10:167–84 [Google Scholar]
  16. Ikeda H, Stark J, Fischer H, Wagner M, Drdla R. 16.  et al. 2006. Synaptic amplifier of inflammatory pain in the spinal dorsal horn. Science 312:1659–62 [Google Scholar]
  17. Shortland P, Wall PD. 17.  1992. Long-range afferents in the rat spinal cord. II. Arborizations that penetrate grey matter. Philos. Trans. R. Soc. B 337:445–55 [Google Scholar]
  18. Schaible HG. 18.  2007. Peripheral and central mechanisms of pain generation. Handb. Exp. Pharmacol. 177:3–28 [Google Scholar]
  19. Ji RR, Xu ZZ, Gao YJ. 19.  2014. Emerging targets in neuroinflammation-driven chronic pain. Nat. Rev. Drug Discov. 13:533–48 [Google Scholar]
  20. Carozzi VA, Canta A, Chiorazzi A, Cavaletti G. 20.  2014. Chemotherapy-induced peripheral neuropathy: What do we know about mechanisms?. Neurosci. Lett. 596:90–107 [Google Scholar]
  21. Svensson CI, Brodin E. 21.  2010. Spinal astrocytes in pain processing: non-neuronal cells as therapeutic targets. Mol. Interv. 10:25–38 [Google Scholar]
  22. Gosselin RD, Suter MR, Ji RR, Decosterd I. 22.  2010. Glial cells and chronic pain. Neuroscientist 16:519–31 [Google Scholar]
  23. Moulin D, Boulanger A, Clark AJ, Clarke H, Dao T. 23.  et al. 2014. Pharmacological management of chronic neuropathic pain: revised consensus statement from the Canadian Pain Society. Pain Res. Manag. 19:328–35 [Google Scholar]
  24. Bas DB, Su J, Sandor K, Agalave NM, Lundberg J. 24.  et al. 2012. Collagen antibody-induced arthritis evokes persistent pain with spinal glial involvement and transient prostaglandin dependency. Arthritis Rheum. 64:3886–96 [Google Scholar]
  25. Christianson CA, Corr M, Firestein GS, Mobargha A, Yaksh TL, Svensson CI. 25.  2010. Characterization of the acute and persistent pain state present in K/BxN serum transfer arthritis. Pain 151:394–403 [Google Scholar]
  26. Wolfe F, Michaud K. 26.  2007. Assessment of pain in rheumatoid arthritis: minimal clinically significant difference, predictors, and the effect of anti-tumor necrosis factor therapy. J. Rheumatol. 34:1674–83 [Google Scholar]
  27. Taylor P, Manger B, Alvaro-Gracia J, Johnstone R, Gomez-Reino J. 27.  et al. 2010. Patient perceptions concerning pain management in the treatment of rheumatoid arthritis. J. Int. Med. Res. 38:1213–24 [Google Scholar]
  28. Jimenez-Andrade JM, Mantyh PW. 28.  2012. Sensory and sympathetic nerve fibers undergo sprouting and neuroma formation in the painful arthritic joint of geriatric mice. Arthritis Res. Ther. 14:R101 [Google Scholar]
  29. Draisci G, Kajander KC, Dubner R, Bennett GJ, Iadarola MJ. 29.  1991. Up-regulation of opioid gene expression in spinal cord evoked by experimental nerve injuries and inflammation. Brain Res. 560:186–92 [Google Scholar]
  30. Iadarola MJ, Brady LS, Draisci G, Dubner R. 30.  1988. Enhancement of dynorphin gene expression in spinal cord following experimental inflammation: stimulus specificity, behavioral parameters and opioid receptor binding. Pain 35:313–26 [Google Scholar]
  31. Wang Z, Gardell LR, Ossipov MH, Vanderah TW, Brennan MB. 31.  et al. 2001. Pronociceptive actions of dynorphin maintain chronic neuropathic pain. J. Neurosci. 21:1779–86 [Google Scholar]
  32. Rosen A, Lundeberg T, Bytner B, Nylander I. 32.  2000. Central changes in nociceptin dynorphin B and Met-enkephalin-Arg-Phe in different models of nociception. Brain Res. 857:212–18 [Google Scholar]
  33. Vaeroy H, Nyberg F, Terenius L. 33.  1991. No evidence for endorphin deficiency in fibromyalgia following investigation of cerebrospinal fluid (CSF) dynorphin A and Met-enkephalin-Arg6-Phe7. Pain 46:139–43 [Google Scholar]
  34. Samuelsson H, Ekman R, Hedner T. 34.  1993. CSF neuropeptides in cancer pain: effects of spinal opioid therapy. Acta Anaesthesiol. Scand. 37:502–8 [Google Scholar]
  35. Pohl M, Ballet S, Collin E, Mauborgne A, Bourgoin S. 35.  et al. 1997. Enkephalinergic and dynorphinergic neurons in the spinal cord and dorsal root ganglia of the polyarthritic rat—in vivo release and cDNA hybridization studies. Brain Res. 749:18–28 [Google Scholar]
  36. Ballet S, Mauborgne A, Hamon M, Cesselin F, Collin E. 36.  2000. Altered opioid-mediated control of the spinal release of dynorphin and met-enkephalin in polyarthritic rats. Synapse 37:262–72 [Google Scholar]
  37. Malan TP, Ossipov MH, Gardell LR, Ibrahim M, Bian D. 37.  et al. 2000. Extraterritorial neuropathic pain correlates with multisegmental elevation of spinal dynorphin in nerve-injured rats. Pain 86:185–94 [Google Scholar]
  38. Kajander KC, Sahara Y, Iadarola MJ, Bennett GJ. 38.  1990. Dynorphin increases in the dorsal spinal cord in rats with a painful peripheral neuropathy. Peptides 11:719–28 [Google Scholar]
  39. Mika J, Rojewska E, Makuch W, Przewlocka B. 39.  2010. Minocycline reduces the injury-induced expression of prodynorphin and pronociceptin in the dorsal root ganglion in a rat model of neuropathic pain. Neuroscience 165:1420–28 [Google Scholar]
  40. Calza L, Pozza M, Zanni M, Manzini CU, Manzini E, Hokfelt T. 40.  1998. Peptide plasticity in primary sensory neurons and spinal cord during adjuvant-induced arthritis in the rat: an immunocytochemical and in situ hybridization study. Neuroscience 82:575–89 [Google Scholar]
  41. Vanderah TW, Laughlin T, Lashbrook JM, Nichols ML, Wilcox GL. 41.  et al. 1996. Single intrathecal injections of dynorphin A or des-Tyr-dynorphins produce long-lasting allodynia in rats: blockade by MK-801 but not naloxone. Pain 68:275–81 [Google Scholar]
  42. Laughlin TM, Vanderah TW, Lashbrook J, Nichols ML, Ossipov M. 42.  et al. 1997. Spinally administered dynorphin A produces long-lasting allodynia: involvement of NMDA but not opioid receptors. Pain 72:253–60 [Google Scholar]
  43. Laughlin TM, Larson AA, Wilcox GL. 43.  2001. Mechanisms of induction of persistent nociception by dynorphin. J. Pharmacol. Exp. Ther. 299:6–11 [Google Scholar]
  44. Gardell LR, Vanderah TW, Gardell SE, Wang R, Ossipov MH. 44.  et al. 2003. Enhanced evoked excitatory transmitter release in experimental neuropathy requires descending facilitation. J. Neurosci. 23:8370–79 [Google Scholar]
  45. Gardell LR, Ibrahim M, Wang R, Wang Z, Ossipov MH. 45.  et al. 2004. Mouse strains that lack spinal dynorphin upregulation after peripheral nerve injury do not develop neuropathic pain. Neuroscience 123:43–52 [Google Scholar]
  46. Lai J, Luo MC, Chen Q, Ma S, Gardell LR. 46.  et al. 2006. Dynorphin A activates bradykinin receptors to maintain neuropathic pain. Nat. Neurosci. 9:1534–40 [Google Scholar]
  47. Luo MC, Chen Q, Ossipov M, Rankin DR, Porreca F. 47.  et al. 2008. Spinal dynorphin and bradykinin receptors maintain inflammatory hyperalgesia. J. Pain 9:1096–105 [Google Scholar]
  48. Lee YS, Muthu D, Hall SM, Ramos-Colon C, Rankin D. 48.  et al. 2014. Discovery of amphipathic dynorphin A analogues to inhibit the neuroexcitatory effects of dynorphin A through bradykinin receptors in the spinal cord. J. Am. Chem. Soc. 136:6608–16 [Google Scholar]
  49. Goldstein A, Tachibana S, Lowney LI, Hunkapiller M, Hood L. 49.  1979. Dynorphin-(1–13), an extraordinarily potent opioid peptide. PNAS 76:6666–70 [Google Scholar]
  50. Goldstein A, Fischli W, Lowney LI, Hunkapiller M, Hood L. 50.  1981. Porcine pituitary dynorphin: complete amino acid sequence of the biologically active heptadecapeptide. PNAS 78:7219–23 [Google Scholar]
  51. Chavkin C. 51.  2013. Dynorphin—still an extraordinarily potent opioid peptide. Mol. Pharmacol. 83:729–36 [Google Scholar]
  52. Oka T, Negishi K, Suda M, Sawa A, Fujino M, Wakimasu M. 52.  1982. Evidence that dynorphin-(1–13) acts as an agonist on opioid κ-receptors. Eur. J. Pharmacol. 77:137–41 [Google Scholar]
  53. Hutchinson M, Kosterlitz HW, Leslie FM, Waterfield AA. 53.  1975. Assessment in the guinea-pig ileum and mouse vas deferens of benzomorphans which have strong antinociceptive activity but do not substitute for morphine in the dependent monkey. Br. J. Pharmacol. 55:541–46 [Google Scholar]
  54. Martin WR. 54.  1979. History and development of mixed opioid agonists, partial agonists and antagonists. Br. J. Clin. Pharmacol. 7:Suppl. 3273S–79S [Google Scholar]
  55. Tung AS, Yaksh TL. 55.  1982. In vivo evidence for multiple opiate receptors mediating analgesia in the rat spinal cord. Brain Res. 247:75–83 [Google Scholar]
  56. Schmauss C, Yaksh TL. 56.  1984. In vivo studies on spinal opiate receptor systems mediating antinociception. II. Pharmacological profiles suggesting a differential association of μ, δ and κ receptors with visceral chemical and cutaneous thermal stimuli in the rat. J. Pharmacol. Exp. Ther. 228:1–12 [Google Scholar]
  57. Han JS, Xie GX, Goldstein A. 57.  1984. Analgesia induced by intrathecal injection of dynorphin B in the rat. Life Sci. 34:1573–79 [Google Scholar]
  58. Przewlocki R, Stala L, Greczek M, Shearman GT, Przewlocka B, Herz A. 58.  1983. Analgesic effects of μ-, δ- and κ-opiate agonists and, in particular, dynorphin at the spinal level. Life Sci. 33:Suppl. 1649–52 [Google Scholar]
  59. Stevens CW, Weinger MB, Yaksh TL. 59.  1987. Intrathecal dynorphins suppress hindlimb electromyographic activity in rats. Eur. J. Pharmacol. 138:299–302 [Google Scholar]
  60. Faden AI, Jacobs TP. 60.  1984. Dynorphin-related peptides cause motor dysfunction in the rat through a non-opiate action. Br. J. Pharmacol. 81:271–76 [Google Scholar]
  61. Spampinato S, Candeletti S. 61.  1985. Characterization of dynorphin A-induced antinociception at spinal level. Eur. J. Pharmacol. 110:21–30 [Google Scholar]
  62. Caudle RM, Isaac L. 62.  1987. Intrathecal dynorphin (1–13) results in an irreversible loss of the tail-flick reflex in rats. Brain Res. 435:1–6 [Google Scholar]
  63. Tan-No K, Esashi A, Nakagawasai O, Niijima F, Tadano T. 63.  et al. 2002. Intrathecally administered big dynorphin, a prodynorphin-derived peptide, produces nociceptive behavior through an N-methyl-d-aspartate receptor mechanism. Brain Res. 952:7–14 [Google Scholar]
  64. Isaac L, Van Zandt O'Malley T, Ristic H, Stewart P. 64.  1990. MK-801 blocks dynorphin A (1–13)-induced loss of the tail-flick reflex in the rat. Brain Res. 531:83–87 [Google Scholar]
  65. Knox RJ, Dickenson AH. 65.  1987. Effects of selective and non-selective κ-opioid receptor agonists on cutaneous C-fibre-evoked responses of rat dorsal horn neurones. Brain Res. 415:21–29 [Google Scholar]
  66. Gaumann DM, Yaksh TL, Post C, Wilcox GL, Rodriguez M. 66.  1989. Intrathecal somatostatin in cat and mouse studies on pain, motor behavior, and histopathology. Anesth. Analg. 68:623–32 [Google Scholar]
  67. Gaumann DM, Grabow TS, Yaksh TL, Casey SJ, Rodriguez M. 67.  1990. Intrathecal somatostatin, somatostatin analogs, substance P analog and dynorphin A cause comparable neurotoxicity in rats. Neuroscience 39:761–74 [Google Scholar]
  68. Shukla VK, Lemaire S. 68.  1994. Non-opioid effects of dynorphins: possible role of the NMDA receptor. Trends Pharmacol. Sci. 15:420–24 [Google Scholar]
  69. Zhang L, Peoples RW, Oz M, Harvey-White J, Weight FF, Brauneis U. 69.  1997. Potentiation of NMDA receptor-mediated responses by dynorphin at low extracellular glycine concentrations. J. Neurophysiol. 78:582–90 [Google Scholar]
  70. Skilling SR, Sun X, Kurtz HJ, Larson AA. 70.  1992. Selective potentiation of NMDA-induced activity and release of excitatory amino acids by dynorphin: possible roles in paralysis and neurotoxicity. Brain Res. 575:272–78 [Google Scholar]
  71. Koetzner L, Hua XY, Lai J, Porreca F, Yaksh T. 71.  2004. Nonopioid actions of intrathecal dynorphin evoke spinal excitatory amino acid and prostaglandin E2 release mediated by cyclooxygenase-1 and -2. J. Neurosci. 24:1451–58 [Google Scholar]
  72. Hu WH, Li F, Qiang WA, Liu N, Wang GQ. 72.  et al. 1999. Dual role for nitric oxide in dynorphin spinal neurotoxicity. J. Neurotrauma 16:85–98 [Google Scholar]
  73. Laughlin TM, Bethea JR, Yezierski RP, Wilcox GL. 73.  2000. Cytokine involvement in dynorphin-induced allodynia. Pain 84:159–67 [Google Scholar]
  74. Mika J, Rojewska E, Makuch W, Korostynski M, Luvisetto S. 74.  et al. 2011. The effect of botulinum neurotoxin A on sciatic nerve injury-induced neuroimmunological changes in rat dorsal root ganglia and spinal cord. Neuroscience 175:358–66 [Google Scholar]
  75. Minokadeh A, Funkelstein L, Toneff T, Hwang SR, Beinfeld M. 75.  et al. 2010. Cathepsin L participates in dynorphin production in brain cortex, illustrated by protease gene knockout and expression. Mol. Cell. Neurosci. 43:98–107 [Google Scholar]
  76. Funkelstein L, Beinfeld M, Minokadeh A, Zadina J, Hook V. 76.  2010. Unique biological function of cathepsin L in secretory vesicles for biosynthesis of neuropeptides. Neuropeptides 44:457–66 [Google Scholar]
  77. Berman Y, Mzhavia N, Polonskaia A, Furuta M, Steiner DF. 77.  et al. 2000. Defective prodynorphin processing in mice lacking prohormone convertase PC2. J. Neurochem. 75:1763–70 [Google Scholar]
  78. Hook V, Funkelstein L, Lu D, Bark S, Wegrzyn J, Hwang SR. 78.  2008. Proteases for processing proneuropeptides into peptide neurotransmitters and hormones. Annu. Rev. Pharmacol. Toxicol. 48:393–423 [Google Scholar]
  79. Young EA, Walker JM, Houghten R, Akil H. 79.  1987. The degradation of dynorphin A in brain tissue in vivo and in vitro. Peptides 8:701–7 [Google Scholar]
  80. Roques BP, Fournie-Zaluski MC, Wurm M. 80.  2012. Inhibiting the breakdown of endogenous opioids and cannabinoids to alleviate pain. Nat. Rev. Drug Discov. 11:292–310 [Google Scholar]
  81. Maldonado R, Valverde O, Turcaud S, Fournie-Zaluski MC, Roques BP. 81.  1994. Antinociceptive response induced by mixed inhibitors of enkephalin catabolism in peripheral inflammation. Pain 58:77–83 [Google Scholar]
  82. Schreiter A, Gore C, Labuz D, Fournie-Zaluski MC, Roques BP. 82.  et al. 2012. Pain inhibition by blocking leukocytic and neuronal opioid peptidases in peripheral inflamed tissue. FASEB J. 26:5161–71 [Google Scholar]
  83. Song B, Marvizon JC. 83.  2003. Peptidases prevent μ-opioid receptor internalization in dorsal horn neurons by endogenously released opioids. J. Neurosci. 23:1847–58 [Google Scholar]
  84. Honore P, Rogers SD, Schwei MJ, Salak-Johnson JL, Luger NM. 84.  et al. 2000. Murine models of inflammatory, neuropathic and cancer pain each generates a unique set of neurochemical changes in the spinal cord and sensory neurons. Neuroscience 98:585–98 [Google Scholar]
  85. Wagner R, DeLeo JA, Coombs DW, Willenbring S, Fromm C. 85.  1993. Spinal dynorphin immunoreactivity increases bilaterally in a neuropathic pain model. Brain Res. 629:323–26 [Google Scholar]
  86. Zhu X, Vincler MA, Parker R, Eisenach JC. 86.  2006. Spinal cord dynorphin expression increases, but does not drive microglial prostaglandin production or mechanical hypersensitivity after incisional surgery in rats. Pain 125:43–52 [Google Scholar]
  87. Sardella TC, Polgar E, Garzillo F, Furuta T, Kaneko T. 87.  et al. 2011. Dynorphin is expressed primarily by GABAergic neurons that contain galanin in the rat dorsal horn. Mol. Pain 7:76 [Google Scholar]
  88. Nahin RL, Hylden JL, Humphrey E. 88.  1992. Demonstration of dynorphin A 1–8 immunoreactive axons contacting spinal cord projection neurons in a rat model of peripheral inflammation and hyperalgesia. Pain 51:135–43 [Google Scholar]
  89. Duan B, Cheng L, Bourane S, Britz O, Padilla C. 89.  et al. 2014. Identification of spinal circuits transmitting and gating mechanical pain. Cell 159:1417–32 [Google Scholar]
  90. Wahlert A, Funkelstein L, Fitzsimmons B, Yaksh T, Hook V. 90.  2013. Spinal astrocytes produce and secrete dynorphin neuropeptides. Neuropeptides 47:109–15 [Google Scholar]
  91. Stokes JA, Cheung J, Eddinger K, Corr M, Yaksh TL. 91.  2013. Toll-like receptor signaling adapter proteins govern spread of neuropathic pain and recovery following nerve injury in male mice. J. Neuroinflammation 10:148 [Google Scholar]
  92. Tsuda M, Tozaki-Saitoh H, Inoue K. 92.  2010. Pain and purinergic signaling. Brain Res. Rev. 63:222–32 [Google Scholar]
  93. Ledeboer A, Sloane EM, Milligan ED, Frank MG, Mahony JH. 93.  et al. 2005. Minocycline attenuates mechanical allodynia and proinflammatory cytokine expression in rat models of pain facilitation. Pain 115:71–83 [Google Scholar]
  94. Sandkuhler J. 94.  2009. Models and mechanisms of hyperalgesia and allodynia. Physiol. Rev. 89:707–58 [Google Scholar]
  95. Bromme D, Li Z, Barnes M, Mehler E. 95.  1999. Human cathepsin V functional expression, tissue distribution, electrostatic surface potential, enzymatic characterization, and chromosomal localization. Biochemistry 38:2377–85 [Google Scholar]
  96. Turk V, Turk B, Turk D. 96.  2001. Lysosomal cysteine proteases: facts and opportunities. EMBO J. 20:4629–33 [Google Scholar]
  97. Funkelstein L, Lu WD, Koch B, Mosier C, Toneff T. 97.  et al. 2012. Human cathepsin V protease participates in production of enkephalin and NPY neuropeptide neurotransmitters. J. Biol. Chem. 287:15232–41 [Google Scholar]
  98. Wei H, Saarnilehto M, Falck L, Viisanen H, Lasierra M. 98.  et al. 2013. Spinal transient receptor potential ankyrin 1 channel induces mechanical hypersensitivity, increases cutaneous blood flow, and mediates the pronociceptive action of dynorphin A. J. Physiol. Pharmacol. 64:331–40 [Google Scholar]
  99. Facer P, Casula MA, Smith GD, Benham CD, Chessell IP. 99.  et al. 2007. Differential expression of the capsaicin receptor TRPV1 and related novel receptors TRPV3, TRPV4 and TRPM8 in normal human tissues and changes in traumatic and diabetic neuropathy. BMC Neurol. 7:11 [Google Scholar]
  100. Chen Y, Willcockson HH, Valtschanoff JG. 100.  2009. Influence of the vanilloid receptor TRPV1 on the activation of spinal cord glia in mouse models of pain. Exp. Neurol. 220:383–90 [Google Scholar]
  101. Watabiki T, Kiso T, Tsukamoto M, Aoki T, Matsuoka N. 101.  2011. Intrathecal administration of AS1928370, a transient receptor potential vanilloid 1 antagonist, attenuates mechanical allodynia in a mouse model of neuropathic pain. Biol. Pharm. Bull. 34:1105–8 [Google Scholar]
  102. Moqrich A, Hwang SW, Earley TJ, Petrus MJ, Murray AN. 102.  et al. 2005. Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307:1468–72 [Google Scholar]
  103. Woolf CJ, Costigan M. 103.  1999. Transcriptional and posttranslational plasticity and the generation of inflammatory pain. PNAS USA 96:7723–30 [Google Scholar]
  104. Knowlton WM, Daniels RL, Palkar R, McCoy DD, McKemy DD. 104.  2011. Pharmacological blockade of TRPM8 ion channels alters cold and cold pain responses in mice. PLOS ONE 6:e25894 [Google Scholar]
  105. Rojewska E, Makuch W, Przewlocka B, Mika J. 105.  2014. Minocycline prevents dynorphin-induced neurotoxicity during neuropathic pain in rats. Neuropharmacology 86:301–10 [Google Scholar]
  106. Lindenlaub T, Sommer C. 106.  2003. Cytokines in sural nerve biopsies from inflammatory and non-inflammatory neuropathies. Acta Neuropathol. 105:593–602 [Google Scholar]
  107. Alexander GM, van Rijn MA, van Hilten JJ, Perreault MJ, Schwartzman RJ. 107.  2005. Changes in cerebrospinal fluid levels of pro-inflammatory cytokines in CRPS. Pain 116:213–19 [Google Scholar]
  108. Arruda JL, Colburn RW, Rickman AJ, Rutkowski MD, DeLeo JA. 108.  1998. Increase of interleukin-6 mRNA in the spinal cord following peripheral nerve injury in the rat: potential role of IL-6 in neuropathic pain. Brain Res. Mol. Brain Res. 62:228–35 [Google Scholar]
  109. Xu Y, Zhang X, Pu S, Wu J, Lv Y, Du D. 109.  2014. Circulating microRNA expression profile: a novel potential predictor for chronic nervous lesions. Acta Biochim. Biophys. Sin. 46:942–49 [Google Scholar]
  110. Ramer MS, Murphy PG, Richardson PM, Bisby MA. 110.  1998. Spinal nerve lesion-induced mechanoallodynia and adrenergic sprouting in sensory ganglia are attenuated in interleukin-6 knockout mice. Pain 78:115–21 [Google Scholar]
  111. Orlova IA, Alexander GM, Qureshi RA, Sacan A, Graziano A. 111.  et al. 2011. MicroRNA modulation in complex regional pain syndrome. J. Transl. Med. 9:195 [Google Scholar]
  112. Kim CF, Moalem-Taylor G. 112.  2011. Detailed characterization of neuro-immune responses following neuropathic injury in mice. Brain Res. 1405:95–108 [Google Scholar]
  113. Liang Y, Jiang W, Zhang Z, Yu J, Tao L, Zhao S. 113.  2012. Behavioral and morphological evidence for the involvement of glial cells in the antinociceptive effect of najanalgesin in a rat neuropathic pain model. Biol. Pharm. Bull. 35:850–54 [Google Scholar]
  114. Shi Y, Gelman BB, Lisinicchia JG, Tang SJ. 114.  2012. Chronic-pain-associated astrocytic reaction in the spinal cord dorsal horn of human immunodeficiency virus-infected patients. J. Neurosci. 32:10833–40 [Google Scholar]
  115. Coyle DE. 115.  1998. Partial peripheral nerve injury leads to activation of astroglia and microglia which parallels the development of allodynic behavior. Glia 23:75–83 [Google Scholar]
  116. Del Valle L, Schwartzman RJ, Alexander G. 116.  2009. Spinal cord histopathological alterations in a patient with longstanding complex regional pain syndrome. Brain Behav. Immun. 23:85–91 [Google Scholar]
  117. Hu P, Bembrick AL, Keay KA, McLachlan EM. 117.  2007. Immune cell involvement in dorsal root ganglia and spinal cord after chronic constriction or transection of the rat sciatic nerve. Brain Behav. Immun. 21:599–616 [Google Scholar]
  118. Mei XP, Xu H, Xie C, Ren J, Zhou Y. 118.  et al. 2011. Post-injury administration of minocycline: an effective treatment for nerve-injury induced neuropathic pain. Neurosci. Res. 70:305–12 [Google Scholar]
  119. Durrenberger PF, Facer P, Gray RA, Chessell IP, Naylor A. 119.  et al. 2004. Cyclooxygenase-2 (Cox-2) in injured human nerve and a rat model of nerve injury. J. Peripher. Nerv. Syst. 9:15–25 [Google Scholar]
  120. Chillingworth NL, Morham SG, Donaldson LF. 120.  2006. Sex differences in inflammation and inflammatory pain in cyclooxygenase-deficient mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291:R327–34 [Google Scholar]
  121. Magni G, Ceruti S. 121.  2014. The purinergic system and glial cells: emerging costars in nociception. BioMed. Res. Int. 2014:495789 [Google Scholar]
  122. Chessell IP, Hatcher JP, Bountra C, Michel AD, Hughes JP. 122.  et al. 2005. Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain 114:386–96 [Google Scholar]
  123. Holliday KL, McBeth J, Macfarlane G, Huhtaniemi IT, Bartfai G. 123.  et al. 2013. Investigating the role of pain-modulating pathway genes in musculoskeletal pain. Eur. J. Pain 17:28–34 [Google Scholar]
  124. Dib-Hajj SD, Rush AM, Cummins TR, Hisama FM, Novella S. 124.  et al. 2005. Gain-of-function mutation in Nav1.7 in familial erythromelalgia induces bursting of sensory neurons. Brain 128:1847–54 [Google Scholar]
  125. McGowan E, Hoyt SB, Li X, Lyons KA, Abbadie C. 125.  2009. A peripherally acting Nav1.7 sodium channel blocker reverses hyperalgesia and allodynia on rat models of inflammatory and neuropathic pain. Anesth. Analg. 109:951–58 [Google Scholar]
  126. Ossipov MH, Morimura K, Porreca F. 126.  2014. Descending pain modulation and chronification of pain. Curr. Opin. Support. Palliat. Care 8:143–51 [Google Scholar]
  127. Nicholl BI, Holliday KL, Macfarlane GJ, Thomson W, Davies KA. 127.  et al. 2011. Association of HTR2A polymorphisms with chronic widespread pain and the extent of musculoskeletal pain: results from two population-based cohorts. Arthritis Rheum. 63:810–18 [Google Scholar]
  128. Martinez-Jauand M, Sitges C, Rodriguez V, Picornell A, Ramon M. 128.  et al. 2013. Pain sensitivity in fibromyalgia is associated with catechol-O-methyltransferase (COMT) gene. Eur. J. Pain 17:16–27 [Google Scholar]
  129. Matsuda JB, Barbosa FR, Morel LJ, Franca Sde C, Zingaretti SM. 129.  et al. 2010. Serotonin receptor (5-HT 2A) and catechol-O-methyltransferase (COMT) gene polymorphisms: triggers of fibromyalgia?. Rev. Bras. Reumatol. 50:141–49 [Google Scholar]
  130. Kambur O, Mannisto PT, Pusa AM, Kaenmaki M, Kalso EA, Kontinen VK. 130.  2011. Nitecapone reduces development and symptoms of neuropathic pain after spinal nerve ligation in rats. Eur. J. Pain 15:732–40 [Google Scholar]
  131. Yuferov V, Ji F, Nielsen DA, Levran O, Ho A. 131.  et al. 2009. A functional haplotype implicated in vulnerability to develop cocaine dependence is associated with reduced PDYN expression in human brain. Neuropsychopharmacology 34:1185–97 [Google Scholar]
  132. Zhang CS, Tan Z, Lu L, Wu SN, He Y. 132.  et al. 2004. Polymorphism of prodynorphin promoter is associated with schizophrenia in Chinese population. Acta Pharmacol. Sin. 25:1022–26 [Google Scholar]
  133. Greenspan JD, Craft RM, LeResche L, Arendt-Nielsen L, Berkley KJ. 133.  et al. 2007. Studying sex and gender differences in pain and analgesia: a consensus report. Pain 132:Suppl. 1S26–45 [Google Scholar]
  134. Mogil JS, Bailey AL. 134.  2010. Sex and gender differences in pain and analgesia. Prog. Brain Res. 186:141–57 [Google Scholar]
  135. Wiesenfeld-Hallin Z. 135.  2005. Sex differences in pain perception. Gender Med. 2:137–45 [Google Scholar]
  136. Bradshaw H, Miller J, Ling Q, Malsnee K, Ruda MA. 136.  2000. Sex differences and phases of the estrous cycle alter the response of spinal cord dynorphin neurons to peripheral inflammation and hyperalgesia. Pain 85:93–99 [Google Scholar]
  137. Craft RM. 137.  2007. Modulation of pain by estrogens. Pain 132:Suppl. 1S3–12 [Google Scholar]
  138. Gutierrez S, Hayashida K, Eisenach JC. 138.  2013. The puerperium alters spinal cord plasticity following peripheral nerve injury. Neuroscience 228:301–8 [Google Scholar]
  139. Liu NJ, von Gizycki H, Gintzler AR. 139.  2007. Sexually dimorphic recruitment of spinal opioid analgesic pathways by the spinal application of morphine. J. Pharmacol. Exp. Ther. 322:654–60 [Google Scholar]
  140. Iadarola MJ, Douglass J, Civelli O, Naranjo JR. 140.  1988. Differential activation of spinal cord dynorphin and enkephalin neurons during hyperalgesia: evidence using cDNA hybridization. Brain Res. 455:205–12 [Google Scholar]
  141. Millan MJ, Millan MH, Pilcher CW, Czlonkowski A, Herz A, Colpaert FC. 141.  1985. Spinal cord dynorphin may modulate nociception via a κ-opioid receptor in chronic arthritic rats. Brain Res. 340:156–59 [Google Scholar]
  142. Millan MJ, Millan MH, Czlonkowski A, Hollt V, Pilcher CW. 142.  et al. 1986. A model of chronic pain in the rat: response of multiple opioid systems to adjuvant-induced arthritis. J. Neurosci. 6:899–906 [Google Scholar]
  143. Millan MJ, Czlonkowski A, Morris B, Stein C, Arendt R. 143.  et al. 1988. Inflammation of the hind limb as a model of unilateral, localized pain: influence on multiple opioid systems in the spinal cord of the rat. Pain 35:299–312 [Google Scholar]
  144. Weihe E, Millan MJ, Hollt V, Nohr D, Herz A. 144.  1989. Induction of the gene encoding pro-dynorphin by experimentally induced arthritis enhances staining for dynorphin in the spinal cord of rats. Neuroscience 31:77–95 [Google Scholar]
  145. Przewlocki R, Shearman GT, Herz A. 145.  1983. Mixed opioid/nonopioid effects of dynorphin and dynorphin related peptides after their intrathecal injection in rats. Neuropeptides 3:233–40 [Google Scholar]
  146. Herman BH, Goldstein A. 146.  1985. Antinociception and paralysis induced by intrathecal dynorphin A. J. Pharmacol. Exp. Ther. 232:27–32 [Google Scholar]
  147. Jhamandas K, Sutak M, Lemaire S. 147.  1986. Comparative spinal analgesic action of dynorphin1-8, dynorphin1-13, and a κ-receptor agonist U50,488. Can. J. Physiol. Pharmacol. 64:263–68 [Google Scholar]
  148. Ohara PT, Vit JP, Bhargava A, Romero M, Sundberg C. 148.  et al. 2009. Gliopathic pain: when satellite glial cells go bad. Neuroscientist 15:450–63 [Google Scholar]
  149. Baseer N, Polgar E, Watanabe M, Furuta T, Kaneko T, Todd AJ. 149.  2012. Projection neurons in lamina III of the rat spinal cord are selectively innervated by local dynorphin-containing excitatory neurons. J. Neurosci. 32:11854–63 [Google Scholar]
  150. Zeilhofer HU. 150.  2008. Loss of glycinergic and GABAergic inhibition in chronic pain—contributions of inflammation and microglia. Int. Immunopharmacol. 8:182–87 [Google Scholar]
  151. Day R, Lazure C, Basak A, Boudreault A, Limperis P. 151.  et al. 1998. Prodynorphin processing by proprotein convertase 2: cleavage at single basic residues and enhanced processing in the presence of carboxypeptidase activity. J. Biol. Chem. 273:829–36 [Google Scholar]
  152. Kordasiewicz HB, Stanek LM, Wancewicz EV, Mazur C, McAlonis MM. 152.  et al. 2012. Sustained therapeutic reversal of Huntington's disease by transient repression of huntingtin synthesis. Neuron 74:1031–44 [Google Scholar]
  153. Smith RA, Miller TM, Yamanaka K, Monia BP, Condon TP. 153.  et al. 2006. Antisense oligonucleotide therapy for neurodegenerative disease. J. Clin. Investig. 116:2290–96 [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010715-103042
Loading
/content/journals/10.1146/annurev-pharmtox-010715-103042
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error