1932

Abstract

Type 2 diabetes (T2D) is characterized by persistent hyperglycemia despite hyperinsulinemia, affects more than 400 million people worldwide, and is a major cause of morbidity and mortality. Insulin resistance, of which ectopic lipid accumulation in the liver [nonalcoholic fatty liver disease (NAFLD)] and skeletal muscle is the root cause, plays a major role in the development of T2D. Although lifestyle interventions and weight loss are highly effective at reversing NAFLD and T2D, weight loss is difficult to sustain, and newer approaches aimed at treating the root cause of T2D are urgently needed. In this review, we highlight emerging pharmacological strategies aimed at improving insulin sensitivity and T2D by altering hepatic energy balance or inhibiting key enzymes involved in hepatic lipid synthesis. We also summarize recent research suggesting that liver-targeted mitochondrial uncoupling may be an attractive therapeutic approach to treat NAFLD, nonalcoholic steatohepatitis, and T2D.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010716-104727
2019-01-06
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/59/1/annurev-pharmtox-010716-104727.html?itemId=/content/journals/10.1146/annurev-pharmtox-010716-104727&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L et al. 2017. IDF Diabetes Atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 128:40–50
    [Google Scholar]
  2. 2.  DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH et al. 2015. Type 2 diabetes mellitus. Nat. Rev. Dis. Primers 1:15019
    [Google Scholar]
  3. 3.  Wang Y, Beydoun MA, Liang L, Caballero B, Kumanyika SK 2008. Will all Americans become overweight or obese? Estimating the progression and cost of the US obesity epidemic. Obesity 16:2323–30
    [Google Scholar]
  4. 4.  Boyle JP, Honeycutt AA, Narayan KM, Hoerger TJ, Geiss LS et al. 2001. Projection of diabetes burden through 2050: impact of changing demography and disease prevalence in the U.S. Diabetes Care 24:1936–40
    [Google Scholar]
  5. 5.  Finkelstein EA, Trogdon JG, Cohen JW, Dietz W 2009. Annual medical spending attributable to obesity: payer-and service-specific estimates. Health Aff 28:w822–31
    [Google Scholar]
  6. 6.  Cawley J, Meyerhoefer C 2012. The medical care costs of obesity: an instrumental variables approach. J. Health Econ. 31:219–30
    [Google Scholar]
  7. 7.  Cawley J, Rizzo JA, Haas K 2007. Occupation-specific absenteeism costs associated with obesity and morbid obesity. J. Occup. Environ. Med. 49:1317–24
    [Google Scholar]
  8. 8.  Shulman GI 2000. Cellular mechanisms of insulin resistance. J. Clin. Invest. 106:171–76
    [Google Scholar]
  9. 9.  Taylor R, Magnusson I, Rothman DL, Cline GW, Caumo A et al. 1996. Direct assessment of liver glycogen storage by 13C nuclear magnetic resonance spectroscopy and regulation of glucose homeostasis after a mixed meal in normal subjects. J. Clin. Invest. 97:126–32
    [Google Scholar]
  10. 10.  Shulman GI, Rothman DL, Jue T, Stein P, DeFronzo RA, Shulman RG 1990. Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N. Engl. J. Med. 322:223–28
    [Google Scholar]
  11. 11.  Nazimek-Siewniak B, Moczulski D, Grzeszczak W 2002. Risk of macrovascular and microvascular complications in Type 2 diabetes: results of longitudinal study design. J. Diabetes Complic. 16:271–76
    [Google Scholar]
  12. 12.  Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E et al. 2012. Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 35:1364–79
    [Google Scholar]
  13. 13.  Tuso P 2014. Prediabetes and lifestyle modification: time to prevent a preventable disease. Perm. J. 18:88–93
    [Google Scholar]
  14. 14.  Hundal RS, Krssak M, Dufour S, Laurent D, Lebon V et al. 2000. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes 49:2063–69
    [Google Scholar]
  15. 15.  Inzucchi SE, Maggs DG, Spollett GR, Page SL, Rife FS et al. 1998. Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus. N. Engl. J. Med. 338:867–72
    [Google Scholar]
  16. 16.  Roumie CL, Hung AM, Greevy RA, Grijalva CG, Liu X et al. 2012. Comparative effectiveness of sulfonylurea and metformin monotherapy on cardiovascular events in type 2 diabetes mellitus: a cohort study. Ann. Intern. Med. 157:601–10
    [Google Scholar]
  17. 17.  Abdul-Ghani MA, Norton L, Defronzo RA 2011. Role of sodium-glucose cotransporter 2 (SGLT 2) inhibitors in the treatment of type 2 diabetes. Endocr. Rev. 32:515–31
    [Google Scholar]
  18. 18.  Lovshin JA, Drucker DJ 2009. Incretin-based therapies for type 2 diabetes mellitus. Nat. Rev. Endocrinol. 5:262–69
    [Google Scholar]
  19. 19.  Mayerson AB, Hundal RS, Dufour S, Lebon V, Befroy D et al. 2002. The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with type 2 diabetes. Diabetes 51:797–802
    [Google Scholar]
  20. 20.  Petersen KF, Krssak M, Inzucchi S, Cline GW, Dufour S, Shulman GI 2000. Mechanism of troglitazone action in type 2 diabetes. Diabetes 49:827–31
    [Google Scholar]
  21. 21.  Tonelli J, Li W, Kishore P, Pajvani UB, Kwon E et al. 2004. Mechanisms of early insulin-sensitizing effects of thiazolidinediones in type 2 diabetes. Diabetes 53:1621–29
    [Google Scholar]
  22. 22.  Van de Laar FA, Lucassen PL, Akkermans RP, Van de Lisdonk EH, Rutten GE, Van Weel C 2005. Alpha-glucosidase inhibitors for type 2 diabetes mellitus. Cochrane Database Syst. Rev. 8:CD003639
    [Google Scholar]
  23. 23.  Weng J, Li Y, Xu W, Shi L, Zhang Q et al. 2008. Effect of intensive insulin therapy on β-cell function and glycaemic control in patients with newly diagnosed type 2 diabetes: a multicentre randomised parallel-group trial. Lancet 371:1753–60
    [Google Scholar]
  24. 24.  Samuel VT, Shulman GI 2018. Nonalcoholic fatty liver disease as a nexus of metabolic and hepatic diseases. Cell Metab 27:22–41
    [Google Scholar]
  25. 25.  Alkhouri N, Poordad F, Lawitz E 2018. Management of nonalcoholic fatty liver disease: lessons learned from type 2 diabetes. Hepatol. Commun. 2:778–85
    [Google Scholar]
  26. 26.  Lillioja S, Mott DM, Howard BV, Bennett PH, Yki-Jarvinen H et al. 1988. Impaired glucose tolerance as a disorder of insulin action: longitudinal and cross-sectional studies in Pima Indians. N. Engl. J. Med. 318:1217–25
    [Google Scholar]
  27. 27.  Warram JH, Martin BC, Krolewski AS, Soeldner JS, Kahn CR 1990. Slow glucose removal rate and hyperinsulinemia precede the development of type II diabetes in the offspring of diabetic parents. Ann. Intern. Med. 113:909–15
    [Google Scholar]
  28. 28.  DeFronzo RA, Tripathy D 2009. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32:Suppl. 2S157–63
    [Google Scholar]
  29. 29.  Shulman GI 2014. Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. N. Engl. J. Med. 371:1131–41
    [Google Scholar]
  30. 30.  Rothman DL, Shulman RG, Shulman GI 1992. 31P nuclear magnetic resonance measurements of muscle glucose-6-phosphate: evidence for reduced insulin-dependent muscle glucose transport or phosphorylation activity in non-insulin-dependent diabetes mellitus. J. Clin. Invest. 89:1069–75
    [Google Scholar]
  31. 31.  Defronzo RA 2009. Banting lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 58:773–95
    [Google Scholar]
  32. 32.  Perry RJ, Camporez JP, Kursawe R, Titchenell PM, Zhang D et al. 2015. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell 160:745–58
    [Google Scholar]
  33. 33.  DeFronzo RA 1988. Lilly lecture 1987. The triumvirate: β-cell, muscle, liver—a collusion responsible for NIDDM. Diabetes 37:667–87
    [Google Scholar]
  34. 34.  Petersen MC, Shulman GI 2017. Roles of diacylglycerols and ceramides in hepatic insulin resistance. Trends Pharmacol. Sci. 38:649–65
    [Google Scholar]
  35. 35.  Samuel VT, Shulman GI 2016. The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J. Clin. Invest. 126:12–22
    [Google Scholar]
  36. 36.  Boren J, Taskinen MR, Olofsson SO, Levin M 2013. Ectopic lipid storage and insulin resistance: a harmful relationship. J. Intern. Med. 274:25–40
    [Google Scholar]
  37. 37.  Lettner A, Roden M 2008. Ectopic fat and insulin resistance. Curr. Diabetes Rep. 8:185–91
    [Google Scholar]
  38. 38.  Szendroedi J, Roden M 2009. Ectopic lipids and organ function. Curr. Opin. Lipidol. 20:50–56
    [Google Scholar]
  39. 39.  Perry RJ, Samuel VT, Petersen KF, Shulman GI 2014. The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature 510:84–91
    [Google Scholar]
  40. 40.  Samuel VT, Shulman GI 2012. Mechanisms for insulin resistance: common threads and missing links. Cell 148:852–71
    [Google Scholar]
  41. 41.  Petersen MC, Madiraju AK, Gassaway BM, Marcel M, Nasiri AR et al. 2016. Insulin receptor Thr1160 phosphorylation mediates lipid-induced hepatic insulin resistance. J. Clin. Invest. 126:4361–71
    [Google Scholar]
  42. 42.  Szendroedi J, Yoshimura T, Phielix E, Koliaki C, Marcucci M et al. 2014. Role of diacylglycerol activation of PKCθ in lipid-induced muscle insulin resistance in humans. PNAS 111:9597–602
    [Google Scholar]
  43. 43.  Li Y, Soos TJ, Li X, Wu J, Degennaro M et al. 2004. Protein kinase C θ inhibits insulin signaling by phosphorylating IRS1 at Ser(1101). J. Biol. Chem. 279:45304–7
    [Google Scholar]
  44. 44.  Ter Horst KW, Gilijamse PW, Versteeg RI, Ackermans MT, Nederveen AJ et al. 2017. Hepatic diacylglycerol-associated protein kinase Cε translocation links hepatic steatosis to hepatic insulin resistance in humans. Cell Rep 19:1997–2004
    [Google Scholar]
  45. 45.  Kumashiro N, Erion DM, Zhang D, Kahn M, Beddow SA et al. 2011. Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease. PNAS 108:16381–85
    [Google Scholar]
  46. 46.  Magkos F, Su X, Bradley D, Fabbrini E, Conte C et al. 2012. Intrahepatic diacylglycerol content is associated with hepatic insulin resistance in obese subjects. Gastroenterology 142:1444–46.e2
    [Google Scholar]
  47. 47.  Luukkonen PK, Zhou Y, Sadevirta S, Leivonen M, Arola J et al. 2016. Hepatic ceramides dissociate steatosis and insulin resistance in patients with non-alcoholic fatty liver disease. J. Hepatol. 64:1167–75
    [Google Scholar]
  48. 48.  Neschen S, Morino K, Hammond LE, Zhang D, Liu ZX et al. 2005. Prevention of hepatic steatosis and hepatic insulin resistance in mitochondrial acyl-CoA:glycerol-sn-3-phosphate acyltransferase 1 knockout mice. Cell Metab 2:55–65
    [Google Scholar]
  49. 49.  Nagle CA, An J, Shiota M, Torres TP, Cline GW et al. 2007. Hepatic overexpression of glycerol-sn-3-phosphate acyltransferase 1 in rats causes insulin resistance. J. Biol. Chem. 282:14807–15
    [Google Scholar]
  50. 50.  Perry RJ, Zhang D, Zhang XM, Boyer JL, Shulman GI 2015. Controlled-release mitochondrial protonophore reverses diabetes and steatohepatitis in rats. Science 347:1253–56
    [Google Scholar]
  51. 51.  Perry RJ, Kim T, Zhang XM, Lee HY, Pesta D et al. 2013. Reversal of hypertriglyceridemia, fatty liver disease, and insulin resistance by a liver-targeted mitochondrial uncoupler. Cell Metab 18:740–48
    [Google Scholar]
  52. 52.  Choi CS, Savage DB, Kulkarni A, Yu XX, Liu ZX et al. 2007. Suppression of diacylglycerol acyltransferase-2 (DGAT2), but not DGAT1, with antisense oligonucleotides reverses diet-induced hepatic steatosis and insulin resistance. J. Biol. Chem. 282:22678–88
    [Google Scholar]
  53. 53.  Zhang D, Liu ZX, Choi CS, Tian L, Kibbey R et al. 2007. Mitochondrial dysfunction due to long-chain acyl-CoA dehydrogenase deficiency causes hepatic steatosis and hepatic insulin resistance. PNAS 104:17075–80
    [Google Scholar]
  54. 54.  Jornayvaz FR, Birkenfeld AL, Jurczak MJ, Kanda S, Guigni BA et al. 2011. Hepatic insulin resistance in mice with hepatic overexpression of diacylglycerol acyltransferase 2. PNAS 108:5748–52
    [Google Scholar]
  55. 55.  Zhang D, Christianson J, Liu ZX, Tian L, Choi CS et al. 2010. Resistance to high-fat diet-induced obesity and insulin resistance in mice with very long-chain acyl-CoA dehydrogenase deficiency. Cell Metab 11:402–11
    [Google Scholar]
  56. 56.  Ryu D, Seo WY, Yoon YS, Kim YN, Kim SS et al. 2011. Endoplasmic reticulum stress promotes LIPIN2-dependent hepatic insulin resistance. Diabetes 60:1072–81
    [Google Scholar]
  57. 57.  Ryu D, Oh KJ, Jo HY, Hedrick S, Kim YN et al. 2009. TORC2 regulates hepatic insulin signaling via a mammalian phosphatidic acid phosphatase, LIPIN1. Cell Metab 9:240–51
    [Google Scholar]
  58. 58.  Kumashiro N, Yoshimura T, Cantley JL, Majumdar SK, Guebre-Egziabher F et al. 2013. Role of patatin-like phospholipase domain-containing 3 on lipid-induced hepatic steatosis and insulin resistance in rats. Hepatology 57:1763–72
    [Google Scholar]
  59. 59.  Samuel VT, Liu ZX, Wang A, Beddow SA, Geisler JG et al. 2007. Inhibition of protein kinase Cε prevents hepatic insulin resistance in nonalcoholic fatty liver disease. J. Clin. Invest. 117:739–45
    [Google Scholar]
  60. 60.  Abulizi A, Perry RJ, Camporez JP, Jurczak MJ, Petersen KF et al. 2017. A controlled-release mitochondrial protonophore reverses hypertriglyceridemia, nonalcoholic steatohepatitis, and diabetes in lipodystrophic mice. FASEB J 31:2916–24
    [Google Scholar]
  61. 61.  Raddatz K, Turner N, Frangioudakis G, Liao BM, Pedersen DJ et al. 2011. Time-dependent effects of Prkce deletion on glucose homeostasis and hepatic lipid metabolism on dietary lipid oversupply in mice. Diabetologia 54:1447–56
    [Google Scholar]
  62. 62.  Savage DB, Choi CS, Samuel VT, Liu ZX, Zhang D et al. 2006. Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2. J. Clin. Invest. 116:817–24
    [Google Scholar]
  63. 63.  Samuel VT, Choi CS, Phillips TG, Romanelli AJ, Geisler JG et al. 2006. Targeting foxo1 in mice using antisense oligonucleotide improves hepatic and peripheral insulin action. Diabetes 55:2042–50
    [Google Scholar]
  64. 64.  Choi CS, Savage DB, Abu-Elheiga L, Liu ZX, Kim S et al. 2007. Continuous fat oxidation in acetyl-CoA carboxylase 2 knockout mice increases total energy expenditure, reduces fat mass, and improves insulin sensitivity. PNAS 104:16480–85
    [Google Scholar]
  65. 65.  Jaworski K, Ahmadian M, Duncan RE, Sarkadi-Nagy E, Varady KA et al. 2009. AdPLA ablation increases lipolysis and prevents obesity induced by high-fat feeding or leptin deficiency. Nat. Med. 15:159–68
    [Google Scholar]
  66. 66.  Erion DM, Ignatova ID, Yonemitsu S, Nagai Y, Chatterjee P et al. 2009. Prevention of hepatic steatosis and hepatic insulin resistance by knockdown of cAMP response element-binding protein. Cell Metab 10:499–506
    [Google Scholar]
  67. 67.  Galbo T, Perry RJ, Jurczak MJ, Camporez JP, Alves TC et al. 2013. Saturated and unsaturated fat induce hepatic insulin resistance independently of TLR-4 signaling and ceramide synthesis in vivo. PNAS 110:12780–85
    [Google Scholar]
  68. 68.  Camporez JP, Jornayvaz FR, Lee HY, Kanda S, Guigni BA et al. 2013. Cellular mechanism by which estradiol protects female ovariectomized mice from high-fat diet-induced hepatic and muscle insulin resistance. Endocrinology 154:1021–28
    [Google Scholar]
  69. 69.  Camporez JP, Jornayvaz FR, Petersen MC, Pesta D, Guigni BA et al. 2013. Cellular mechanisms by which FGF21 improves insulin sensitivity in male mice. Endocrinology 154:3099–109
    [Google Scholar]
  70. 70.  Jornayvaz FR, Jurczak MJ, Lee HY, Birkenfeld AL, Frederick DW et al. 2010. A high-fat, ketogenic diet causes hepatic insulin resistance in mice, despite increasing energy expenditure and preventing weight gain. Am. J. Physiol. Endocrinol. Metab. 299:E808–15
    [Google Scholar]
  71. 71.  Birkenfeld AL, Lee HY, Guebre-Egziabher F, Alves TC, Jurczak MJ et al. 2011. Deletion of the mammalian INDY homolog mimics aspects of dietary restriction and protects against adiposity and insulin resistance in mice. Cell Metab 14:184–95
    [Google Scholar]
  72. 72.  Lee HY, Birkenfeld AL, Jornayvaz FR, Jurczak MJ, Kanda S et al. 2011. Apolipoprotein CIII overexpressing mice are predisposed to diet-induced hepatic steatosis and hepatic insulin resistance. Hepatology 54:1650–60
    [Google Scholar]
  73. 73.  Jornayvaz FR, Lee HY, Jurczak MJ, Alves TC, Guebre-Egziabher F et al. 2012. Thyroid hormone receptor-α gene knockout mice are protected from diet-induced hepatic insulin resistance. Endocrinology 153:583–91
    [Google Scholar]
  74. 74.  Jurczak MJ, Lee AH, Jornayvaz FR, Lee HY, Birkenfeld AL et al. 2012. Dissociation of inositol-requiring enzyme (IRE1α)-mediated c-Jun N-terminal kinase activation from hepatic insulin resistance in conditional X-box-binding protein-1 (XBP1) knock-out mice. J. Biol. Chem. 287:2558–67
    [Google Scholar]
  75. 75.  Brown WH, Gillum MP, Lee HY, Camporez JP, Zhang XM et al. 2012. Fatty acid amide hydrolase ablation promotes ectopic lipid storage and insulin resistance due to centrally mediated hypothyroidism. PNAS 109:14966–71
    [Google Scholar]
  76. 76.  Sun Z, Miller RA, Patel RT, Chen J, Dhir R et al. 2012. Hepatic Hdac3 promotes gluconeogenesis by repressing lipid synthesis and sequestration. Nat. Med. 18:934–42
    [Google Scholar]
  77. 77.  Montgomery MK, Brown SH, Lim XY, Fiveash CE, Osborne B et al. 2016. Regulation of glucose homeostasis and insulin action by ceramide acyl-chain length: a beneficial role for very long-chain sphingolipid species. Biochim. Biophys. Acta 1861:1828–39
    [Google Scholar]
  78. 78.  Turner N, Kowalski GM, Leslie SJ, Risis S, Yang C et al. 2013. Distinct patterns of tissue-specific lipid accumulation during the induction of insulin resistance in mice by high-fat feeding. Diabetologia 56:1638–48
    [Google Scholar]
  79. 79.  Zhu L, Martinez MN, Emfinger CH, Palmisano BT, Stafford JM 2014. Estrogen signaling prevents diet-induced hepatic insulin resistance in male mice with obesity. Am. J. Physiol. Endocrinol. Metab. 306:E1188–97
    [Google Scholar]
  80. 80.  Camporez JP, Kanda S, Petersen MC, Jornayvaz FR, Samuel VT et al. 2015. ApoA5 knockdown improves whole-body insulin sensitivity in high-fat-fed mice by reducing ectopic lipid content. J. Lipid Res. 56:526–36
    [Google Scholar]
  81. 81.  Jordy AB, Kraakman MJ, Gardner T, Estevez E, Kammoun HL et al. 2015. Analysis of the liver lipidome reveals insights into the protective effect of exercise on high-fat diet-induced hepatosteatosis in mice. Am. J. Physiol. Endocrinol. Metab. 308:E778–91
    [Google Scholar]
  82. 82.  Aroor AR, Habibi J, Ford DA, Nistala R, Lastra G et al. 2015. Dipeptidyl peptidase-4 inhibition ameliorates Western diet-induced hepatic steatosis and insulin resistance through hepatic lipid remodeling and modulation of hepatic mitochondrial function. Diabetes 64:1988–2001
    [Google Scholar]
  83. 83.  Shang J, Castro-Perez JM, Shen X, Zhu Y, Liu H et al. 2016. Duodenal-jejunal bypass surgery induces hepatic lipidomic alterations associated with ameliorated hepatic steatosis in mice. Obesity 24:1938–45
    [Google Scholar]
  84. 84.  Popov VB, Jornayvaz FR, Akgul EO, Kanda S, Jurczak MJ et al. 2015. Second-generation antisense oligonucleotides against β-catenin protect mice against diet-induced hepatic steatosis and hepatic and peripheral insulin resistance. FASEB J 30:1207–17
    [Google Scholar]
  85. 85.  Wilson CG, Tran JL, Erion DM, Vera NB, Febbraio M, Weiss EJ 2016. Hepatocyte-specific disruption of CD36 attenuates fatty liver and improves insulin sensitivity in HFD-fed mice. Endocrinology 157:570–85
    [Google Scholar]
  86. 86.  Montgomery MK, Fiveash CE, Braude JP, Osborne B, Brown SH et al. 2015. Disparate metabolic response to fructose feeding between different mouse strains. Sci. Rep. 5:18474
    [Google Scholar]
  87. 87.  Baumeier C, Kaiser D, Heeren J, Scheja L, John C et al. 2015. Caloric restriction and intermittent fasting alter hepatic lipid droplet proteome and diacylglycerol species and prevent diabetes in NZO mice. Biochim. Biophys. Acta 1851:566–76
    [Google Scholar]
  88. 88.  Jelenik T, Sequaris G, Kaul K, Ouwens DM, Phielix E et al. 2014. Tissue-specific differences in the development of insulin resistance in a mouse model for type 1 diabetes. Diabetes 63:3856–67
    [Google Scholar]
  89. 89.  Lee HY, Lee JS, Alves T, Ladiges W, Rabinovitch PS et al. 2017. Mitochondrial-targeted catalase protects against high-fat diet-induced muscle insulin resistance by decreasing intramuscular lipid accumulation. Diabetes 66:2072–81
    [Google Scholar]
  90. 90.  Xiao N, Lou MD, Lu YT, Yang LL, Liu Q et al. 2017. Ginsenoside Rg5 attenuates hepatic glucagon response via suppression of succinate-associated HIF-1α induction in HFD-fed mice. Diabetologia 60:1084–93
    [Google Scholar]
  91. 91.  Goossens GH, Moors CC, Jocken JW, van der Zijl NJ, Jans A et al. 2016. Altered skeletal muscle fatty acid handling in subjects with impaired glucose tolerance as compared to impaired fasting glucose. Nutrients 8:164
    [Google Scholar]
  92. 92.  Yu C, Chen Y, Cline GW, Zhang D, Zong H et al. 2002. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J. Biol. Chem. 277:50230–36
    [Google Scholar]
  93. 93.  Griffin ME, Marcucci MJ, Cline GW, Bell K, Barucci N et al. 1999. Free fatty acid-induced insulin resistance is associated with activation of protein kinase C θ and alterations in the insulin signaling cascade. Diabetes 48:1270–74
    [Google Scholar]
  94. 94.  Dresner A, Laurent D, Marcucci M, Griffin ME, Dufour S et al. 1999. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J. Clin. Invest. 103:253–59
    [Google Scholar]
  95. 95.  Lam YY, Hatzinikolas G, Weir JM, Janovska A, McAinch AJ et al. 2011. Insulin-stimulated glucose uptake and pathways regulating energy metabolism in skeletal muscle cells: the effects of subcutaneous and visceral fat, and long-chain saturated, n-3 and n-6 polyunsaturated fatty acids. Biochim. Biophys. Acta 1811:468–75
    [Google Scholar]
  96. 96.  Newsom SA, Everett AC, Park S, Van Pelt DW, Hinko A, Horowitz JF 2015. Lipid mixtures containing a very high proportion of saturated fatty acids only modestly impair insulin signaling in cultured muscle cells. PLOS ONE 10:e0120871
    [Google Scholar]
  97. 97.  Lee JS, Pinnamaneni SK, Eo SJ, Cho IH, Pyo JH et al. 2006. Saturated, but not n-6 polyunsaturated, fatty acids induce insulin resistance: role of intramuscular accumulation of lipid metabolites. J. Appl. Physiol. 100:1467–74
    [Google Scholar]
  98. 98.  Coudray C, Fouret G, Lambert K, Ferreri C, Rieusset J et al. 2016. A mitochondrial-targeted ubiquinone modulates muscle lipid profile and improves mitochondrial respiration in obesogenic diet-fed rats. Br. J. Nutr. 115:1155–66
    [Google Scholar]
  99. 99.  Rivas DA, McDonald DJ, Rice NP, Haran PH, Dolnikowski GG, Fielding RA 2016. Diminished anabolic signaling response to insulin induced by intramuscular lipid accumulation is associated with inflammation in aging but not obesity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310:R561–69
    [Google Scholar]
  100. 100.  Coen PM, Menshikova EV, Distefano G, Zheng D, Tanner CJ et al. 2015. Exercise and weight loss improve muscle mitochondrial respiration, lipid partitioning, and insulin sensitivity after gastric bypass surgery. Diabetes 64:3737–50
    [Google Scholar]
  101. 101.  Kase ET, Feng YZ, Badin PM, Bakke SS, Laurens C et al. 2015. Primary defects in lipolysis and insulin action in skeletal muscle cells from type 2 diabetic individuals. Biochim. Biophys. Acta 1851:1194–201
    [Google Scholar]
  102. 102.  Rahimi Y, Camporez JP, Petersen MC, Pesta D, Perry RJ et al. 2014. Genetic activation of pyruvate dehydrogenase alters oxidative substrate selection to induce skeletal muscle insulin resistance. PNAS 111:16508–13
    [Google Scholar]
  103. 103.  Zachariah Tom R, Garcia-Roves PM, Sjögren RJ, Jiang LQ, Holmstrom MH et al. 2014. Effects of AMPK activation on insulin sensitivity and metabolism in leptin-deficient ob/ob mice. Diabetes 63:1560–71
    [Google Scholar]
  104. 104.  Holloway GP, Han XX, Jain SS, Bonen A, Chabowski A 2014. Chronic muscle stimulation improves insulin sensitivity while increasing subcellular lipid droplets and reducing selected diacylglycerol and ceramide species in obese Zucker rats. Diabetologia 57:832–40
    [Google Scholar]
  105. 105.  Henstridge DC, Bruce CR, Drew BG, Tory K, Kolonics A et al. 2014. Activating HSP72 in rodent skeletal muscle increases mitochondrial number and oxidative capacity and decreases insulin resistance. Diabetes 63:1881–94
    [Google Scholar]
  106. 106.  Mathew D, Zhou P, Pywell CM, van der Veen DR, Shao J et al. 2013. Ablation of the ID2 gene results in altered circadian feeding behavior, and sex-specific enhancement of insulin sensitivity and elevated glucose uptake in skeletal muscle and brown adipose tissue. PLOS ONE 8:e73064
    [Google Scholar]
  107. 107.  Jocken JW, Goossens GH, Boon H, Mason RR, Essers Y et al. 2013. Insulin-mediated suppression of lipolysis in adipose tissue and skeletal muscle of obese type 2 diabetic men and men with normal glucose tolerance. Diabetologia 56:2255–65
    [Google Scholar]
  108. 108.  Badin PM, Vila IK, Louche K, Mairal A, Marques MA et al. 2013. High-fat diet-mediated lipotoxicity and insulin resistance is related to impaired lipase expression in mouse skeletal muscle. Endocrinology 154:1444–53
    [Google Scholar]
  109. 109.  Dube JJ, Amati F, Toledo FG, Stefanovic-Racic M, Rossi A et al. 2011. Effects of weight loss and exercise on insulin resistance, and intramyocellular triacylglycerol, diacylglycerol and ceramide. Diabetologia 54:1147–56
    [Google Scholar]
  110. 110.  Petersen KF, Dufour S, Befroy D, Lehrke M, Hendler RE, Shulman GI 2005. Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate weight reduction in patients with type 2 diabetes. Diabetes 54:603–8
    [Google Scholar]
  111. 111.  Taylor R, Leslie WS, Barnes AC, Brosnahan N, Thom G et al. 2018. Clinical and metabolic features of the randomised controlled Diabetes Remission Clinical Trial (DiRECT) cohort. Diabetologia 61:589–98
    [Google Scholar]
  112. 112.  Perry RJ, Peng L, Cline GW, Wang Y, Rabin-Court A et al. 2018. Mechanisms by which a very low calorie diet reverses hyperglycemia in a rat model of type 2 diabetes. Cell Metab 27:210–17.e3
    [Google Scholar]
  113. 113.  Isbell JM, Tamboli RA, Hansen EN, Saliba J, Dunn JP et al. 2010. The importance of caloric restriction in the early improvements in insulin sensitivity after Roux-en-Y gastric bypass surgery. Diabetes Care 33:1438–42
    [Google Scholar]
  114. 114.  Campos GM, Rabl C, Peeva S, Ciovica R, Rao M et al. 2010. Improvement in peripheral glucose uptake after gastric bypass surgery is observed only after substantial weight loss has occurred and correlates with the magnitude of weight lost. J. Gastrointest. Surg. 14:15–23
    [Google Scholar]
  115. 115.  Laferrere B, Teixeira J, McGinty J, Tran H, Egger JR et al. 2008. Effect of weight loss by gastric bypass surgery versus hypocaloric diet on glucose and incretin levels in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 93:2479–85
    [Google Scholar]
  116. 116.  Plum L, Ahmed L, Febres G, Bessler M, Inabnet W et al. 2011. Comparison of glucostatic parameters after hypocaloric diet or bariatric surgery and equivalent weight loss. Obesity 19:2149–57
    [Google Scholar]
  117. 117.  Henry RR, Scheaffer L, Olefsky JM 1985. Glycemic effects of intensive caloric restriction and isocaloric refeeding in noninsulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 61:917–25
    [Google Scholar]
  118. 118.  Lim EL, Hollingsworth KG, Aribisala BS, Chen MJ, Mathers JC, Taylor R 2011. Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia 54:2506–14
    [Google Scholar]
  119. 119.  Jackness C, Karmally W, Febres G, Conwell IM, Ahmed L et al. 2013. Very low-calorie diet mimics the early beneficial effect of Roux-en-Y gastric bypass on insulin sensitivity and β-cell function in type 2 diabetic patients. Diabetes 62:3027–32
    [Google Scholar]
  120. 120.  Stunkard A, McLaren-Hume M 1959. The results of treatment for obesity: a review of the literature and report of a series. AMA Arch. Intern. Med. 103:79–85
    [Google Scholar]
  121. 121.  Wing RR, Phelan S 2005. Long-term weight loss maintenance. Am. J. Clin. Nutr. 82:222–25S
    [Google Scholar]
  122. 122.  McGuire MT, Wing RR, Hill JO 1999. The prevalence of weight loss maintenance among American adults. Int. J. Obes. Relat. Metab. Disord. 23:1314–19
    [Google Scholar]
  123. 123.  Kraschnewski JL, Boan J, Esposito J, Sherwood NE, Lehman EB et al. 2010. Long-term weight loss maintenance in the United States. Int. J. Obes. 34:1644–54
    [Google Scholar]
  124. 124.  Baskota A, Li S, Dhakal N, Liu G, Tian H 2015. Bariatric surgery for type 2 diabetes mellitus in patients with BMI <30 kg/m2: a systematic review and meta-analysis. PLOS ONE 10:e0132335
    [Google Scholar]
  125. 125.  Buchwald H, Estok R, Fahrbach K, Banel D, Jensen MD et al. 2009. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am. J. Med. 122:248–56.e5
    [Google Scholar]
  126. 126.  Klein S, Mittendorfer B, Eagon JC, Patterson B, Grant L et al. 2006. Gastric bypass surgery improves metabolic and hepatic abnormalities associated with nonalcoholic fatty liver disease. Gastroenterology 130:1564–72
    [Google Scholar]
  127. 127.  Mattar SG, Velcu LM, Rabinovitz M, Demetris AJ, Krasinskas AM et al. 2005. Surgically-induced weight loss significantly improves nonalcoholic fatty liver disease and the metabolic syndrome. Ann. Surg. 242:610–20
    [Google Scholar]
  128. 128.  Perry RJ, Peng L, Cline GW, Wang Y, Rabin-Court A et al. 2018. Mechanisms by which a very-low-calorie diet reverses hyperglycemia in a rat model of type 2 diabetes. Cell Metab 27:210–17.e3
    [Google Scholar]
  129. 129.  Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Aminian A et al. 2017. Bariatric surgery versus intensive medical therapy for diabetes: 5-year outcomes. N. Engl. J. Med. 376:641–51
    [Google Scholar]
  130. 130.  Khorgami Z, Shoar S, Andalib A, Aminian A, Brethauer SA, Schauer PR 2017. Trends in utilization of bariatric surgery, 2010–2014: sleeve gastrectomy dominates. Surg. Obes. Relat. Dis. 13:774–78
    [Google Scholar]
  131. 131.  Golomb I, Ben David M, Glass A, Kolitz T, Keidar A 2015. Long-term metabolic effects of laparoscopic sleeve gastrectomy. JAMA Surg 150:1051–57
    [Google Scholar]
  132. 132.  So WY, Leung PS 2016. Fibroblast growth factor 21 as an emerging therapeutic target for type 2 diabetes mellitus. Med. Res. Rev. 36:672–704
    [Google Scholar]
  133. 133.  Inagaki T, Dutchak P, Zhao G, Ding X, Gautron L et al. 2007. Endocrine regulation of the fasting response by PPARα-mediated induction of fibroblast growth factor 21. Cell Metab 5:415–25
    [Google Scholar]
  134. 134.  Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E 2007. Hepatic fibroblast growth factor 21 is regulated by PPARα and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 5:426–37
    [Google Scholar]
  135. 135.  Markan KR, Naber MC, Ameka MK, Anderegg MD, Mangelsdorf DJ et al. 2014. Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. Diabetes 63:4057–63
    [Google Scholar]
  136. 136.  Zhang Y, Xie Y, Berglund ED, Coate KC, He TT et al. 2012. The starvation hormone, fibroblast growth factor-21, extends lifespan in mice. eLife 1:e00065
    [Google Scholar]
  137. 137.  Xu J, Stanislaus S, Chinookoswong N, Lau YY, Hager T et al. 2009. Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin-resistant mouse models: association with liver and adipose tissue effects. Am. J. Physiol. Endocrinol. Metab. 297:E1105–14
    [Google Scholar]
  138. 138.  Wente W, Efanov AM, Brenner M, Kharitonenkov A, Koster A et al. 2006. Fibroblast growth factor-21 improves pancreatic β-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes 55:2470–78
    [Google Scholar]
  139. 139.  Zhang X, Yeung DC, Karpisek M, Stejskal D, Zhou ZG et al. 2008. Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes 57:1246–53
    [Google Scholar]
  140. 140.  Gaich G, Chien JY, Fu H, Glass LC, Deeg MA et al. 2013. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab 18:333–40
    [Google Scholar]
  141. 141.  Adams AC, Halstead CA, Hansen BC, Irizarry AR, Martin JA et al. 2013. LY2405319, an engineered FGF21 variant, improves the metabolic status of diabetic monkeys. PLOS ONE 8:e65763
    [Google Scholar]
  142. 142.  Kharitonenkov A, Beals JM, Micanovic R, Strifler BA, Rathnachalam R et al. 2013. Rational design of a fibroblast growth factor 21-based clinical candidate, LY2405319. PLOS ONE 8:e58575
    [Google Scholar]
  143. 143.  Wei W, Dutchak PA, Wang X, Ding X, Wang X et al. 2012. Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor γ. PNAS 109:3143–48
    [Google Scholar]
  144. 144.  Sanyal A, Charles ED, Neuschwander-Tetri B, Loomba R, Harrison S et al. 2017. BMS-986036 (pegylated FGF21) in patients with non-alcoholic steatohepatitis: a phase 2 study. J. Hepatol. 66:S89–90
    [Google Scholar]
  145. 145.  Brownsey RW, Zhande R, Boone AN 1997. Isoforms of acetyl-CoA carboxylase: structures, regulatory properties and metabolic functions. Biochem. Soc. Trans. 25:1232–38
    [Google Scholar]
  146. 146.  McGarry JD, Mannaerts GP, Foster DW 1977. A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis. J. Clin. Invest. 60:265–70
    [Google Scholar]
  147. 147.  Tong L, Harwood HJ Jr. 2006. Acetyl-coenzyme A carboxylases: versatile targets for drug discovery. J. Cell Biochem. 99:1476–88
    [Google Scholar]
  148. 148.  Harriman G, Greenwood J, Bhat S, Huang X, Wang R et al. 2016. Acetyl-CoA carboxylase inhibition by ND-630 reduces hepatic steatosis, improves insulin sensitivity, and modulates dyslipidemia in rats. PNAS 113:E1796–805
    [Google Scholar]
  149. 149.  Bourbeau MP, Bartberger MD 2015. Recent advances in the development of acetyl-CoA carboxylase (ACC) inhibitors for the treatment of metabolic disease. J. Med. Chem. 58:525–36
    [Google Scholar]
  150. 150.  Goedeke L, Bates J, Vatner DF, Perry RJ, Wang T et al. 2018. Acetyl-CoA carboxylase inhibition reverses NAFLD and hepatic insulin resistance but promotes hypertriglyceridemia in rodents. Hepatology In press. https://doi.org/10.1002/hep.30097
    [Crossref]
  151. 151.  Kim CW, Addy C, Kusunoki J, Anderson NN, Deja S et al. 2017. Acetyl CoA carboxylase inhibition reduces hepatic steatosis but elevates plasma triglycerides in mice and humans: a bedside to bench investigation. Cell Metab 26:394–406.e6
    [Google Scholar]
  152. 152.  Lawitz EJ, Poordad F, Coste A, Loo N, Djedjos CS et al. 2017. Acetyl-CoA carboxylase (ACC) inhibitor GS-0976 leads to suppression of hepatic de novo lipogenesis and significant improvements in MRI-PDFF, MRE, and markers of fibrosis after 12 weeks of therapy in patients with NASH. J. Hepatol. 66:S34
    [Google Scholar]
  153. 153.  Stiede K, Miao W, Blanchette HS, Beysen C, Harriman G et al. 2017. Acetyl-coenzyme A carboxylase inhibition reduces de novo lipogenesis in overweight male subjects: a randomized, double-blind, crossover study. Hepatology 66:324–34
    [Google Scholar]
  154. 154.  Yuan G, Al-Shali KZ, Hegele RA 2007. Hypertriglyceridemia: its etiology, effects and treatment. CMAJ 176:1113–20
    [Google Scholar]
  155. 155.  Jastroch M, Divakaruni AS, Mookerjee S, Treberg JR, Brand MD 2010. Mitochondrial proton and electron leaks. Essays Biochem 47:53–67
    [Google Scholar]
  156. 156.  Perkins RG 1919. A study of the munitions intoxications in France. Public Health Rep 34:2335–74
    [Google Scholar]
  157. 157.  Cutting WC, Mehrtens HG, Tainter ML 1933. Actions and uses of dinitrophenol: promising metabolic applications. JAMA 101:193–95
    [Google Scholar]
  158. 158.  Tainter ML, Stockton AB, Cutting WC 1933. Use of dinitrophenol in obesity and related conditions: a progress report. JAMA 101:1472–75
    [Google Scholar]
  159. 159.  Tainter ML, Stockton AB 1935. Dinitrophenol in the treatment of obesity: final report. JAMA 101:322–36
    [Google Scholar]
  160. 160.  Cutting WC, Tainter ML 1933. Metabolic actions of dinitrophenol with the use of balanced and unbalanced diets. JAMA 101:2099–102
    [Google Scholar]
  161. 161.  Simkins S 1937. Dinitrophenol and desiccated thyroid in the treatment of obesity: a comprehensive clinical and laboratory study. JAMA 108:2110–18
    [Google Scholar]
  162. 162.  Grundlingh J, Dargan PI, El-Zanfaly M, Wood DM 2011. 2,4-dinitrophenol (DNP): a weight loss agent with significant acute toxicity and risk of death. J. Med. Toxicol. 7:205–12
    [Google Scholar]
  163. 163.  Kurt TL, Anderson R, Petty C, Bost R, Reed G, Holland J 1986. Dinitrophenol in weight loss: the poison center and public health safety. Vet. Hum. Toxicol. 28:574–75
    [Google Scholar]
  164. 164.  Swamy SA 1953. Suicidal poisoning by dinitrophenol. J. Indian Med. Assoc. 22:504–5
    [Google Scholar]
  165. 165.  Cann HM, Verhulst HL 1960. Fatality from acute dinitrophenol derivative poisoning. Am. J. Dis. Child 100:947–48
    [Google Scholar]
  166. 166.  Bartlett J, Brunner M, Gough K 2010. Deliberate poisoning with dinitrophenol (DNP): an unlicensed weight loss pill. Emerg. Med. J. 27:159–60
    [Google Scholar]
  167. 167.  Tewari A, Ali T, O'Donnell J, Butt MS 2009. Weight loss and 2,4-dinitrophenol poisoning. Br. J. Anaesth. 102:566–67
    [Google Scholar]
  168. 168.  Siegmueller C, Narasimhaiah R 2010. “Fatal 2,4-dinitrophenol poisoning… coming to a hospital near you. ”. Emerg. Med. J. 27:639–40
    [Google Scholar]
  169. 169.  McFee RB, Caraccio TR, McGuigan MA, Reynolds SA, Bellanger P 2004. Dying to be thin: a dinitrophenol related fatality. Vet. Hum. Toxicol. 46:251–54
    [Google Scholar]
  170. 170.  Hsiao AL, Santucci KA, Seo-Mayer P, Mariappan MR, Hodsdon ME et al. 2005. Pediatric fatality following ingestion of dinitrophenol: postmortem identification of a “dietary supplement. .” Clin. Toxicol. 43:281–85
    [Google Scholar]
  171. 171.  Suozzi JC, Rancont CM, McFee RB 2005. DNP 2,4-dinitrophenol: a deadly way to lose weight. JEMS 30:82–91
    [Google Scholar]
  172. 172.  Miranda EJ, McIntyre IM, Parker DR, Gary RD, Logan BK 2006. Two deaths attributed to the use of 2,4-dinitrophenol. J. Anal. Toxicol. 30:219–22
    [Google Scholar]
  173. 173.  Politi L, Vignali C, Polettini A 2007. LC-MS-MS analysis of 2,4-dinitrophenol and its phase I and II metabolites in a case of fatal poisoning. J. Anal. Toxicol. 31:55–61
    [Google Scholar]
  174. 174.  Holborow A, Purnell RM, Wong JF 2016. Beware the yellow slimming pill: fatal 2,4-dinitrophenol overdose. BMJ Case Rep 2016:214689
    [Google Scholar]
  175. 175.  Lu YQ, Jiang JK, Huang WD 2011. Clinical features and treatment in patients with acute 2,4-dinitrophenol poisoning. J. Zhejiang Univ. Sci. B 12:189–92
    [Google Scholar]
  176. 176.  Clapham JC, Arch JR, Chapman H, Haynes A, Lister C et al. 2000. Mice overexpressing human uncoupling protein-3 in skeletal muscle are hyperphagic and lean. Nature 406:415–18
    [Google Scholar]
  177. 177.  Li B, Nolte LA, Ju JS, Han DH, Coleman T et al. 2000. Skeletal muscle respiratory uncoupling prevents diet-induced obesity and insulin resistance in mice. Nat. Med. 6:1115–20
    [Google Scholar]
  178. 178.  Poher AL, Veyrat-Durebex C, Altirriba J, Montet X, Colin DJ et al. 2015. Ectopic UCP1 overexpression in white adipose tissue improves insulin sensitivity in Lou/C rats, a model of obesity resistance. Diabetes 64:3700–12
    [Google Scholar]
  179. 179.  Kopecky J, Clarke G, Enerback S, Spiegelman B, Kozak LP 1995. Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity. J. Clin. Invest. 96:2914–23
    [Google Scholar]
  180. 180.  Kopecky J, Hodny Z, Rossmeisl M, Syrovy I, Kozak LP 1996. Reduction of dietary obesity in aP2-Ucp transgenic mice: physiology and adipose tissue distribution. Am. J. Physiol. 270:E768–75
    [Google Scholar]
  181. 181.  Bernal-Mizrachi C, Weng S, Li B, Nolte LA, Feng C et al. 2002. Respiratory uncoupling lowers blood pressure through a leptin-dependent mechanism in genetically obese mice. Arterioscler. Thromb. Vasc. Biol. 22:961–68
    [Google Scholar]
  182. 182.  Couplan E, Gelly C, Goubern M, Fleury C, Quesson B et al. 2002. High level of uncoupling protein 1 expression in muscle of transgenic mice selectively affects muscles at rest and decreases their IIb fiber content. J. Biol. Chem. 277:43079–88
    [Google Scholar]
  183. 183.  Samuel VT, Liu ZX, Qu X, Elder BD, Bilz S et al. 2004. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J. Biol. Chem. 279:32345–53
    [Google Scholar]
  184. 184.  Byrom FB 1933. Nature of myxoedema. Clin. Sci. 1:273–85
    [Google Scholar]
  185. 185.  Lebon V, Dufour S, Petersen KF, Ren J, Jucker BM et al. 2001. Effect of triiodothyronine on mitochondrial energy coupling in human skeletal muscle. J. Clin. Invest. 108:733–37
    [Google Scholar]
  186. 186.  Mitchell CS, Savage DB, Dufour S, Schoenmakers N, Murgatroyd P et al. 2010. Resistance to thyroid hormone is associated with raised energy expenditure, muscle mitochondrial uncoupling, and hyperphagia. J. Clin. Invest. 120:1345–54
    [Google Scholar]
  187. 187.  Vazquez-Anaya G, Martinez B, Sonanez-Organis JG, Nakano D, Nishiyama A, Ortiz RM 2017. Exogenous thyroxine improves glucose intolerance in insulin-resistant rats. J. Endocrinol. 232:501–11
    [Google Scholar]
  188. 188.  da Silva Teixeira S, Filgueira C, Sieglaff DH, Benod C, Villagomez R et al. 2017. 3,5-diiodothyronine (3,5-T2) reduces blood glucose independently of insulin sensitization in obese mice. Acta Physiol 220:238–50
    [Google Scholar]
  189. 189.  Iannucci LF, Cioffi F, Senese R, Goglia F, Lanni A et al. 2017. Metabolomic analysis shows differential hepatic effects of T2 and T3 in rats after short-term feeding with high fat diet. Sci. Rep. 7:2023
    [Google Scholar]
  190. 190.  van der Valk F, Hassing C, Visser M, Thakkar P, Mohanan A et al. 2014. The effect of a diiodothyronine mimetic on insulin sensitivity in male cardiometabolic patients: a double-blind randomized controlled trial. PLOS ONE 9:e86890
    [Google Scholar]
  191. 191.  Vatner DF, Snikeris J, Popov V, Perry RJ, Rahimi Y, Samuel VT 2015. 3,5 Diiodo-L-thyronine (T2) does not prevent hepatic steatosis or insulin resistance in fat-fed Sprague Dawley rats. PLOS ONE 10:e0140837
    [Google Scholar]
  192. 192.  Vatner DF, Weismann D, Beddow SA, Kumashiro N, Erion DM et al. 2013. Thyroid hormone receptor-β agonists prevent hepatic steatosis in fat-fed rats but impair insulin sensitivity via discrete pathways. Am. J. Physiol. Endocrinol. Metab. 305:E89–100
    [Google Scholar]
  193. 193.  Klein I, Levey GS 1984. New perspectives on thyroid hormone, catecholamines, and the heart. Am. J. Med. 76:167–72
    [Google Scholar]
  194. 194.  Burgi U, Burgi-Saville ME, Burgherr J, Clement M, Lauber K 1990. T3 plus high doses of beta-blockers: effects on energy intake, body composition, BAT and heart in rats. Int. J. Obes. 14:1023–38
    [Google Scholar]
  195. 195.  Kyle LH, Ball MF, Doolan PD 1966. Effect of thyroid hormone on body composition in myxedema and obesity. N. Engl. J. Med. 275:12–17
    [Google Scholar]
  196. 196.  Abraham RR, Densem JW, Davies P, Davie MW, Wynn V 1985. The effects of triiodothyronine on energy expenditure, nitrogen balance and rates of weight and fat loss in obese patients during prolonged caloric restriction. Int. J. Obes. 9:433–42
    [Google Scholar]
  197. 197.  Erion MD, Cable EE, Ito BR, Jiang H, Fujitaki JM et al. 2007. Targeting thyroid hormone receptor-β agonists to the liver reduces cholesterol and triglycerides and improves the therapeutic index. PNAS 104:15490–95
    [Google Scholar]
  198. 198. Ligand Pharm. 2009. Study of MB07811 in subjects with hypercholesterolemia Rep. NCT00879112 US Natl. Libr. Med., Natl. Inst. Health Bethesda, MD: https://clinicaltrials.gov/ct2/show/NCT00879112
  199. 199.  Finan B, Clemmensen C, Zhu Z, Stemmer K, Gauthier K et al. 2016. Chemical hybridization of glucagon and thyroid hormone optimizes therapeutic impact for metabolic disease. Cell 167:843–57.e14
    [Google Scholar]
  200. 200.  Severin FF, Severina II, Antonenko YN, Rokitskaya TI, Cherepanov DA et al. 2010. Penetrating cation/fatty acid anion pair as a mitochondria-targeted protonophore. PNAS 107:663–68
    [Google Scholar]
  201. 201.  Stefanova NA, Kozhevnikova OS, Vitovtov AO, Maksimova KY, Logvinov SV et al. 2014. Senescence-accelerated OXYS rats: a model of age-related cognitive decline with relevance to abnormalities in Alzheimer disease. Cell Cycle 13:898–909
    [Google Scholar]
  202. 202.  Kalinovich AV, Mattsson CL, Youssef MR, Petrovic N, Ost M et al. 2016. Mitochondria-targeted dodecyltriphenylphosphonium (C12TPP) combats high-fat-diet-induced obesity in mice. Int. J. Obes. 40:1864–74
    [Google Scholar]
  203. 203.  Kalinovich AV, Shabalina IG 2015. Novel mitochondrial cationic uncoupler C4R1 is an effective treatment for combating obesity in mice. Biochemistry 80:620–28
    [Google Scholar]
  204. 204.  Qiu BY, Turner N, Li YY, Gu M, Huang MW et al. 2010. High-throughput assay for modulators of mitochondrial membrane potential identifies a novel compound with beneficial effects on db/db mice. Diabetes 59:256–65
    [Google Scholar]
  205. 205.  Fu YY, Zhang M, Turner N, Zhang LN, Dong TC et al. 2013. A novel chemical uncoupler ameliorates obesity and related phenotypes in mice with diet-induced obesity by modulating energy expenditure and food intake. Diabetologia 56:2297–307
    [Google Scholar]
  206. 206.  Tao H, Zhang Y, Zeng X, Shulman GI, Jin S 2014. Niclosamide ethanolamine-induced mild mitochondrial uncoupling improves diabetic symptoms in mice. Nat. Med. 20:1263–69
    [Google Scholar]
  207. 207.  Guo J, Tao H, Alasadi A, Huang Q, Jin S 2018. Niclosamide piperazine prevents high-fat diet-induced obesity and diabetic symptoms in mice. Eat Weight Disord In press
  208. 208.  Perry RJ, Peng L, Cline GW, Butrico GM, Wang Y et al. 2017. Non-invasive assessment of hepatic mitochondrial metabolism by positional isotopomer NMR tracer analysis (PINTA). Nat. Commun. 8:798
    [Google Scholar]
  209. 209.  Altaf QA, Barnett AH, Tahrani AA 2015. Novel therapeutics for type 2 diabetes: insulin resistance. Diabetes Obes. Metab. 17:319–34
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010716-104727
Loading
/content/journals/10.1146/annurev-pharmtox-010716-104727
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error