1932

Abstract

Race and ancestry have long been associated with differential risk and outcomes to disease as well as responses to medications. These differences in drug response are multifactorial with some portion associated with genomic variation. The field of pharmacogenomics aims to predict drug response in patients prior to medication administration and to uncover the biological underpinnings of drug response. The field of human genetics has long recognized that genetic variation differs in frequency between ancestral populations, with some single nucleotide polymorphisms found solely in one population. Thus far, most pharmacogenomic studies have focused on individuals of European and East Asian ancestry, resulting in a substantial disparity in the clinical utility of genetic prediction for drug response in US minority populations. In this review, we discuss the genetic factors that underlie variability to drug response and known pharmacogenomic associations and how these differ between populations, with an emphasis on the current knowledge in cardiovascular pharmacogenomics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010818-021154
2019-01-06
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/59/1/annurev-pharmtox-010818-021154.html?itemId=/content/journals/10.1146/annurev-pharmtox-010818-021154&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Lazarou J, Pomeranz BH, Corey PN 1998. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 279:1200–5
    [Google Scholar]
  2. 2.  Crowley JJ, Sullivan PF, McLeod HL 2009. Pharmacogenomic genome-wide association studies: lessons learned thus far. Pharmacogenomics 10:161–63
    [Google Scholar]
  3. 3.  Group SC, Link E, Parish S, Armitage J, Bowman L et al. 2008. SLCO1B1 variants and statin-induced myopathy—a genomewide study. N. Engl. J. Med. 359:789–99
    [Google Scholar]
  4. 4.  Wadelius M, Chen LY, Lindh JD, Eriksson N, Ghori MJ et al. 2009. The largest prospective warfarin-treated cohort supports genetic forecasting. Blood 113:784–92
    [Google Scholar]
  5. 5.  Wu K, Reynolds NJ 2012. Pharmacogenetic screening to prevent carbamazepine-induced toxic epidermal necrolysis and Stevens-Johnson syndrome: a critical appraisal. Br. J. Dermatol. 166:7–11
    [Google Scholar]
  6. 6.  Talameh JA, Kitzmiller JP 2014. Pharmacogenetics of statin-induced myopathy: a focused review of the clinical translation of pharmacokinetic genetic variants. J. Pharmacogenom. Pharmacoproteom. 5:128
    [Google Scholar]
  7. 7.  Popejoy AB, Fullerton SM 2016. Genomics is failing on diversity. Nature 538:161–64
    [Google Scholar]
  8. 8.  Relling MV, Klein TE 2011. CPIC: Clinical Pharmacogenetics Implementation Consortium of the Pharmacogenomics Research Network. Clin. Pharmacol. Ther. 89:464–67
    [Google Scholar]
  9. 9.  Suarez-Kurtz G 2007. Pharmacogenomics in Admixed Populations Austin, TX: Landes Biosci
  10. 10.  Dickmann LJ, Schutzman JL 2018. Racial and ethnic composition of cancer clinical drug trials: How diverse are we?. Oncologist 23:243–46
    [Google Scholar]
  11. 11.  Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ et al. 2016. Heart disease and stroke statistics—2016 update: a report from the American Heart Association. Circulation 133:4e38–360
    [Google Scholar]
  12. 12.  Chaturvedi N 2003. Ethnic differences in cardiovascular disease. Heart 89:681–86
    [Google Scholar]
  13. 13.  Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ et al. 2015. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation 131:e29–322
    [Google Scholar]
  14. 14.  Pool LR, Ning H, Lloyd-Jones DM, Allen NB 2017. Trends in racial/ethnic disparities in cardiovascular health among US adults from 1999–2012. J. Am. Heart Assoc. 6:9e006027
    [Google Scholar]
  15. 15.  Palaniappan LP, Araneta MR, Assimes TL, Barrett-Connor EL, Carnethon MR et al. 2010. Call to action: cardiovascular disease in Asian Americans: a science advisory from the American Heart Association. Circulation 122:1242–52
    [Google Scholar]
  16. 16.  Klatsky AL, Friedman GD, Sidney S, Kipp H, Kubo A, Armstrong MA 2005. Risk of hemorrhagic stroke in Asian American ethnic groups. Neuroepidemiology 25:26–31
    [Google Scholar]
  17. 17.  Balfour PC Jr, Ruiz JM, Talavera GA, Allison MA, Rodriguez CJ 2016. Cardiovascular disease in Hispanics/Latinos in the United States. J. Lat. Psychol. 4:98–113
    [Google Scholar]
  18. 18.  Clark LT, Ferdinand KC, Flack JM, Gavin JR 3rd, Hall WD et al. 2001. Coronary heart disease in African Americans. Heart Dis 3:97–108
    [Google Scholar]
  19. 19.  Carnethon MR, Pu J, Howard G, Albert MA, Anderson CAM et al. 2017. Cardiovascular health in African Americans: a scientific statement from the American Heart Association. Circulation 136:e393–423
    [Google Scholar]
  20. 20.  US Census Bur 2012. National population projections tables Data Set, US Census Bur Washington, DC:
  21. 21.  Carlson CS, Eberle MA, Rieder MJ, Smith JD, Kruglyak L, Nickerson DA 2003. Additional SNPs and linkage-disequilibrium analyses are necessary for whole-genome association studies in humans. Nat. Genet. 33:518–21
    [Google Scholar]
  22. 22.  O'Donnell CJ, Nabel EG 2011. Genomics of cardiovascular disease. N. Engl. J. Med. 365:2098–109
    [Google Scholar]
  23. 23.  Gibbons GH 2004. Physiology, genetics, and cardiovascular disease: focus on African Americans. J. Clin. Hypertens. 6:11–18
    [Google Scholar]
  24. 24.  Johnson JA 2008. Ethnic differences in cardiovascular drug response: potential contribution of pharmacogenetics. Circulation 118:1383–93
    [Google Scholar]
  25. 25.  Muszkat M 2007. Interethnic differences in drug response: the contribution of genetic variability in β adrenergic receptor and cytochrome P4502C9. Clin. Pharmacol. Ther. 82:215–18
    [Google Scholar]
  26. 26.  Burroughs VJ, Maxey RW, Levy RA 2002. Racial and ethnic differences in response to medicines: towards individualized pharmaceutical treatment. J. Natl. Med. Assoc. 94:1–26
    [Google Scholar]
  27. 27.  Hernandez-Boussard T, Whirl-Carrillo M, Hebert JM, Gong L, Owen R et al. 2008. The pharmacogenetics and pharmacogenomics knowledge base: accentuating the knowledge. Nucleic Acids Res 36:D913–18
    [Google Scholar]
  28. 28.  Conomos MP, Laurie CA, Stilp AM, Gogarten SM, McHugh CP et al. 2016. Genetic diversity and association studies in US Hispanic/Latino populations: applications in the Hispanic community health study/study of Latinos. Am. J. Hum. Genet. 98:165–84
    [Google Scholar]
  29. 29.  Manichaikul A, Palmas W, Rodriguez CJ, Peralta CA, Divers J et al. 2012. Population structure of Hispanics in the United States: the multi-ethnic study of atherosclerosis. PLOS Genet 8:e1002640
    [Google Scholar]
  30. 30.  Gravel S, Zakharia F, Moreno-Estrada A, Byrnes JK, Muzzio M et al. 2013. Reconstructing Native American migrations from whole-genome and whole-exome data. PLOS Genet 9:e1004023
    [Google Scholar]
  31. 31.  Mak AC, White MJ, Eckalbar WL, Szpiech ZA, Oh SS et al. 2018. Whole genome sequencing of pharmacogenetic drug response in racially diverse children with asthma. Am. J. Respir. Crit. Care Med. 197:1552–64
    [Google Scholar]
  32. 32.  Sim SC, Ingelman-Sundberg M 2013. Update on allele nomenclature for human cytochromes P450 and the Human Cytochrome P450 Allele (CYP-allele) Nomenclature Database. Methods Mol. Bio. 987:251–59
    [Google Scholar]
  33. 33.  Zhou SF 2009. Polymorphism of human cytochrome P450 2D6 and its clinical significance: part I. Clin. Pharmacokinet. 48:689–723
    [Google Scholar]
  34. 34.  Crews KR, Gaedigk A, Dunnenberger HM, Leeder JS, Klein TE et al. 2014. Clinical Pharmacogenetics Implementation Consortium guidelines for cytochrome P450 2D6 genotype and codeine therapy: 2014 update. Clin. Pharmacol. Ther. 95:376–82
    [Google Scholar]
  35. 35.  Dean L 2012. Codeine therapy and CYP2D6 genotype. Medical Genetics Summaries V Pratt, H McLeod, L Dean, A Malheiro, W Rubinstein Bethesda, MD: Natl. Cent. Biotechnol. Inf
    [Google Scholar]
  36. 36.  Ahmed S, Zhou Z, Zhou J, Chen SQ 2016. Pharmacogenomics of drug metabolizing enzymes and transporters: relevance to precision medicine. Genom. Proteom. Bioinformat. 14:298–313
    [Google Scholar]
  37. 37.  Gasche Y, Daali Y, Fathi M, Chiappe A, Cottini S et al. 2004. Codeine intoxication associated with ultrarapid CYP2D6 metabolism. N. Engl. J. Med. 351:2827–31
    [Google Scholar]
  38. 38.  Dalen P, Frengell C, Dahl ML, Sjoqvist F 1997. Quick onset of severe abdominal pain after codeine in an ultrarapid metabolizer of debrisoquine. Ther. Drug Monit. 19:543–44
    [Google Scholar]
  39. 39.  Lamba JK, Lin YS, Schuetz EG, Thummel KE 2002. Genetic contribution to variable human CYP3A-mediated metabolism. Adv. Drug Deliv. Rev. 54:1271–94
    [Google Scholar]
  40. 40.  Trofe-Clark J, Brennan DC, West-Thielke P, Milone MC, Lim MA et al. 2018. Results of ASERTAA, a randomized prospective crossover pharmacogenetic study of immediate-release versus extended-release tacrolimus in African American kidney transplant recipients. Am. J. Kidney Dis. 71:315–26
    [Google Scholar]
  41. 41.  Taber DJ, Su Z, Fleming JN, McGillicuddy JW, Posadas-Salas MA et al. 2017. Tacrolimus trough concentration variability and disparities in African American kidney transplantation. Transplantation 101:2931–38
    [Google Scholar]
  42. 42.  Court MH, Zhu Z, Masse G, Duan SX, James LP et al. 2017. Race, gender, and genetic polymorphism contribute to variability in acetaminophen pharmacokinetics, metabolism, and protein-adduct concentrations in healthy African-American and European-American volunteers. J. Pharmacol. Exp. Ther. 362:431–40
    [Google Scholar]
  43. 43.  Nowell S, Falany CN 2006. Pharmacogenetics of human cytosolic sulfotransferases. Oncogene 25:1673–78
    [Google Scholar]
  44. 44.  Fukami T, Nakajima M, Higashi E, Yamanaka H, McLeod HL, Yokoi T 2005. A novel CYP2A6*20 allele found in African-American population produces a truncated protein lacking enzymatic activity. Biochem. Pharmacol. 70:801–8
    [Google Scholar]
  45. 45.  Brown NJ, Vaughan DE 1998. Angiotensin-converting enzyme inhibitors. Circulation 97:1411–20
    [Google Scholar]
  46. 46.  Cavallari LH, Langaee TY, Momary KM, Shapiro NL, Nutescu EA et al. 2010. Genetic and clinical predictors of warfarin dose requirements in African Americans. Clin. Pharmacol. Ther. 87:459–64
    [Google Scholar]
  47. 47.  Limdi NA, McGwin G, Goldstein JA, Beasley TM, Arnett DK et al. 2008. Influence of CYP2C9 and VKORC1 1173C/T genotype on the risk of hemorrhagic complications in African-American and European-American patients on warfarin. Clin. Pharmacol. Ther. 83:312–21
    [Google Scholar]
  48. 48.  Perera MA, Gamazon E, Cavallari LH, Patel SR, Poindexter S et al. 2011. The missing association: sequencing-based discovery of novel SNPs in VKORC1 and CYP2C9 that affect warfarin dose in African Americans. Clin. Pharmacol. Ther. 89:408–15
    [Google Scholar]
  49. 49.  Huang N, Agrawal V, Giacomini KM, Miller WL 2008. Genetics of P450 oxidoreductase: sequence variation in 842 individuals of four ethnicities and activities of 15 missense mutations. PNAS 105:1733–38
    [Google Scholar]
  50. 50.  Zareh M, Davis A, Henderson S 2011. Reversal of warfarin-induced hemorrhage in the emergency department. West. J. Emerg. Med. 12:386–92
    [Google Scholar]
  51. 51.  Dang MT, Hambleton J, Kayser SR 2005. The influence of ethnicity on warfarin dosage requirement. Ann. Pharmacother. 39:1008–12
    [Google Scholar]
  52. 52.  Limdi NA, Brown TM, Shendre A, Liu N, Hill CE, Beasley TM 2017. Quality of anticoagulation control and hemorrhage risk among African American and European American warfarin users. Pharmacogenet. Genom. 27:347–55
    [Google Scholar]
  53. 53.  Shen AY, Chen W, Yao JF, Brar SS, Wang X, Go AS 2008. Effect of race/ethnicity on the efficacy of warfarin: potential implications for prevention of stroke in patients with atrial fibrillation. CNS Drugs 22:815–25
    [Google Scholar]
  54. 54.  Blann A, Hewitt J, Siddiqui F, Bareford D 1999. Racial background is a determinant of average warfarin dose required to maintain the INR between 2.0 and 3.0. Br. J. Haematol. 107:207–9
    [Google Scholar]
  55. 55.  Harper P, Monahan K, Baker B 2005. Warfarin induction at 5 mg daily is safe with a low risk of anticoagulant overdose: results of an audit of patients with deep vein thrombosis commencing warfarin. Intern. Med. J. 35:717–20
    [Google Scholar]
  56. 56.  Crowther MA, Ginsberg JB, Kearon C, Harrison L, Johnson J et al. 1999. A randomized trial comparing 5-mg and 10-mg warfarin loading doses. Arch. Intern. Med. 159:46–48
    [Google Scholar]
  57. 57.  Harrison L, Johnston M, Massicotte MP, Crowther M, Moffat K, Hirsh J 1997. Comparison of 5-mg and 10-mg loading doses in initiation of warfarin therapy. Ann. Intern. Med. 126:133–36
    [Google Scholar]
  58. 58.  Jonas DE, McLeod HL 2009. Genetic and clinical factors relating to warfarin dosing. Trends Pharmacol. Sci. 30:375–86
    [Google Scholar]
  59. 59.  Cha PC, Mushiroda T, Takahashi A, Kubo M, Minami S et al. 2010. Genome-wide association study identifies genetic determinants of warfarin responsiveness for Japanese. Hum. Mol. Genet. 19:4735–44
    [Google Scholar]
  60. 60.  Rieder MJ, Reiner AP, Gage BF, Nickerson DA, Eby CS et al. 2005. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N. Engl. J. Med. 352:2285–93
    [Google Scholar]
  61. 61.  Gage BF, Eby C, Johnson JA, Deych E, Rieder MJ et al. 2008. Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin. Pharmacol. Ther. 84:326–31
    [Google Scholar]
  62. 62.  Takeuchi F, McGinnis R, Bourgeois S, Barnes C, Eriksson N et al. 2009. A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLOS Genet 5:e1000433
    [Google Scholar]
  63. 63.  Limdi NA, Beasley TM, Crowley MR, Goldstein JA, Rieder MJ et al. 2008. VKORC1 polymorphisms, haplotypes and haplotype groups on warfarin dose among African-Americans and European-Americans. Pharmacogenomics 9:1445–58
    [Google Scholar]
  64. 64. Int. Warfarin Pharmacogenet. Consort. Klein TE, Altman RB, Eriksson N, Gage BF et al. 2009. Estimation of the warfarin dose with clinical and pharmacogenetic data. N. Engl. J. Med. 360:753–64
    [Google Scholar]
  65. 65.  Limdi NA, Wadelius M, Cavallari L, Eriksson N, Crawford DC et al. 2010. Warfarin pharmacogenetics: A single VKORC1 polymorphism is predictive of dose across 3 racial groups. Blood 115:3827–34
    [Google Scholar]
  66. 66.  Bress A, Patel SR, Perera MA, Campbell RT, Kittles RA, Cavallari LH 2012. Effect of NQO1 and CYP4F2 genotypes on warfarin dose requirements in Hispanic-Americans and African-Americans. Pharmacogenomics 13:1925–35
    [Google Scholar]
  67. 67.  Pirmohamed M, Burnside G, Eriksson N, Jorgensen AL, Toh CH et al. 2013. A randomized trial of genotype-guided dosing of warfarin. N. Engl. J. Med. 369:2294–303
    [Google Scholar]
  68. 68.  Kimmel SE, French B, Kasner SE, Johnson JA, Anderson JL et al. 2013. A pharmacogenetic versus a clinical algorithm for warfarin dosing. N. Engl. J. Med. 369:2283–93
    [Google Scholar]
  69. 69.  Cavallari LH, Kittles RA, Perera MA 2014. Genotype-guided dosing of vitamin K antagonists. N. Engl. J. Med. 370:1761–66
    [Google Scholar]
  70. 70.  Gage BF, Bass AR, Lin H, Woller SC, Stevens SM et al. 2017. Effect of genotype-guided warfarin dosing on clinical events and anticoagulation control among patients undergoing hip or knee arthroplasty: the GIFT randomized clinical trial. JAMA 318:1115–24
    [Google Scholar]
  71. 71.  Xie HG, Prasad HC, Kim RB, Stein CM 2002. CYP2C9 allelic variants: ethnic distribution and functional significance. Adv. Drug Deliv. Rev. 54:1257–70
    [Google Scholar]
  72. 72.  Scott SA, Jaremko M, Lubitz SA, Kornreich R, Halperin JL, Desnick RJ 2009. CYP2C9*8 is prevalent among African-Americans: implications for pharmacogenetic dosing. Pharmacogenomics 10:1243–55
    [Google Scholar]
  73. 73.  Perera MA, Cavallari LH, Limdi NA, Gamazon ER, Konkashbaev A et al. 2013. Genetic variants associated with warfarin dose in African-American individuals: a genome-wide association study. Lancet 382:790–96
    [Google Scholar]
  74. 74.  Wadelius M, Chen LY, Eriksson N, Bumpstead S, Ghori J et al. 2007. Association of warfarin dose with genes involved in its action and metabolism. Hum. Genet. 121:23–34
    [Google Scholar]
  75. 75.  Ray S 2014. Clopidogrel resistance: the way forward. Indian Heart J 66:530–34
    [Google Scholar]
  76. 76.  Nguyen TA, Diodati JG, Pharand C 2005. Resistance to clopidogrel: a review of the evidence. J. Am. Coll. Cardiol. 45:1157–64
    [Google Scholar]
  77. 77.  Cresci S, Depta JP, Lenzini PA, Li AY, Lanfear DE et al. 2014. Cytochrome P450 gene variants, race, and mortality among clopidogrel-treated patients after acute myocardial infarction. Circ. Cardiovasc. Genet. 7:277–86
    [Google Scholar]
  78. 78.  Mak KH, Bhatt DL, Shao M, Hankey GJ, Easton JD et al. 2009. Ethnic variation in adverse cardiovascular outcomes and bleeding complications in the Clopidogrel for High Atherothrombotic Risk and Ischemic Stabilization, Management, and Avoidance (CHARISMA) study. Am. Heart J. 157:658–65
    [Google Scholar]
  79. 79.  Pendyala LK, Torguson R, Loh JP, Devaney JM, Chen F et al. 2013. Racial disparity with on-treatment platelet reactivity in patients undergoing percutaneous coronary intervention. Am. Heart J. 166:266–72
    [Google Scholar]
  80. 80.  Hulot JS, Bura A, Villard E, Azizi M, Remones V et al. 2006. Cytochrome P450 2C19 loss-of-function polymorphism is a major determinant of clopidogrel responsiveness in healthy subjects. Blood 108:2244–47
    [Google Scholar]
  81. 81.  Guo B, Tan Q, Guo D, Shi Z, Zhang C, Guo W 2014. Patients carrying CYP2C19 loss of function alleles have a reduced response to clopidogrel therapy and a greater risk of in-stent restenosis after endovascular treatment of lower extremity peripheral arterial disease. J. Vasc. Surg. 60:993–1001
    [Google Scholar]
  82. 82.  Zhu WY, Zhao T, Xiong XY, Li J, Wang L et al. 2016. Association of CYP2C19 polymorphisms with the clinical efficacy of clopidogrel therapy in patients undergoing carotid artery stenting in Asia. Sci. Rep. 6:25478
    [Google Scholar]
  83. 83.  Cavallari LH, Lee CR, Beitelshees AL, Cooper-DeHoff RM, Duarte JD et al. 2018. Multisite investigation of outcomes with implementation of CYP2C19 genotype-guided antiplatelet therapy after percutaneous coronary intervention. JACC Cardiovasc. Interv. 11:181–91
    [Google Scholar]
  84. 84.  Harmsze AM, van Werkum JW, Hackeng CM, Ruven HJ, Kelder JC et al. 2012. The influence of CYP2C19*2 and *17 on on-treatment platelet reactivity and bleeding events in patients undergoing elective coronary stenting. Pharmacogenet. Genom. 22:169–75
    [Google Scholar]
  85. 85.  Dean L 2012. Clopidogrel therapy and CYP2C19 genotype. Medical Genetics Summaries V Pratt, H McLeod, L Dean, A Malheiro, W Rubinstein Bethesda, MD: Natl. Cent. Biotechnol. Inf
    [Google Scholar]
  86. 86.  Scott SA, Sangkuhl K, Stein CM, Hulot JS, Mega JL et al. 2013. Clinical Pharmacogenetics Implementation Consortium guidelines for CYP2C19 genotype and clopidogrel therapy: 2013 update. Clin. Pharmacol. Ther. 94:317–23
    [Google Scholar]
  87. 87.  Wallentin L, Becker RC, Budaj A, Cannon CP, Emanuelsson H et al. 2009. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N. Engl. J. Med. 361:1045–57
    [Google Scholar]
  88. 88.  Wiviott SD, Braunwald E, McCabe CH, Montalescot G, Ruzyllo W et al. 2007. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N. Engl. J. Med. 357:2001–15
    [Google Scholar]
  89. 89.  Steg PG, Harrington RA, Emanuelsson H, Katus HA, Mahaffey KW et al. 2013. Stent thrombosis with ticagrelor versus clopidogrel in patients with acute coronary syndromes: an analysis from the prospective, randomized PLATO trial. Circulation 128:1055–65
    [Google Scholar]
  90. 90.  Pereira NL, Sargent DJ, Farkouh ME, Rihal CS 2015. Genotype-based clinical trials in cardiovascular disease. Nat. Rev. Cardiol. 12:475–87
    [Google Scholar]
  91. 91.  Bergmeijer TO, Janssen PW, Schipper JC, Qaderdan K, Ishak M et al. 2014. CYP2C19 genotype-guided antiplatelet therapy in ST-segment elevation myocardial infarction patients—rationale and design of the Patient Outcome after primary PCI (POPular) genetics study. Am. Heart J. 168:16–22.e1
    [Google Scholar]
  92. 92.  Gravlee CC, Dressler WW, Bernard HR 2005. Skin color, social classification, and blood pressure in southeastern Puerto Rico. Am. J. Public Health 95:2191–97
    [Google Scholar]
  93. 93.  Jamerson K, DeQuattro V 1996. The impact of ethnicity on response to antihypertensive therapy. Am. J. Med. 101:22S–32S
    [Google Scholar]
  94. 94.  Rostand SG, Brown G, Kirk KA, Rutsky EA, Dustan HP 1989. Renal insufficiency in treated essential hypertension. N. Engl. J. Med. 320:684–88
    [Google Scholar]
  95. 95.  Williams SF, Nicholas SB, Vaziri ND, Norris KC 2014. African Americans, hypertension and the renin angiotensin system. World J. Cardiol. 6:878–89
    [Google Scholar]
  96. 96.  Zhou HH, Koshakji RP, Silberstein DJ, Wilkinson GR, Wood AJ 1989. Racial differences in drug response. Altered sensitivity to and clearance of propranolol in men of Chinese descent as compared with American whites. N. Engl. J. Med. 320:565–70
    [Google Scholar]
  97. 97.  Small KM, McGraw DW, Liggett SB 2003. Pharmacology and physiology of human adrenergic receptor polymorphisms. Annu. Rev. Pharmacol. Toxicol. 43:381–411
    [Google Scholar]
  98. 98.  Johnson JA, Zineh I, Puckett BJ, McGorray SP, Yarandi HN, Pauly DF 2003. β1-adrenergic receptor polymorphisms and antihypertensive response to metoprolol. Clin. Pharmacol. Ther. 74:44–52
    [Google Scholar]
  99. 99.  Kurnik D, Li C, Sofowora GG, Friedman EA, Muszkat M et al. 2008. Beta-1-adrenoceptor genetic variants and ethnicity independently affect response to beta-blockade. Pharmacogenet. Genom. 18:895–902
    [Google Scholar]
  100. 100.  Bruck H, Leineweber K, Buscher R, Ulrich A, Radke J et al. 2003. The Gln27Glu beta2-adrenoceptor polymorphism slows the onset of desensitization of cardiac functional responses in vivo. Pharmacogenetics 13:59–66
    [Google Scholar]
  101. 101.  Dishy V, Sofowora GG, Xie HG, Kim RB, Byrne DW et al. 2001. The effect of common polymorphisms of the β2-adrenergic receptor on agonist-mediated vascular desensitization. N. Engl. J. Med. 345:1030–35
    [Google Scholar]
  102. 102.  Lanfear DE, Jones PG, Marsh S, Cresci S, McLeod HL, Spertus JA 2005. β2-adrenergic receptor genotype and survival among patients receiving β-blocker therapy after an acute coronary syndrome. JAMA 294:1526–33
    [Google Scholar]
  103. 103.  van Rijn-Bikker PC, Ackaert O, Snelder N, van Hest RM, Ploeger BA et al. 2013. Pharmacokinetic-pharmacodynamic modeling of the antihypertensive effect of eprosartan in Black and White hypertensive patients. Clin. Pharmacokinet. 52:793–803
    [Google Scholar]
  104. 104.  Ferdinand KC, Armani AM 2007. The management of hypertension in African Americans. Crit. Pathw. Cardiol. 6:67–71
    [Google Scholar]
  105. 105.  Cohn JN, Julius S, Neutel J, Weber M, Turlapaty P et al. 2004. Clinical experience with perindopril in African-American hypertensive patients: a large United States community trial. Am. J. Hypertens. 17:134–38
    [Google Scholar]
  106. 106.  Wright JT Jr, Dunn JK, Cutler JA, Davis BR, Cushman WC et al. 2005. Outcomes in hypertensive black and nonblack patients treated with chlorthalidone, amlodipine, and lisinopril. JAMA 293:1595–608
    [Google Scholar]
  107. 107.  Rieder MJ, Taylor SL, Clark AG, Nickerson DA 1999. Sequence variation in the human angiotensin converting enzyme. Nat. Genet. 22:59–62
    [Google Scholar]
  108. 108.  Johnson AD, Gong Y, Wang D, Langaee TY, Shin J et al. 2009. Promoter polymorphisms in ACE (angiotensin I-converting enzyme) associated with clinical outcomes in hypertension. Clin. Pharmacol. Ther. 85:36–44
    [Google Scholar]
  109. 109.  Vandell AG, McDonough CW, Gong Y, Langaee TY, Lucas AM et al. 2014. Hydrochlorothiazide-induced hyperuricaemia in the pharmacogenomic evaluation of antihypertensive responses study. J. Intern. Med. 276:486–97
    [Google Scholar]
  110. 110.  Nakanishi N, Okamoto M, Yoshida H, Matsuo Y, Suzuki K, Tatara K 2003. Serum uric acid and risk for development of hypertension and impaired fasting glucose or Type II diabetes in Japanese male office workers. Eur. J. Epidemiol. 18:523–30
    [Google Scholar]
  111. 111.  Bhatnagar V, O'Connor DT, Schork NJ, Salem RM, Nievergelt CM et al. 2007. Angiotensin-converting enzyme gene polymorphism predicts the time-course of blood pressure response to angiotensin converting enzyme inhibition in the AASK trial. J. Hypertens. 25:2082–92
    [Google Scholar]
  112. 112.  Kim TH, Chang HS, Park SM, Nam BY, Park JS et al. 2008. Association of angiotensin I-converting enzyme gene polymorphisms with aspirin intolerance in asthmatics. Clin. Exp. Allergy 38:1727–37
    [Google Scholar]
  113. 113.  Liu J, Liu ZQ, Yu BN, Xu FH, Mo W et al. 2006. β1-Adrenergic receptor polymorphisms influence the response to metoprolol monotherapy in patients with essential hypertension. Clin. Pharmacol. Ther. 80:23–32
    [Google Scholar]
  114. 114.  Liu J, Liu ZQ, Tan ZR, Chen XP, Wang LS et al. 2003. Gly389Arg polymorphism of β1-adrenergic receptor is associated with the cardiovascular response to metoprolol. Clin. Pharmacol. Ther. 74:372–79
    [Google Scholar]
  115. 115.  Sofowora GG, Dishy V, Muszkat M, Xie HG, Kim RB et al. 2003. A common beta1-adrenergic receptor polymorphism (Arg389Gly) affects blood pressure response to beta-blockade. Clin. Pharmacol. Ther. 73:366–71
    [Google Scholar]
  116. 116.  Hadidi H, Zahlsen K, Idle JR, Cholerton S 1997. A single amino acid substitution (Leu160His) in cytochrome P450 CYP2A6 causes switching from 7-hydroxylation to 3-hydroxylation of coumarin. Food Chem. Toxicol. 35:903–7
    [Google Scholar]
  117. 117.  Haberl M, Anwald B, Klein K, Weil R, Fuss C et al. 2005. Three haplotypes associated with CYP2A6 phenotypes in Caucasians. Pharmacogenet. Genom. 15:609–24
    [Google Scholar]
  118. 118.  Lane S, Al-Zubiedi S, Hatch E, Matthews I, Jorgensen AL et al. 2012. The population pharmacokinetics of R- and S-warfarin: effect of genetic and clinical factors. Br. J. Clin. Pharmacol. 73:66–76
    [Google Scholar]
  119. 119.  Angiolillo DJ, Fernandez-Ortiz A, Bernardo E, Ramirez C, Cavallari U et al. 2006. Contribution of gene sequence variations of the hepatic cytochrome P450 3A4 enzyme to variability in individual responsiveness to clopidogrel. Arterioscler. Thromb. Vasc. Biol. 26:1895–900
    [Google Scholar]
  120. 120.  Kassimis G, Davlouros P, Xanthopoulou I, Stavrou EF, Athanassiadou A, Alexopoulos D 2012. CYP2C19*2 and other genetic variants affecting platelet response to clopidogrel in patients undergoing percutaneous coronary intervention. Thromb. Res. 129:441–46
    [Google Scholar]
  121. 121.  Shuldiner AR, O'Connell JR, Bliden KP, Gandhi A, Ryan K et al. 2009. Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. JAMA 302:849–57
    [Google Scholar]
  122. 122.  Zhang H, Ma K, Liu W, Yang F, Liu J, Zhou H 2016. Impact of CYP2C19 gene polymorphism on warfarin maintenance doses in patients with non-valvular atrial fibrillation. Gene 591:80–84
    [Google Scholar]
  123. 123.  Sibbing D, Koch W, Gebhard D, Schuster T, Braun S et al. 2010. Cytochrome 2C19*17 allelic variant, platelet aggregation, bleeding events, and stent thrombosis in clopidogrel-treated patients with coronary stent placement. Circulation 121:512–18
    [Google Scholar]
  124. 124.  Simon T, Verstuyft C, Mary-Krause M, Quteineh L, Drouet E et al. 2009. Genetic determinants of response to clopidogrel and cardiovascular events. N. Engl. J. Med. 360:363–75
    [Google Scholar]
  125. 125.  Wu H, Qian J, Xu J, Sun A, Sun W et al. 2012. Effects of CYP2C19 variant alleles on postclopidogrel platelet reactivity and clinical outcomes in an actual clinical setting in China. Pharmacogenet. Genom. 22:887–90
    [Google Scholar]
  126. 126.  Novkovic M, Matic D, Kusic-Tisma J, Antonijevic N, Radojkovic D, Rakicevic L 2018. Analysis of the CYP2C19 genotype associated with bleeding in Serbian STEMI patients who have undergone primary PCI and treatment with clopidogrel. Eur. J. Clin. Pharmacol. 74:443–51
    [Google Scholar]
  127. 127.  Fuchshuber-Moraes M, Perini JA, Rosskopf D, Suarez-Kurtz G 2009. Exploring warfarin pharmacogenomics with the extreme-discordant-phenotype methodology: impact of FVII polymorphisms on stable anticoagulation with warfarin. Eur. J. Clin. Pharmacol. 65:789–93
    [Google Scholar]
  128. 128.  Samardzija M, Topic E, Stefanovic M, Zibar L, Samardzija G et al. 2008. Association of CYP2C9 gene polymorphism with bleeding as a complication of warfarin therapy. Coll. Antropol. 32:557–64
    [Google Scholar]
  129. 129.  Ablin J, Cabili S, Eldor A, Lagziel A, Peretz H 2004. Warfarin therapy is feasible in CYP2C9*3 homozygous patients. Eur. J. Intern. Med. 15:22–27
    [Google Scholar]
  130. 130.  Esmerian MO, Mitri Z, Habbal MZ, Geryess E, Zaatari G et al. 2011. Influence of CYP2C9 and VKORC1 polymorphisms on warfarin and acenocoumarol in a sample of Lebanese people. J. Clin. Pharmacol. 51:1418–28
    [Google Scholar]
  131. 131.  Dean L 2012. Warfarin therapy and the genotypes CYP2C9 and VKORC1. Medical Genetics Summaries V Pratt, H McLeod, L Dean, A Malheiro, W Rubinstein Bethesda, MD: Natl. Cent. Biotechnol. Inf
    [Google Scholar]
  132. 132.  Montes R, Nantes O, Alonso A, Zozaya JM, Hermida J 2008. The influence of polymorphisms of VKORC1 and CYP2C9 on major gastrointestinal bleeding risk in anticoagulated patients. Br. J. Haematol. 143:727–33
    [Google Scholar]
  133. 133.  Cavallari LH, Vaynshteyn D, Freeman KM, Wang D, Perera MA et al. 2013. CYP2C9 promoter region single-nucleotide polymorphisms linked to the R150H polymorphism are functional suggesting their role in CYP2C9*8-mediated effects. Pharmacogenet. Genom. 23:228–31
    [Google Scholar]
  134. 134.  Cooper GM, Johnson JA, Langaee TY, Feng H, Stanaway IB et al. 2008. A genome-wide scan for common genetic variants with a large influence on warfarin maintenance dose. Blood 112:1022–27
    [Google Scholar]
  135. 135.  Rau T, Heide R, Bergmann K, Wuttke H, Werner U et al. 2002. Effect of the CYP2D6 genotype on metoprolol metabolism persists during long-term treatment. Pharmacogenetics 12:465–72
    [Google Scholar]
  136. 136.  Takekuma Y, Takenaka T, Kiyokawa M, Yamazaki K, Okamoto H et al. 2007. Evaluation of effects of polymorphism for metabolic enzymes on pharmacokinetics of carvedilol by population pharmacokinetic analysis. Biol. Pharm. Bull. 30:537–42
    [Google Scholar]
  137. 137.  Rau T, Wuttke H, Michels LM, Werner U, Bergmann K et al. 2009. Impact of the CYP2D6 genotype on the clinical effects of metoprolol: a prospective longitudinal study. Clin. Pharmacol. Ther. 85:269–72
    [Google Scholar]
  138. 138.  Blake CM, Kharasch ED, Schwab M, Nagele P 2013. A meta-analysis of CYP2D6 metabolizer phenotype and metoprolol pharmacokinetics. Clin. Pharmacol. Ther. 94:394–99
    [Google Scholar]
  139. 139.  Honda M, Ogura Y, Toyoda W, Taguchi M, Nozawa T et al. 2006. Multiple regression analysis of pharmacogenetic variability of carvedilol disposition in 54 healthy Japanese volunteers. Biol. Pharm. Bull. 29:772–78
    [Google Scholar]
  140. 140.  Park KW, Park JJ, Jeon KH, Kang SH, Oh IY et al. 2011. Enhanced clopidogrel responsiveness in smokers: Smokers' paradox is dependent on cytochrome P450 CYP1A2 status. Arterioscler. Thromb. Vasc. Biol. 31:665–71
    [Google Scholar]
  141. 141.  Caldwell MD, Awad T, Johnson JA, Gage BF, Falkowski M et al. 2008. CYP4F2 genetic variant alters required warfarin dose. Blood 111:4106–12
    [Google Scholar]
  142. 142.  Danese E, Montagnana M, Johnson JA, Rettie AE, Zambon CF et al. 2012. Impact of the CYP4F2 p.V433M polymorphism on coumarin dose requirement: systematic review and meta-analysis. Clin. Pharmacol. Ther. 92:746–56
    [Google Scholar]
  143. 143.  Slooter AJ, Rosendaal FR, Tanis BC, Kemmeren JM, van der Graaf Y, Algra A 2005. Prothrombotic conditions, oral contraceptives, and the risk of ischemic stroke. J. Thromb. Haemost. 3:1213–17
    [Google Scholar]
  144. 144.  Newton-Cheh C, Guo CY, Larson MG, Musone SL, Surti A et al. 2007. Common genetic variation in KCHN2 is associated with QT interval duration: the Framingham Heart Study. Circulation 116:1128–36
    [Google Scholar]
  145. 145.  Yang P, Kanki H, Drolet B, Yang T, Wei J et al. 2002. Allelic variants in long-QT disease genes in patients with drug-associated torsades de pointes. Circulation 105:1943–48
    [Google Scholar]
  146. 146.  Sun Z, Milos PM, Thompson JF, Lloyd DB, Mank-Seymour A et al. 2004. Role of a KCNH2 polymorphism (R1047 L) in dofetilide-induced Torsades de Pointes.J. Mol. . Cell Cardiol 37:1031–39
    [Google Scholar]
  147. 147.  Jiang S, Hsu YH, Xu X, Xing H, Chen C et al. 2004. The C677T polymorphism of the methylenetetrahydrofolate reductase gene is associated with the level of decrease on diastolic blood pressure in essential hypertension patients treated by angiotensin-converting enzyme inhibitor. Thromb. Res. 113:361–69
    [Google Scholar]
  148. 148.  Chung JE, Chang BC, Lee KE, Kim JH, Gwak HS 2015. Effects of NAD(P)H quinone oxidoreductase 1 polymorphisms on stable warfarin doses in Korean patients with mechanical cardiac valves. Eur. J. Clin. Pharmacol. 71:1229–36
    [Google Scholar]
  149. 149.  Jefferson BK, Foster JH, McCarthy JJ, Ginsburg G, Parker A et al. 2005. Aspirin resistance and a single gene. Am. J. Cardiol. 95:805–8
    [Google Scholar]
  150. 150.  Wang X, Lai Y, Luo Y, Zhang X, Zhou H et al. 2016. Relationship between clopidogrel-related polymorphisms and variable platelet reactivity at 1 year: a cohort study from Han Chinese. J. Res. Med. Sci. 21:111
    [Google Scholar]
  151. 151.  Sharma V, Kaul S, Al-Hazzani A, Alshatwi AA, Jyothy A, Munshi A 2013. Association of COX-2 rs20417 with aspirin resistance. J. Thromb. Thrombolysis 35:95–99
    [Google Scholar]
  152. 152.  Luo JQ, He FZ, Wang ZM, Sun NL, Wang LY et al. 2015. SLCO1B1 variants and angiotensin converting enzyme inhibitor (enalapril)-induced cough: a pharmacogenetic study. Sci. Rep. 5:17253
    [Google Scholar]
  153. 153.  Varenhorst C, Eriksson N, Johansson A, Barratt BJ, Hagstrom E et al. 2015. Effect of genetic variations on ticagrelor plasma levels and clinical outcomes. Eur. Heart J. 36:1901–12
    [Google Scholar]
  154. 154.  Shahabi P, Lamothe F, Dumas S, Rouleau-Mailloux E, Feroz Zada Y et al. 2018. Nuclear receptor gene polymorphisms and warfarin dose requirements in the Quebec Warfarin Cohort. Pharmacogenom. J. In press. https://doi.org/10.1038/s41397-017-0005-1
    [Crossref]
  155. 155.  Herman D, Peternel P, Stegnar M, Breskvar K, Dolzan V 2006. The influence of sequence variations in factor VII, gamma-glutamyl carboxylase and vitamin K epoxide reductase complex genes on warfarin dose requirement. Thromb. Haemost. 95:782–87
    [Google Scholar]
  156. 156.  D'Andrea G, D'Ambrosio RL, Di Perna P, Chetta M, Santacroce R et al. 2005. A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin. Blood 105:645–49
    [Google Scholar]
  157. 157.  Pop TR, Vesa S, Trifa AP, Crisan S, Buzoianu AD 2013. An acenocoumarol dose algorithm based on a South-Eastern European population. Eur. J. Clin. Pharmacol. 69:1901–7
    [Google Scholar]
  158. 158.  Kringen MK, Haug KB, Grimholt RM, Stormo C, Narum S et al. 2011. Genetic variation of VKORC1 and CYP4F2 genes related to warfarin maintenance dose in patients with myocardial infarction. J. Biomed. Biotechnol. 2011:739751
    [Google Scholar]
  159. 159.  Nguyen N, Anley P, Yu MY, Zhang G, Thompson AA, Jennings LJ 2013. Genetic and clinical determinants influencing warfarin dosing in children with heart disease. Pediatr. Cardiol. 34:984–90
    [Google Scholar]
  160. 160.  Michaud V, Vanier MC, Brouillette D, Roy D, Verret L et al. 2008. Combination of phenotype assessments and CYP2C9-VKORC1 polymorphisms in the determination of warfarin dose requirements in heavily medicated patients. Clin. Pharmacol. Ther. 83:740–48
    [Google Scholar]
  161. 161.  Chan SL, Suo C, Lee SC, Goh BC, Chia KS, Teo YY 2012. Translational aspects of genetic factors in the prediction of drug response variability: a case study of warfarin pharmacogenomics in a multi-ethnic cohort from Asia. Pharmacogenom. J. 12:312–18
    [Google Scholar]
  162. 162.  Mitchell C, Gregersen N, Krause A 2011. Novel CYP2C9 and VKORC1 gene variants associated with warfarin dosage variability in the South African black population. Pharmacogenomics 12:953–63
    [Google Scholar]
  163. 163.  Saminathan R, Bai J, Sadrolodabaee L, Karthik GM, Singh O et al. 2010. VKORC1 pharmacogenetics and pharmacoproteomics in patients on warfarin anticoagulant therapy: transthyretin precursor as a potential biomarker. PLOS ONE 5:e15064
    [Google Scholar]
  164. 164.  Schelleman H, Brensinger CM, Chen J, Finkelman BS, Rieder MJ, Kimmel SE 2010. New genetic variant that might improve warfarin dose prediction in African Americans. Br. J. Clin. Pharmacol. 70:393–99
    [Google Scholar]
  165. 165.  Wadelius M, Chen LY, Downes K, Ghori J, Hunt S et al. 2005. Common VKORC1 and GGCX polymorphisms associated with warfarin dose. Pharmacogenom. J. 5:262–70
    [Google Scholar]
  166. 166.  MacArthur J, Bowler E, Cerezo M, Gil L, Hall P et al. 2017. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res 45:D1D896–901
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010818-021154
Loading
/content/journals/10.1146/annurev-pharmtox-010818-021154
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error