1932

Abstract

Biologics are an emerging class of medicines with substantial promise to treat neurological disorders such as Alzheimer's disease, stroke, and multiple sclerosis. However, the blood-brain barrier (BBB) presents a formidable obstacle that appreciably limits brain uptake and hence the therapeutic potential of biologics following intravenous administration. One promising strategy for overcoming the BBB to deliver biologics is the targeting of endogenous receptor-mediated transport (RMT) systems that employ vesicular trafficking to transport ligands across the BBB endothelium. If a biologic is modified with an appropriate targeting ligand, it can gain improved access to the brain via RMT. Various RMT-targeting strategies have been developed over the past 20 years, and this review explores exciting recent advances, emphasizing studies that show brain targeting in vivo.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010814-124852
2015-01-06
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/55/1/annurev-pharmtox-010814-124852.html?itemId=/content/journals/10.1146/annurev-pharmtox-010814-124852&mimeType=html&fmt=ahah

Literature Cited

  1. Pardridge WM. 1.  2005. The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2:3–14 [Google Scholar]
  2. Correale J, Villa A. 2.  2009. Cellular elements of the blood-brain barrier. Neurochem. Res. 34:2067–77 [Google Scholar]
  3. Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. 3.  2010. Structure and function of the blood-brain barrier. Neurobiol. Dis. 37:13–25 [Google Scholar]
  4. Hartz AMS, Bauer B. 4.  2011. ABC transporters in the CNS—an inventory. Curr. Pharm. Biotechnol. 12:4656–73 [Google Scholar]
  5. Daneman R. 5.  2012. The blood-brain barrier in health and disease. Ann. Neurol. 72:5648–72 [Google Scholar]
  6. Pardridge WM. 6.  2008. Re-engineering biopharmaceuticals for delivery to brain with molecular Trojan horses. Bioconjug. Chem. 19:71327–38 [Google Scholar]
  7. Pardridge WM. 7.  2007. Blood-brain barrier delivery. Drug Discov. Today 12:54–61 [Google Scholar]
  8. Ohtsuki S, Terasaki T. 8.  2007. Contribution of carrier-mediated transport systems to the blood-brain barrier as a supporting and protecting interface for the brain; importance for CNS drug discovery and development. Pharm. Res. 24:91745–58 [Google Scholar]
  9. Gynther M, Laine K, Ropponen J, Leppanen J, Mannila A. 9.  et al. 2008. Large neutral amino acid transporter enables brain drug delivery via prodrugs. J. Med. Chem. 51:932–36 [Google Scholar]
  10. Begley DJ. 10.  2004. ABC transporters and the blood-brain barrier. Curr. Pharm. Des. 10:1295–312 [Google Scholar]
  11. Hartz AMS, Miller DS, Bauer B. 11.  2010. Restoring blood-brain barrier P-glycoprotein reduces brain amyloid-β in a mouse model of Alzheimer's disease. Mol. Pharmacol. 77:5715–23 [Google Scholar]
  12. Kumagai AK, Eisenberg JB, Pardridge WM. 12.  1987. Absorptive-mediated endocytosis of cationized albumin and a β-endorphin-cationized albumin chimeric peptide by isolated brain capillaries: model system of blood-brain barrier transport. J. Biol. Chem. 262:3115214–19 [Google Scholar]
  13. Poduslo JF, Curran GL. 13.  1996. Polyamine modification increases the permeability of proteins at the blood-nerve and blood-brain barriers. J. Neurochem. 66:41599–609 [Google Scholar]
  14. Poduslo JF, Curran GL, Gill JS. 14.  1998. Putrescine-modified nerve growth factor: bioactivity, plasma pharmacokinetics, blood-brain/nerve barrier permeability, and nervous system biodistribution. J. Neurochem. 71:41651–60 [Google Scholar]
  15. Hervé F, Ghinea N, Scherrmann J-M. 15.  2008. CNS delivery via adsorptive transcytosis. AAPS J. 10:3455–72 [Google Scholar]
  16. Descamps L, Dehouck MP, Torpier G, Cecchelli R. 16.  1996. Receptor-mediated transcytosis of transferrin through blood-brain barrier endothelial cells. Am. J. Physiol. 270:4 Pt. 2H1149–58 [Google Scholar]
  17. Dehouck B, Fenart L, Dehouck MP, Pierce A, Torpier G, Cecchelli R. 17.  1997. A new function for the LDL receptor: transcytosis of LDL across the blood-brain barrier. J. Cell Biol. 138:4877–89 [Google Scholar]
  18. Duffy KR, Pardridge WM. 18.  1987. Blood-brain barrier transcytosis of insulin in developing rabbits. Brain Res. 420:132–38 [Google Scholar]
  19. Golden PL, Maccagnan TJ, Pardridge WM. 19.  1997. Human blood-brain barrier leptin receptor: binding and endocytosis in isolated human brain microvessels. J. Clin. Investig. 99:114–18 [Google Scholar]
  20. Parkar NS, Akpa BS, Nitsche LC, Wedgewood LE, Place AT. 20.  et al. 2009. Vesicle formation and endocytosis: function, machinery, mechanisms, and modeling. Antioxid. Redox Signal. 11:61301–12 [Google Scholar]
  21. Rodriguez-Boulan E, Kreitzer G, Müsch A. 21.  2005. Organization of vesicular trafficking in epithelia. Nat. Rev. Mol. Cell Biol. 6:3233–47 [Google Scholar]
  22. Brooks DA. 22.  2009. The endosomal network. Int. J. Clin. Pharmacol. Ther. 47:Suppl. 1S9–17 [Google Scholar]
  23. Strazielle N, Ghersi-Egea JF. 23.  2013. Physiology of blood-brain interfaces in relation to brain disposition of small compounds and macromolecules. Mol. Pharm. 10:51473–91 [Google Scholar]
  24. Candela P, Gosselet F, Miller F, Buee-Scherrer V, Torpier G. 24.  et al. 2008. Physiological pathway for low-density lipoproteins across the blood-brain barrier: transcytosis through brain capillary endothelial cells in vitro. Endothelium 15:5–6254–64 [Google Scholar]
  25. Chung NS, Wasan KM. 25.  2004. Potential role of the low-density lipoprotein receptor family as mediators of cellular drug uptake. Adv. Drug Deliv. Rev. 56:91315–34 [Google Scholar]
  26. Friden PM, Walus LR, Musso GF, Taylor MA, Malfroy B, Starzyk RM. 26.  1991. Anti-transferrin receptor antibody and antibody-drug conjugates cross the blood-brain barrier. Proc. Natl. Acad. Sci. USA 88:114771–75 [Google Scholar]
  27. Pardridge WM, Buciak JL, Friden PM. 27.  1991. Selective transport of an anti-transferrin receptor antibody through the blood-brain barrier in vivo. J. Pharmacol. Exp. Ther. 259:166–70 [Google Scholar]
  28. Broadwell RD, Baker-Cairns BJ, Friden PM, Oliver C, Villegas JC. 28.  1996. Transcytosis of protein through the mammalian cerebral epithelium and endothelium: III. Receptor-mediated transcytosis through the blood-brain barrier of blood-borne transferrin and antibody against the transferrin receptor. Exp. Neurol. 142:47–65 [Google Scholar]
  29. Jones AR, Shusta EV. 29.  2007. Blood-brain barrier transport of therapeutics via receptor-mediation. Pharm. Res. 24:1759–71 [Google Scholar]
  30. Lu JZ, Hui EK-W, Boado RJ, Pardridge WM. 30.  2010. Genetic engineering of a bifunctional IgG fusion protein with iduronate-2-sulfatase. Bioconjug. Chem. 21:1151–56 [Google Scholar]
  31. Gabathuler R. 31.  2010. Development of new peptide vectors for the transport of therapeutic across the blood-brain barrier. Ther. Deliv. 1:4571–86 [Google Scholar]
  32. Daneman R, Zhou L, Agalliu D, Cahoy JD, Kaushal A, Barres BA. 32.  2010. The mouse blood-brain barrier transcriptome: a new resource for understanding the development and function of brain endothelial cells. PLOS ONE 5:10e13741 [Google Scholar]
  33. Uchida Y, Ohtsuki S, Katsukura Y, Ikeda C, Suzuki T. 33.  et al. 2011. Quantitative targeted absolute proteomics of human blood-brain barrier transporters and receptors. J. Neurochem. 117:333–45 [Google Scholar]
  34. Moos T, Morgan EH. 34.  2000. Transferrin and transferrin receptor function in brain barrier systems. Cell. Mol. Neurobiol. 20:177–95 [Google Scholar]
  35. Sharma G, Modgil A, Layek B, Arora K, Sun C. 35.  et al. 2013. Cell penetrating peptide tethered bi-ligand liposomes for delivery to brain in vivo: biodistribution and transfection. J. Control. Release 167:11–10 [Google Scholar]
  36. Staquicini FI, Ozawa MG, Moya CA, Driessen WHP, Barbu EM. 36.  et al. 2011. Systemic combinatorial peptide selection yields a non-canonical iron-mimicry mechanism for targeting tumors in a mouse model of human glioblastoma. J. Clin. Investig. 121:1161–73 [Google Scholar]
  37. Hajitou A, Trepel M, Lilley CE, Soghomonyan S, Alauddin MM. 37.  et al. 2006. A hybrid vector for ligand-directed tumor targeting and molecular imaging. Cell 125:2385–98 [Google Scholar]
  38. Hajitou A, Rangel R, Trepel M, Soghomonyan S, Gelovani JG. 38.  et al. 2007. Design and construction of targeted AAVP vectors for mammalian cell transduction. Nat. Protoc. 2:3523–31 [Google Scholar]
  39. Qian ZM, Li HY, Sun HZ, Ho K. 39.  2002. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol. Rev. 54:561–87 [Google Scholar]
  40. Boado RJ, Zhang Y, Wang Y, Pardridge WM. 40.  2009. Engineering and expression of a chimeric transferrin receptor monoclonal antibody for blood-brain barrier delivery in the mouse. Biotechnol. Bioeng. 102:41251–58 [Google Scholar]
  41. Sumbria RK, Zhou Q-H, Hui EK-W, Lu JZ, Boado RJ, Pardridge WM. 41.  2013. Pharmacokinetics and brain uptake of an IgG-TNF decoy receptor fusion protein following intravenous, intraperitoneal, and subcutaneous administration in mice. Mol. Pharm. 10:41425–31 [Google Scholar]
  42. Zhou Q-H, Boado RJ, Hui EK-W, Lu JZ, Pardridge WM. 42.  2011. Brain-penetrating tumor necrosis factor decoy receptor in the mouse. Drug Metab. Dispos. 39:171–76 [Google Scholar]
  43. Zhou Q-H, Sumbria R, Hui EK-W, Lu JZ, Boado RJ, Pardridge WM. 43.  2011. Neuroprotection with a brain-penetrating biologic tumor necrosis factor inhibitor. J. Pharmacol. Exp. Ther. 339:2618–23 [Google Scholar]
  44. Zhou Q-H, Hui EK-W, Lu JZ, Boado RJ, Pardridge WM. 44.  2011. Brain penetrating IgG-erythropoietin fusion protein is neuroprotective following intravenous treatment in Parkinson's disease in the mouse. Brain Res. 1382315–20
  45. Fu A, Zhou Q-H, Hui EK-W, Lu JZ, Boado RJ, Pardridge WM. 45.  2010. Intravenous treatment of experimental Parkinson's disease in the mouse with an IgG-GDNF fusion protein that penetrates the blood-brain barrier. Brain Res. 1352208–13
  46. Zhang Y, Pardridge WM. 46.  2009. Near complete rescue of experimental Parkinson's disease with intravenous, non-viral GDNF gene therapy. Pharm. Res. 26:51059–63 [Google Scholar]
  47. Boado RJ, Zhou Q-H, Lu JZ, Hui EK-W, Pardridge WM. 47.  2010. Pharmacokinetics and brain uptake of a genetically engineered bifunctional fusion antibody targeting the mouse transferrin receptor. Mol. Pharm. 7:1237–44 [Google Scholar]
  48. Sumbria RK, Hui EK-W, Lu JZ, Boado RJ, Pardridge WM. 48.  2013. Disaggregation of amyloid plaque in brain of Alzheimer's disease transgenic mice with daily subcutaneous administration of a tetravalent bispecific antibody that targets the transferrin receptor and the Abeta amyloid peptide. Mol. Pharm. 10:93507–13 [Google Scholar]
  49. Zhou Q-H, Fu A, Boado RJ, Hui EK-W, Lu JZ, Pardridge WM. 49.  2011. Receptor-mediated Abeta amyloid antibody targeting to Alzheimer's disease mouse brain. Mol. Pharm. 8:1280–85 [Google Scholar]
  50. Niewoehner J, Bohrmann B, Collin L, Urich E, Sade H. 50.  et al. 2014. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron 81:149–60 [Google Scholar]
  51. Yu YJ, Zhang Y, Kenrick M, Hoyte K, Luk W. 51.  et al. 2011. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci. Transl. Med. 3:8484ra44 [Google Scholar]
  52. Couch JA, Yu YJ, Zhang Y, Tarrant JM, Fuji RN. 52.  et al. 2013. Addressing safety liabilities of TfR bispecific antibodies that cross the blood-brain barrier. Sci. Transl. Med. 5:183183ra57 [Google Scholar]
  53. Bien-Ly N, Yu YJ, Bumbaca D, Elstrott J, Boswell CA. 53.  et al. 2014. Transferrin receptor (TfR) trafficking determines brain uptake of TfR antibody affinity variants. J. Exp. Med. 211:2233–44 [Google Scholar]
  54. Lee HJ, Engelhardt B, Lesley J, Bickel U, Pardridge WM. 54.  2000. Targeting rat anti-mouse transferrin receptor monoclonal antibodies through blood-brain barrier in mouse. J. Pharmacol. Exp. Ther. 292:1048–52 [Google Scholar]
  55. Zhang Y, Wang Y, Boado RJ, Pardridge WM. 55.  2008. Lysosomal enzyme replacement of the brain with intravenous non-viral gene transfer. Pharm. Res. 25:2400–6 [Google Scholar]
  56. Karatas H, Aktas Y, Gursoy-Ozdemir Y, Bodur E, Yemisci M. 56.  et al. 2009. A nanomedicine transports a peptide caspase-3 inhibitor across the blood-brain barrier and provides neuroprotection. J. Neurosci. 29:4413761–69 [Google Scholar]
  57. Crowe A, Morgan EH. 57.  1992. Iron and transferrin uptake by brain and cerebrospinal fluid in the rat. Brain Res. 592:1–28–16 [Google Scholar]
  58. Roberts R, Sandra A, Siek GC, Lucas JJ, Fine RE. 58.  1992. Studies of the mechanism of iron transport across the blood-brain barrier. Ann. Neurol. 32:Suppl.S43–50 [Google Scholar]
  59. Banks WA, Jaspan JB, Huang W, Kastin AJ. 59.  1997. Transport of insulin across the blood-brain barrier: saturability at euglycemic doses of insulin. Peptides 18:91423–29 [Google Scholar]
  60. Bickel U, Yoshikawa T, Pardridge WM. 60.  2001. Delivery of peptides and proteins through the blood-brain barrier. Adv. Drug Deliv. Rev. 46:1–3247–79 [Google Scholar]
  61. Pardridge WM, Kang YS, Buciak JL, Yang J. 61.  1995. Human insulin receptor monoclonal antibody undergoes high affinity binding to human brain capillaries in vitro and rapid transcytosis through the blood-brain barrier in vivo in the primate. Pharm. Res. 12:6807–16 [Google Scholar]
  62. Boado RJ, Zhang Y, Zhang Y, Pardridge WM. 62.  2007. Humanization of anti-human insulin receptor antibody for drug targeting across the human blood-brain barrier. Biotechnol. Bioeng. 96:2381–91 [Google Scholar]
  63. Boado RJ, Zhang Y, Zhang Y, Xia C-F, Wang Y, Pardridge WM. 63.  2008. Genetic engineering of a lysosomal enzyme fusion protein for targeted delivery across the human blood-brain barrier. Biotechnol. Bioeng. 99:2475–84 [Google Scholar]
  64. Boado RJ, Pardridge WM. 64.  2010. Genetic engineering of IgG-glucuronidase fusion proteins. J. Drug Target. 18:3205–11 [Google Scholar]
  65. Lu JZ, Boado RJ, Hui EK-W, Zhou Q-H, Pardridge WM. 65.  2011. Expression in CHO cells and pharmacokinetics and brain uptake in the rhesus monkey of an IgG-iduronate-2-sulfatase fusion protein. Biotechnol. Bioeng. 108:81954–64 [Google Scholar]
  66. Wang D, El-Amouri SS, Dai M, Kuan C-Y, Hui DY. 66.  et al. 2013. Engineering a lysosomal enzyme with a derivative of receptor-binding domain of apoE enables delivery across the blood-brain barrier. Proc. Natl. Acad. Sci. USA 110:82999–3004 [Google Scholar]
  67. Boado RJ, Hui EK-W, Lu JZ, Pardridge WM. 67.  2009. AGT-181: expression in CHO cells and pharmacokinetics, safety, and plasma iduronidase enzyme activity in Rhesus monkeys. J. Biotechnol. 144:2135–41 [Google Scholar]
  68. Boado RJ, Hui EK-W, Lu JZ, Pardridge WM. 68.  2012. Glycemic control and chronic dosing of rhesus monkeys with a fusion protein of iduronidase and a monoclonal antibody against the human insulin receptor. Drug Metab. Dispos. 40:102021–25 [Google Scholar]
  69. Kelaita D. 69.  2013. ArmaGen Pipeline Calabasas, CA: ArmaGen Technol http://www.armagen.com/pipeline
  70. Boado RJ, Zhang Y, Zhang Y, Xia C-F, Pardridge WM. 70.  2007. Fusion antibody for Alzheimer's disease with bidirectional transport across the blood-brain barrier and Aβ fibril disaggregation. Bioconjug. Chem. 18:2447–55 [Google Scholar]
  71. Boado RJ, Lu JZ, Hui EK-W, Pardridge WM. 71.  2010. IgG-single chain Fv fusion protein therapeutic for Alzheimer's disease: expression in CHO cells and pharmacokinetics and brain delivery in the rhesus monkey. Biotechnol. Bioeng. 105:3627–35 [Google Scholar]
  72. Boado RJ, Zhang Y, Zhang Y, Wang Y, Pardridge WM. 72.  2008. GDNF fusion protein for targeted-drug delivery across the human blood-brain barrier. Biotechnol. Bioeng. 100:2387–96 [Google Scholar]
  73. Boado RJ, Pardridge WM. 73.  2009. Comparison of blood-brain barrier transport of glial-derived neurotrophic factor (GDNF) and an IgG-GDNF fusion protein in the rhesus monkey. Drug Metab. Dispos. 37:122299–304 [Google Scholar]
  74. Hui EK-W, Boado RJ, Pardridge WM. 74.  2009. Tumor necrosis factor receptor-IgG fusion protein for targeted drug delivery across the human blood-brain barrier. Mol. Pharm. 6:51536–43 [Google Scholar]
  75. Boado RJ, Hui EK-W, Lu JZ, Zhou Q-H, Pardridge WM. 75.  2010. Selective targeting of a TNFR decoy receptor pharmaceutical to the primate brain as a receptor-specific IgG fusion protein. J. Biotechnol. 146:1–284–91 [Google Scholar]
  76. Boado RJ, Hui EK-W, Lu JZ, Pardridge WM. 76.  2010. Drug targeting of erythropoietin across the primate blood-brain barrier with an IgG molecular Trojan horse. J. Pharmacol. Exp. Ther. 333:3961–69 [Google Scholar]
  77. Boado RJ, Zhang Y, Zhang Y, Wang Y, Pardridge WM. 77.  2008. IgG-paraoxonase-1 fusion protein for targeted drug delivery across the human blood-brain barrier. Mol. Pharm. 5:61037–43 [Google Scholar]
  78. Boado RJ, Hui EK-W, Lu JZ, Pardridge WM. 78.  2011. CHO cell expression, long-term stability, and primate pharmacokinetics and brain uptake of an IgG-paroxonase-1 fusion protein. Biotechnol. Bioeng. 108:1186–96 [Google Scholar]
  79. Nolan DJ, Ginsberg M, Israely E, Palikuqi B, Poulos MG. 79.  et al. 2013. Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration. Dev. Cell 26:2204–19 [Google Scholar]
  80. Demeule M, Poirier J, Jodoin J, Bertrand Y, Desrosiers RR. 80.  et al. 2002. High transcytosis of melanotransferrin (P97) across the blood-brain barrier. J. Neurochem. 83:4924–33 [Google Scholar]
  81. Benchenane K, Berezowski V, Ali C, Fernández-Monreal M, López-Atalaya JP. 81.  et al. 2005. Tissue-type plasminogen activator crosses the intact blood-brain barrier by low-density lipoprotein receptor-related protein-mediated transcytosis. Circulation 111:172241–49 [Google Scholar]
  82. Pan W, Kastin AJ, Zankel TC, van Kerkhof P, Terasaki T, Bu G. 82.  2004. Efficient transfer of receptor-associated protein (RAP) across the blood-brain barrier. J. Cell Sci. 117:Pt. 215071–78 [Google Scholar]
  83. Chung NS, Wasan KM. 83.  2004. Potential role of the low-density lipoprotein receptor family as mediators of cellular drug uptake. Adv. Drug Deliv. Rev. 56:1315–34 [Google Scholar]
  84. Stefansson S, Chappell DA, Argraves KM, Strickland DK, Argraves WS. 84.  1995. Glycoprotein 330/low density lipoprotein receptor-related protein-2 mediates endocytosis of low density lipoproteins via interaction with apolipoprotein B100. J. Biol. Chem. 270:3319417–21 [Google Scholar]
  85. Boren J, Lee I, Zhu W, Arnold K, Taylor S, Innerarity TL. 85.  1998. Identification of the low density lipoprotein receptor-binding site in apolipoprotein B100 and the modulation of its binding activity by the carboxyl terminus in familial defective apo-B100. J. Clin. Investig. 101:51084–93 [Google Scholar]
  86. Zensi A, Begley D, Pontikis C, Legros C, Mihoreanu L. 86.  et al. 2009. Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones. J. Control. Release 137:178–86 [Google Scholar]
  87. Wagner S, Zensi A, Wien SL, Tschickardt SE, Maier W. 87.  et al. 2012. Uptake mechanism of ApoE-modified nanoparticles on brain capillary endothelial cells as a blood-brain barrier model. PLOS ONE 7:e32568 [Google Scholar]
  88. Spencer B, Marr RA, Gindi R, Potkar R, Michael S. 88.  et al. 2011. Peripheral delivery of a CNS targeted, metalo-protease reduces Aβ toxicity in a mouse model of Alzheimer's disease. PLOS ONE 6:1e16575 [Google Scholar]
  89. Sorrentino NC, D'Orsi L, Sambri I, Nusco E, Monaco C. 89.  et al. 2013. A highly secreted sulphamidase engineered to cross the blood-brain barrier corrects brain lesions of mice with mucopolysaccharidoses type IIIa. EMBO Mol. Med. 5:5675–90 [Google Scholar]
  90. Pfeifer A, Kessler T, Yang M, Baranov E, Kootstra N. 90.  et al. 2001. Transduction of liver cells by lentiviral vectors: analysis in living animals by fluorescence imaging. Mol. Ther. 3:3319–22 [Google Scholar]
  91. Spencer BJ, Verma IM. 91.  2007. Targeted delivery of proteins across the blood-brain barrier. Proc. Natl. Acad. Sci. USA 104:187594–99 [Google Scholar]
  92. Herweijer H, Wolff JA. 92.  2007. Gene therapy progress and prospects: hydrodynamic gene delivery. Gene Ther. 14:299–107 [Google Scholar]
  93. Demeule M, Régina A, Ché C, Poirier J, Nguyen T. 93.  et al. 2008. Identification and design of peptides as a new drug delivery system for the brain. J. Pharmacol. Exp. Ther. 324:31064–72 [Google Scholar]
  94. Kounnas MZ, Moir RD, Rebeck GW, Bush AI, Argraves WS. 94.  et al. 1995. LDL receptor-related protein, a multifunctional ApoE receptor, binds secreted β-amyloid precursor protein and mediates its degradation. Cell 82:2331–40 [Google Scholar]
  95. Régina A, Demeule M, Ché C, Lavallée I, Poirier J. 95.  et al. 2008. Antitumour activity of ANG1005, a conjugate between paclitaxel and the new brain delivery vector Angiopep-2. Br. J. Pharmacol. 155:2185–97 [Google Scholar]
  96. Thomas FC, Taskar K, Rudraraju V, Goda S, Thorsheim HR. 96.  et al. 2009. Uptake of ANG1005, a novel paclitaxel derivative, through the blood-brain barrier into brain and experimental brain metastases of breast cancer. Pharm. Res. 26:112486–94 [Google Scholar]
  97. Kurzrock R, Gabrail N, Chandhasin C, Moulder S, Smith C. 97.  et al. 2012. Safety, pharmacokinetics, and activity of GRN1005, a novel conjugate of angiopep-2, a peptide facilitating brain penetration, and paclitaxel, in patients with advanced solid tumors. Mol. Cancer Ther. 11:2308–16 [Google Scholar]
  98. Demeule M, Currie J-C, Bertrand Y, Ché C, Nguyen T. 98.  et al. 2008. Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector angiopep-2. J. Neurochem. 106:41534–44 [Google Scholar]
  99. Drappatz J, Brenner A, Wong ET, Eichler A, Schiff D. 99.  et al. 2013. Phase I study of GRN1005 in recurrent malignant glioma. Clin. Cancer Res. 19:61567–76 [Google Scholar]
  100. Ke W, Shao K, Huang R, Han L, Liu Y. 100.  et al. 2009. Gene delivery targeted to the brain using an Angiopep-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. Biomaterials 30:366976–85 [Google Scholar]
  101. Demeule M, Beaudet N, Régina A, Besserer-Offroy E, Murza A. 101.  et al. 2014. Conjugation of a brain-penetrant peptide with neurotensin provides antinociceptive properties. J. Clin. Investig. 124:31199–213 [Google Scholar]
  102. Stutz CC, Zhang X, Shusta EV. 102.  2014. Combinatorial approaches for the identification of brain drug delivery targets. Curr. Pharm. Des. 20:101564–76 [Google Scholar]
  103. Muruganandam A, Tanha J, Narang S, Stanimirovic D. 103.  2002. Selection of phage-displayed llama single-domain antibodies that transmigrate across human blood-brain barrier endothelium. FASEB J. 16:2240–42 [Google Scholar]
  104. Abulrob A, Sprong H, van Bergen en Henegouwen P, Stanimirovic D. 104.  2005. The blood-brain barrier transmigrating single domain antibody: mechanisms of transport and antigenic epitopes in human brain endothelial cells. J. Neurochem. 95:41201–14 [Google Scholar]
  105. Abulrob A, Stanimirovic D, Muruganandam A. 105.  2007. Blood-brain barrier epitopes and uses thereof WO Patent. No. CA 2623841 A1
  106. Haqqani AS, Caram-Salas N, Ding W, Brunette E, Delaney CE. 106.  et al. 2013. Multiplexed evaluation of serum and CSF pharmacokinetics of brain-targeting single-domain antibodies using a NanoLC-SRM-ILIS method. Mol. Pharm. 10:51542–56 [Google Scholar]
  107. Kumar P, Wu H, McBride JL, Jung K-E, Kim MH. 107.  et al. 2007. Transvascular delivery of small interfering RNA to the central nervous system. Nature 448:714939–43 [Google Scholar]
  108. Lentz TL. 108.  1990. Rabies virus binding to an acetylcholine receptor alpha-subunit peptide. J. Mol. Recognit. 3:282–88 [Google Scholar]
  109. Liu Y, Guo Y, An S, Kuang Y, He X. 109.  et al. 2013. Targeting caspase-3 as dual therapeutic benefits by RNAi facilitating brain-targeted nanoparticles in a rat model of Parkinson's disease. PLOS ONE 8:5e62905 [Google Scholar]
  110. Record M, Subra C, Silvente-Poirot S, Poirot M. 110.  2011. Exosomes as intercellular signalosomes and pharmacological effectors. Biochem. Pharmacol. 81:101171–82 [Google Scholar]
  111. El Andaloussi S, Lakhal S, Mäger I, Wood MJA. 111.  2013. Exosomes for targeted siRNA delivery across biological barriers. Adv. Drug Deliv. Rev. 65:3391–97 [Google Scholar]
  112. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJA. 112.  2011. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 29:4341–45 [Google Scholar]
  113. Moos T, Morgan EH. 113.  2001. Restricted transport of anti-transferrin receptor antibody (OX26) through the blood-brain barrier in the rat. J. Neurochem. 79:1119–29 [Google Scholar]
  114. Gosk S, Vermehren C, Storm G, Moos T. 114.  2004. Targeting anti-transferrin receptor antibody (OX26) and OX26-conjugated liposomes to brain capillary endothelial cells using in situ perfusion. J. Cereb. Blood Flow Metab. 24:111193–204 [Google Scholar]
  115. Paris-Robidas S, Emond V, Tremblay C, Soulet D, Calon F. 115.  2011. In vivo labeling of brain capillary endothelial cells after intravenous injection of monoclonal antibodies targeting the transferrin receptor. Mol. Pharmacol. 80:132–39 [Google Scholar]
  116. Alata W, Paris-Robidas S, Emond V, Bourasset F, Calon F. 116.  2014. Brain uptake of a fluorescent vector targeting the transferrin receptor: a novel application of in situ brain perfusion. Mol. Pharm. 11:1243–53 [Google Scholar]
  117. Manich G, Cabezón I, del Valle J, Duran-Vilaregut J, Camins A. 117.  et al. 2013. Study of the transcytosis of an anti-transferrin receptor antibody with a Fab′ cargo across the blood-brain barrier in mice. Eur. J. Pharm. Sci. 49:4556–64 [Google Scholar]
  118. Atwal JK, Chen Y, Chiu C, Mortensen DL, Meilandt WJ. 118.  et al. 2011. A therapeutic antibody targeting BACE1 inhibits amyloid-β production in vivo. Sci. Transl. Med. 3:8484ra43 [Google Scholar]
  119. Bohrmann B, Baumann K, Benz J, Gerber F, Huber W. 119.  et al. 2012. Gantenerumab: a novel human anti-Aβ antibody demonstrates sustained cerebral amyloid-β binding and elicits cell-mediated removal of human amyloid-β. J. Alzheimer's Dis. 28:149–69 [Google Scholar]
  120. Wiley DT, Webster P, Gale A, Davis ME. 120.  2013. Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor. Proc. Natl. Acad. Sci. USA 110:218662–67 [Google Scholar]
  121. Mayle KM, Le AM, Kamei DT. 121.  2012. The intracellular trafficking pathway of transferrin. Biochim. Biophys. Acta 1820:3264–81 [Google Scholar]
  122. Widera A, Norouziyan F, Shen W-C. 122.  2003. Mechanisms of TfR-mediated transcytosis and sorting in epithelial cells and applications toward drug delivery. Adv. Drug Deliv. Rev. 55:111439–66 [Google Scholar]
  123. Muro S. 123.  2003. A novel endocytic pathway induced by clustering endothelial ICAM-1 or PECAM-1. J. Cell Sci. 116:81599–609 [Google Scholar]
  124. Papademetriou J, Garnacho C, Serrano D, Bhowmick T, Schuchman EH, Muro S. 124.  2013. Comparative binding, endocytosis, and biodistribution of antibodies and antibody-coated carriers for targeted delivery of lysosomal enzymes to ICAM-1 versus transferrin receptor. J. Inherit. Metab. Dis. 36:3467–77 [Google Scholar]
  125. Jevnikar AM, Wuthrich RP, Takei F, Xu HW, Brennan DC. 125.  et al. 1990. Differing regulation and function of ICAM-1 and class II antigens on renal tubular cells. Kidney Int. 38:3417–25 [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010814-124852
Loading
/content/journals/10.1146/annurev-pharmtox-010814-124852
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error