1932

Abstract

Small-vessel diseases (SVDs) of the brain are involved in about one-fourth of ischemic strokes and a vast majority of intracerebral hemorrhages and are responsible for nearly half of dementia cases in the elderly. SVDs are a heavy burden for society, a burden that is expected to increase further in the absence of significant therapeutic advances, given the aging population. Here, we provide a critical appraisal of currently available therapeutic approaches for nonamyloid sporadic SVDs that are largely based on targeting modifiable risk factors. We review what is known about the pathogenic mechanisms of vascular risk factor–related SVDs and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), the most frequent hereditary SVD, and elaborate on two mechanism-based therapeutic approaches worth exploring in sporadic SVD and CADASIL. We conclude by discussing opportunities and challenges that need to be tackled if efforts to achieve significant therapeutic advances for these diseases are to be successful.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010818-021712
2020-01-06
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/60/1/annurev-pharmtox-010818-021712.html?itemId=/content/journals/10.1146/annurev-pharmtox-010818-021712&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Pantoni L. 2010. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 9:7689–701
    [Google Scholar]
  2. 2. 
    Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F et al. 2013. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 12:8822–38
    [Google Scholar]
  3. 3. 
    Love S, Chalmers K, Ince P, Esiri M, Attems J et al. 2014. Development, appraisal, validation and implementation of a consensus protocol for the assessment of cerebral amyloid angiopathy in post-mortem brain tissue. Am. J. Neurodegener. Dis. 3:119–32
    [Google Scholar]
  4. 4. 
    Charidimou A, Boulouis G, Gurol ME, Ayata C, Bacskai BJ et al. 2017. Emerging concepts in sporadic cerebral amyloid angiopathy. Brain J. Neurol. 140:71829–50
    [Google Scholar]
  5. 5. 
    Craggs LJL, Yamamoto Y, Deramecourt V, Kalaria RN 2014. Microvascular pathology and morphometrics of sporadic and hereditary small vessel diseases of the brain. Brain Pathol 24:5495–509
    [Google Scholar]
  6. 6. 
    Debette S, Schilling S, Duperron M-G, Larsson SC, Markus HS 2018. Clinical significance of magnetic resonance imaging markers of vascular brain injury: a systematic review and meta-analysis. JAMA Neurol 76:81–94
    [Google Scholar]
  7. 7. 
    Wardlaw JM, Smith C, Dichgans M 2013. Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging. Lancet Neurol 12:5483–97
    [Google Scholar]
  8. 8. 
    Rapsomaniki E, Timmis A, George J, Pujades-Rodriguez M, Shah AD et al. 2014. Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1.25 million people. Lancet 383:99321899–911
    [Google Scholar]
  9. 9. 
    Klarenbeek P, van Oostenbrugge RJ, Rouhl RPW, Knottnerus ILH, Staals J 2013. Ambulatory blood pressure in patients with lacunar stroke: association with total MRI burden of cerebral small vessel disease. Stroke 44:112995–99
    [Google Scholar]
  10. 10. 
    Chauhan G, Adams HHH, Satizabal CL, Bis JC, Teumer A et al. 2019. Genetic and lifestyle risk factors for MRI-defined brain infarcts in a population-based setting. Neurology 92:e486–503
    [Google Scholar]
  11. 11. 
    Bezerra DC, Sharrett AR, Matsushita K, Gottesman RF, Shibata D et al. 2012. Risk factors for lacune subtypes in the Atherosclerosis Risk in Communities (ARIC) Study. Neurology 78:2102–8
    [Google Scholar]
  12. 12. 
    van Dijk EJ, Breteler MMB, Schmidt R, Berger K, Nilsson L-G et al. 2004. The association between blood pressure, hypertension, and cerebral white matter lesions: cardiovascular determinants of dementia study. Hypertension 44:5625–30
    [Google Scholar]
  13. 13. 
    Cordonnier C, Al-Shahi Salman R, Wardlaw J 2007. Spontaneous brain microbleeds: systematic review, subgroup analyses and standards for study design and reporting. Brain J. Neurol. 130:Pt. 81988–2003
    [Google Scholar]
  14. 14. 
    Dufouil C, de Kersaint-Gilly A, Besançon V, Levy C, Auffray E et al. 2001. Longitudinal study of blood pressure and white matter hyperintensities: the EVA MRI cohort. Neurology 56:7921–26
    [Google Scholar]
  15. 15. 
    Lau KK, Li L, Simoni M, Mehta Z, Küker W et al. 2018. Long-term premorbid blood pressure and cerebral small vessel disease burden on imaging in transient ischemic attack and ischemic stroke. Stroke 49:92053–60
    [Google Scholar]
  16. 16. 
    VARIABLE BRAIN Consort 2018. The association between blood pressure variability (BPV) with dementia and cognitive function: a systematic review and meta-analysis protocol. Syst. Rev. 7:1163
    [Google Scholar]
  17. 17. 
    Koekkoek PS, Kappelle LJ, van den Berg E, Rutten GEHM, Biessels GJ 2015. Cognitive function in patients with diabetes mellitus: guidance for daily care. Lancet Neurol 14:3329–40
    [Google Scholar]
  18. 18. 
    Schilling S, Tzourio C, Dufouil C, Zhu Y, Berr C et al. 2014. Plasma lipids and cerebral small vessel disease. Neurology 83:201844–52
    [Google Scholar]
  19. 19. 
    Wang X, Dong Y, Qi X, Huang C, Hou L 2013. Cholesterol levels and risk of hemorrhagic stroke: a systematic review and meta-analysis. Stroke 44:71833–39
    [Google Scholar]
  20. 20. 
    Hassan A, Hunt BJ, O'Sullivan M, Bell R, D'Souza R et al. 2004. Homocysteine is a risk factor for cerebral small vessel disease, acting via endothelial dysfunction. Brain J. Neurol. 127:Pt. 1212–19
    [Google Scholar]
  21. 21. 
    Larsson SC, Traylor M, Markus HS 2019. Homocysteine and small vessel stroke: a mendelian randomization analysis. Ann. Neurol. 85:495–501
    [Google Scholar]
  22. 22. 
    Wardlaw JM, Allerhand M, Doubal FN, Valdes Hernandez M, Morris Z et al. 2014. Vascular risk factors, large-artery atheroma, and brain white matter hyperintensities. Neurology 82:151331–38
    [Google Scholar]
  23. 23. 
    Field TS, Doubal FN, Johnson W, Backhouse E, McHutchison C et al. 2016. Early life characteristics and late life burden of cerebral small vessel disease in the Lothian Birth Cohort 1936. Aging 8:92039–61
    [Google Scholar]
  24. 24. 
    Haffner C, Malik R, Dichgans M 2016. Genetic factors in cerebral small vessel disease and their impact on stroke and dementia. J. Cereb. Blood Flow Metab. 36:1158–71
    [Google Scholar]
  25. 25. 
    Ayrignac X, Carra-Dalliere C, Menjot de Champfleur N, Denier C, Aubourg P et al. 2015. Adult-onset genetic leukoencephalopathies: a MRI pattern-based approach in a comprehensive study of 154 patients. Brain J. Neurol. 138:Pt. 2284–92
    [Google Scholar]
  26. 26. 
    Chabriat H, Joutel A, Dichgans M, Tournier-Lasserve E, Bousser MG 2009. CADASIL. Lancet Neurol 8:7643–53
    [Google Scholar]
  27. 27. 
    Lee Y-C, Chung C-P, Chao N-C, Fuh J-L, Chang F-C et al. 2018. Characterization of heterozygous HTRA1 mutations in Taiwanese patients with cerebral small vessel disease. Stroke 49:71593–601
    [Google Scholar]
  28. 28. 
    Joutel A, Vahedi K, Corpechot C, Troesch A, Chabriat H et al. 1997. Strong clustering and stereotyped nature of Notch3 mutations in CADASIL patients. Lancet 350:90901511–15
    [Google Scholar]
  29. 29. 
    Rutten JW, Van Eijsden BJ, Duering M, Jouvent E, Opherk C et al. 2019. The effect of NOTCH3 pathogenic variant position on CADASIL disease severity: NOTCH3 EGFr 1–6 pathogenic variant are associated with a more severe phenotype and lower survival compared with EGFr 7–34 pathogenic variant. Genet. Med. 21:3676–82
    [Google Scholar]
  30. 30. 
    Malik R, Chauhan G, Traylor M, Sargurupremraj M, Okada Y et al. 2018. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat. Genet. 50:4524–37
    [Google Scholar]
  31. 31. 
    Malik R, Rannikmäe K, Traylor M, Georgakis MK, Sargurupremraj M et al. 2018. Genome-wide meta-analysis identifies 3 novel loci associated with stroke. Ann. Neurol. 84:6934–39
    [Google Scholar]
  32. 32. 
    Rannikmäe K, Sivakumaran V, Millar H, Malik R, Anderson CD et al. 2017. COL4A2 is associated with lacunar ischemic stroke and deep ICH: meta-analyses among 21,500 cases and 40,600 controls. Neurology 89:171829–39
    [Google Scholar]
  33. 33. 
    Mishra A, Chauhan G, Violleau M-H, Vojinovic D, Jian X et al. 2019. Association of variants in HTRA1 and NOTCH3 with MRI-defined extremes of cerebral small vessel disease in older subjects. Brain J. Neurol. 142:41009–23
    [Google Scholar]
  34. 34. 
    Iadecola C. 2013. The pathobiology of vascular dementia. Neuron 80:4844–66
    [Google Scholar]
  35. 35. 
    Longden TA, Dabertrand F, Koide M, Gonzales AL, Tykocki NR et al. 2017. Capillary K+-sensing initiates retrograde hyperpolarization to increase local cerebral blood flow. Nat. Neurosci. 20:5717–26
    [Google Scholar]
  36. 36. 
    Cipolla MJ. 2009. The Cerebral Circulation San Rafael, CA: Morgan & Claypool Life Sci.
  37. 37. 
    Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV 2019. Blood-brain barrier: from physiology to disease and back. Physiol. Rev. 99:121–78
    [Google Scholar]
  38. 38. 
    Rasmussen MK, Mestre H, Nedergaard M 2018. The glymphatic pathway in neurological disorders. Lancet Neurol 17:111016–24
    [Google Scholar]
  39. 39. 
    Shih AY, Blinder P, Tsai PS, Friedman B, Stanley G et al. 2013. The smallest stroke: occlusion of one penetrating vessel leads to infarction and a cognitive deficit. Nat. Neurosci. 16:155–63
    [Google Scholar]
  40. 40. 
    Smith EE, Beaudin AE. 2018. New insights into cerebral small vessel disease and vascular cognitive impairment from MRI. Curr. Opin. Neurol. 31:136–43
    [Google Scholar]
  41. 41. 
    Joutel A, Chabriat H. 2017. Pathogenesis of white matter changes in cerebral small vessel diseases: beyond vessel-intrinsic mechanisms. Clin. Sci. 131:8635–51
    [Google Scholar]
  42. 42. 
    Huneau C, Houot M, Joutel A, Béranger B, Giroux C et al. 2018. Altered dynamics of neurovascular coupling in CADASIL. Ann. Clin. Transl. Neurol. 5:7788–802
    [Google Scholar]
  43. 43. 
    Santisteban MM, Iadecola C. 2018. Hypertension, dietary salt and cognitive impairment. J. Cereb. Blood Flow Metab. 38:122112–28
    [Google Scholar]
  44. 44. 
    Toth P, Tarantini S, Csiszar A, Ungvari Z 2017. Functional vascular contributions to cognitive impairment and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging. Am. J. Physiol. Heart Circ. Physiol. 312:1H1–20
    [Google Scholar]
  45. 45. 
    Iadecola C, Davisson RL. 2008. Hypertension and cerebrovascular dysfunction. Cell Metab 7:6476–84
    [Google Scholar]
  46. 46. 
    Baumbach GL, Sigmund CD, Bottiglieri T, Lentz SR 2002. Structure of cerebral arterioles in cystathionine β-synthase-deficient mice. Circ. Res. 91:10931–37
    [Google Scholar]
  47. 47. 
    Dayal S, Devlin AM, McCaw RB, Liu M-L, Arning E et al. 2005. Cerebral vascular dysfunction in methionine synthase-deficient mice. Circulation 112:5737–44
    [Google Scholar]
  48. 48. 
    Duncombe J, Kitamura A, Hase Y, Ihara M, Kalaria RN, Horsburgh K 2017. Chronic cerebral hypoperfusion: a key mechanism leading to vascular cognitive impairment and dementia. Closing the translational gap between rodent models and human vascular cognitive impairment and dementia. Clin. Sci. 131:192451–68
    [Google Scholar]
  49. 49. 
    De Silva TM, Faraci FM 2016. Microvascular dysfunction and cognitive impairment. Cell. Mol. Neurobiol. 36:2241–58
    [Google Scholar]
  50. 50. 
    Iadecola C. 2017. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron 96:117–42
    [Google Scholar]
  51. 51. 
    Faraco G, Sugiyama Y, Lane D, Garcia-Bonilla L, Chang H et al. 2016. Perivascular macrophages mediate the neurovascular and cognitive dysfunction associated with hypertension. J. Clin. Investig. 126:124674–89
    [Google Scholar]
  52. 52. 
    Baron-Menguy C, Domenga-Denier V, Ghezali L, Faraci FM, Joutel A 2017. Increased Notch3 activity mediates pathological changes in structure of cerebral arteries. Hypertension 69:160–70
    [Google Scholar]
  53. 53. 
    Capone C, Cognat E, Ghezali L, Baron-Menguy C, Aubin D et al. 2016. Reducing Timp3 or vitronectin ameliorates disease manifestations in CADASIL mice. Ann. Neurol. 79:3387–403
    [Google Scholar]
  54. 54. 
    Joutel A, Andreux F, Gaulis S, Domenga V, Cecillon M et al. 2000. The ectodomain of the Notch3 receptor accumulates within the cerebrovasculature of CADASIL patients. J. Clin. Investig. 105:5597–605
    [Google Scholar]
  55. 55. 
    Joutel A, Monet-Lepretre M, Gosele C, Baron-Menguy C, Hammes A et al. 2010. Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease. J. Clin. Investig. 120:2433–45
    [Google Scholar]
  56. 56. 
    Monet-Leprêtre M, Haddad I, Baron-Menguy C, Fouillot-Panchal M, Riani M et al. 2013. Abnormal recruitment of extracellular matrix proteins by excess Notch3 ECD: a new pathomechanism in CADASIL. Brain J. Neurol. 136:Pt. 61830–45
    [Google Scholar]
  57. 57. 
    Dabertrand F, Krøigaard C, Bonev AD, Cognat E, Dalsgaard T et al. 2015. Potassium channelopathy-like defect underlies early-stage cerebrovascular dysfunction in a genetic model of small vessel disease. PNAS 112:7E796–805
    [Google Scholar]
  58. 58. 
    Capone C, Dabertrand F, Baron-Menguy C, Chalaris A, Ghezali L et al. 2016. Mechanistic insights into a TIMP3-sensitive pathway constitutively engaged in the regulation of cerebral hemodynamics. eLife 5:e17536
    [Google Scholar]
  59. 59. 
    Erdő F, Denes L, de Lange E 2017. Age-associated physiological and pathological changes at the blood-brain barrier: a review. J. Cereb. Blood Flow Metab. 37:14–24
    [Google Scholar]
  60. 60. 
    Kisler K, Nelson AR, Rege SV, Ramanathan A, Wang Y et al. 2017. Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain. Nat. Neurosci. 20:3406–16
    [Google Scholar]
  61. 61. 
    Montagne A, Nikolakopoulou AM, Zhao Z, Sagare AP, Si G et al. 2018. Pericyte degeneration causes white matter dysfunction in the mouse central nervous system. Nat. Med. 24:3326–37
    [Google Scholar]
  62. 62. 
    Park MH, Lee JY, Park KH, Jung IK, Kim K-T et al. 2018. Vascular and neurogenic rejuvenation in aging mice by modulation of ASM. Neuron 100:1167–82.e9
    [Google Scholar]
  63. 63. 
    Brown R, Benveniste H, Black SE, Charpak S, Dichgans M et al. 2018. Understanding the role of the perivascular space in cerebral small vessel disease. Cardiovasc. Res. 114:111462–73
    [Google Scholar]
  64. 64. 
    Mestre H, Tithof J, Du T, Song W, Peng W et al. 2018. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nat. Commun. 9:14878
    [Google Scholar]
  65. 65. 
    Mestre H, Hablitz LM, Xavier AL, Feng W, Zou W et al. 2018. Aquaporin-4-dependent glymphatic solute transport in the rodent brain. eLife 7:e40070
    [Google Scholar]
  66. 66. 
    Kress BT, Iliff JJ, Xia M, Wang M, Wei HS et al. 2014. Impairment of paravascular clearance pathways in the aging brain. Ann. Neurol. 76:6845–61
    [Google Scholar]
  67. 67. 
    Campbell BCV, Donnan GA, Lees KR, Hacke W, Khatri P et al. 2015. Endovascular stent thrombectomy: the new standard of care for large vessel ischaemic stroke. Lancet Neurol 14:8846–54
    [Google Scholar]
  68. 68. 
    Pantoni L, Fierini F, Poggesi A 2014. Thrombolysis in acute stroke patients with cerebral small vessel disease. Cerebrovasc. Dis. 37:15–13
    [Google Scholar]
  69. 69. 
    Eggers CCJ, Bocksrucker C, Seyfang L, Austrian Stroke Unit Registry Collab. 2017. The efficacy of thrombolysis in lacunar stroke—evidence from the Austrian Stroke Unit Registry. Eur. J. Neurol. 24:6780–87
    [Google Scholar]
  70. 70. 
    Charidimou A, Pasi M, Fiorelli M, Shams S, von Kummer R et al. 2016. Leukoaraiosis, cerebral hemorrhage, and outcome after intravenous thrombolysis for acute ischemic stroke: a meta-analysis (v1). Stroke 47:92364–72
    [Google Scholar]
  71. 71. 
    Cordonnier C, Demchuk A, Ziai W, Anderson CS 2018. Intracerebral haemorrhage: current approaches to acute management. Lancet 392:101541257–68
    [Google Scholar]
  72. 72. 
    Scaggiante J, Zhang X, Mocco J, Kellner CP 2018. Minimally invasive surgery for intracerebral hemorrhage. Stroke 49:112612–20
    [Google Scholar]
  73. 73. 
    Perry HM, Davis BR, Price TR, Applegate WB, Fields WS et al. 2000. Effect of treating isolated systolic hypertension on the risk of developing various types and subtypes of stroke: the Systolic Hypertension in the Elderly Program (SHEP). JAMA 284:4465–71
    [Google Scholar]
  74. 74. 
    PROGRESS Collab. Group 2001. Randomised trial of a perindopril-based blood-pressure-lowering regimen among 6105 individuals with previous stroke or transient ischaemic attack. Lancet 358:92871033–41
    [Google Scholar]
  75. 75. 
    Dufouil C, Chalmers J, Coskun O, Besançon V, Bousser M-G et al. 2005. Effects of blood pressure lowering on cerebral white matter hyperintensities in patients with stroke: the PROGRESS (Perindopril Protection Against Recurrent Stroke Study) Magnetic Resonance Imaging substudy. Circulation 112:111644–50
    [Google Scholar]
  76. 76. 
    SPRINT Res. Group 2015. A randomized trial of intensive versus standard blood-pressure control. N. Engl. J. Med. 373:222103–16
    [Google Scholar]
  77. 77. 
    ACCORD Study Group 2010. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N. Engl. J. Med. 362:171575–85
    [Google Scholar]
  78. 78. 
    Bangalore S, Toklu B, Gianos E, Schwartzbard A, Weintraub H et al. 2017. Optimal systolic blood pressure target after SPRINT: insights from a network meta-analysis of randomized trials. Am. J. Med. 130:6707–19.e8
    [Google Scholar]
  79. 79. 
    SPS3 Study Group 2013. Blood-pressure targets in patients with recent lacunar stroke: the SPS3 randomised trial. Lancet 382:9891507–15
    [Google Scholar]
  80. 80. 
    Murray AM, Hsu F-C, Williamson JD, Bryan RN, Gerstein HC et al. 2017. ACCORDION MIND: results of the observational extension of the ACCORD MIND randomised trial. Diabetologia 60:169–80
    [Google Scholar]
  81. 81. 
    Kjeldsen SE, Narkiewicz K, Burnier M, Oparil S 2018. Intensive blood pressure lowering prevents mild cognitive impairment and possible dementia and slows development of white matter lesions in brain: the SPRINT Memory and Cognition in Decreased Hypertension (SPRINT MIND) study. Blood Press 27:5247–48
    [Google Scholar]
  82. 82. 
    Peralta CA, McClure LA, Scherzer R, Odden MC, White CL et al. 2016. Effect of intensive versus usual blood pressure control on kidney function among individuals with prior lacunar stroke: a post hoc analysis of the Secondary Prevention of Small Subcortical Strokes (SPS3) randomized trial. Circulation 133:6584–91
    [Google Scholar]
  83. 83. 
    SPRINT MIND Investig. SPRINT Res. Group 2019. Effect of intensive versus standard blood pressure control on probable dementia: a randomized clinical trial. JAMA 321:553–61
    [Google Scholar]
  84. 84. 
    Croall ID, Tozer DJ, Moynihan B, Khan U, O'Brien JT et al. 2018. Effect of standard versus intensive blood pressure control on cerebral blood flow in small vessel disease: the PRESERVE randomized clinical trial. JAMA Neurol 75:6720–27
    [Google Scholar]
  85. 85. 
    Furie KL, Kasner SE, Adams RJ, Albers GW, Bush RL et al. 2011. Guidelines for the prevention of stroke in patients with stroke or transient ischemic attack: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 42:1227–76
    [Google Scholar]
  86. 86. 
    Antiplatelet Trialists’ Collab 1994. Collaborative overview of randomised trials of antiplatelet therapy—1. Prevention of death, myocardial infarction, and stroke by prolonged antiplatelet therapy in various categories of patients. BMJ 308:692181–106
    [Google Scholar]
  87. 87. 
    SPS3 Investig 2012. Effects of clopidogrel added to aspirin in patients with recent lacunar stroke. N. Engl. J. Med. 367:9817–25
    [Google Scholar]
  88. 88. 
    Oesterle A, Laufs U, Liao JK 2017. Pleiotropic effects of statins on the cardiovascular system. Circ. Res. 120:1229–43
    [Google Scholar]
  89. 89. 
    Int. Stroke Genet. Consort, Wellcome Trust Case-Control Consort. 2 2010. Failure to validate association between 12p13 variants and ischemic stroke. N. Engl. J. Med. 362:161547–50
    [Google Scholar]
  90. 90. 
    Amarenco P, Bogousslavsky J, Callahan A, Goldstein LB, Hennerici M et al. 2006. High-dose atorvastatin after stroke or transient ischemic attack. N. Engl. J. Med. 355:6549–59
    [Google Scholar]
  91. 91. 
    Amarenco P, Labreuche J, Lavallée P, Touboul P-J 2004. Statins in stroke prevention and carotid atherosclerosis: systematic review and up-to-date meta-analysis. Stroke 35:122902–9
    [Google Scholar]
  92. 92. 
    Amarenco P, Benavente O, Goldstein LB, Callahan A, Sillesen H et al. 2009. Results of the Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) trial by stroke subtypes. Stroke 40:41405–9
    [Google Scholar]
  93. 93. 
    Hackam DG, Woodward M, Newby LK, Bhatt DL, Shao M et al. 2011. Statins and intracerebral hemorrhage: collaborative systematic review and meta-analysis. Circulation 124:202233–42
    [Google Scholar]
  94. 94. 
    Cavalieri M, Schmidt R, Chen C, Mok V, de Freitas GR et al. 2012. B vitamins and magnetic resonance imaging–detected ischemic brain lesions in patients with recent transient ischemic attack or stroke: the VITAmins TO Prevent Stroke (VITATOPS) MRI-substudy. Stroke 43:123266–70
    [Google Scholar]
  95. 95. 
    Vanhoutte PM, Zhao Y, Xu A, Leung SWS 2016. Thirty years of saying NO: sources, fate, actions, and misfortunes of the endothelium-derived vasodilator mediator. Circ. Res. 119:2375–96
    [Google Scholar]
  96. 96. 
    Bagdy G, Riba P, Kecskeméti V, Chase D, Juhász G 2010. Headache-type adverse effects of NO donors: vasodilation and beyond. Br. J. Pharmacol. 160:120–35
    [Google Scholar]
  97. 97. 
    Ritchie RH, Drummond GR, Sobey CG, De Silva TM, Kemp-Harper BK 2017. The opposing roles of NO and oxidative stress in cardiovascular disease. Pharmacol. Res. 116:57–69
    [Google Scholar]
  98. 98. 
    Singh P, Vijayakumar S, Kalogeroupoulos A, Butler J 2018. Multiple avenues of modulating the nitric oxide pathway in heart failure clinical trials. Curr. Heart Fail. Rep. 15:244–52
    [Google Scholar]
  99. 99. 
    Miller AA, Drummond GR, Schmidt HHHW, Sobey CG 2005. NADPH oxidase activity and function are profoundly greater in cerebral versus systemic arteries. Circ. Res. 97:101055–62
    [Google Scholar]
  100. 100. 
    Hoffmann MH, Griffiths HR. 2018. The dual role of reactive oxygen species in autoimmune and inflammatory diseases: evidence from preclinical models. Free Radic. Biol. Med. 125:62–71
    [Google Scholar]
  101. 101. 
    Girouard H, Park L, Anrather J, Zhou P, Iadecola C 2006. Angiotensin II attenuates endothelium-dependent responses in the cerebral microcirculation through nox-2-derived radicals. Arterioscler. Thromb. Vasc. Biol. 26:4826–32
    [Google Scholar]
  102. 102. 
    De Silva TM, Modrick ML, Dabertrand F, Faraci FM 2018. Changes in cerebral arteries and parenchymal arterioles with aging: role of Rho kinase 2 and impact of genetic background. Hypertension 71:5921–27
    [Google Scholar]
  103. 103. 
    Aartsma-Rus A, van Ommen G-JB 2007. Antisense-mediated exon skipping: a versatile tool with therapeutic and research applications. RNA 13:101609–24
    [Google Scholar]
  104. 104. 
    Rutten JW, Dauwerse HG, Peters DJM, Goldfarb A, Venselaar H et al. 2016. Therapeutic NOTCH3 cysteine correction in CADASIL using exon skipping: in vitro proof of concept. Brain J. Neurol. 139:Pt. 41123–35
    [Google Scholar]
  105. 105. 
    Aartsma-Rus A, Krieg AM. 2017. FDA approves eteplirsen for Duchenne muscular dystrophy: the next chapter in the eteplirsen saga. Nucleic Acid Ther 27:11–3
    [Google Scholar]
  106. 106. 
    Ghezali L, Capone C, Baron-Menguy C, Ratelade J, Christensen S et al. 2018. Notch3ECD immunotherapy improves cerebrovascular responses in CADASIL mice. Ann. Neurol. 84:2246–59
    [Google Scholar]
  107. 107. 
    Monet-Lepretre M, Bardot B, Lemaire B, Domenga V, Godin O et al. 2009. Distinct phenotypic and functional features of CADASIL mutations in the Notch3 ligand binding domain. Brain 132:Pt. 61601–12
    [Google Scholar]
  108. 108. 
    Machuca-Parra AI, Bigger-Allen AA, Sanchez AV, Boutabla A, Cardona-Vélez J et al. 2017. Therapeutic antibody targeting of Notch3 signaling prevents mural cell loss in CADASIL. J. Exp. Med. 214:82271–82
    [Google Scholar]
  109. 109. 
    Rutten JW, Boon EMJ, Liem MK, Dauwerse JG, Pont MJ et al. 2013. Hypomorphic NOTCH3 alleles do not cause CADASIL in humans. Hum. Mutat. 34:111486–89
    [Google Scholar]
  110. 110. 
    Cognat E, Baron-Menguy C, Domenga-Denier V, Cleophax S, Fouillade C et al. 2014. Archetypal Arg169Cys mutation in NOTCH3 does not drive the pathogenesis in cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy via a loss-of-function mechanism. Stroke J. Cereb. Circ. 45:3842–49
    [Google Scholar]
  111. 111. 
    Deshpande PR, Rajan S, Sudeepthi BL, Abdul Nazir CP 2011. Patient-reported outcomes: a new era in clinical research. Perspect. Clin. Res. 2:4137–44
    [Google Scholar]
  112. 112. 
    Benjamin P, Zeestraten E, Lambert C, Ster IC, Williams OA et al. 2016. Progression of MRI markers in cerebral small vessel disease: sample size considerations for clinical trials. J. Cereb. Blood Flow Metab. 36:1228–40
    [Google Scholar]
  113. 113. 
    Patel B, Markus HS. 2011. Magnetic resonance imaging in cerebral small vessel disease and its use as a surrogate disease marker. Int. J. Stroke 6:147–59
    [Google Scholar]
  114. 114. 
    Benisty S, Reyes S, Godin O, Hervé D, Zieren N et al. 2012. White-matter lesions without lacunar infarcts in CADASIL. J. Alzheimers Dis. 29:4903–11
    [Google Scholar]
  115. 115. 
    Biesbroek JM, Weaver NA, Biessels GJ 2017. Lesion location and cognitive impact of cerebral small vessel disease. Clin. Sci. 131:8715–28
    [Google Scholar]
  116. 116. 
    Baykara E, Gesierich B, Adam R, Tuladhar AM, Biesbroek JM et al. 2016. A novel imaging marker for small vessel disease based on skeletonization of white matter tracts and diffusion histograms. Ann. Neurol. 80:4581–92
    [Google Scholar]
  117. 117. 
    Croall ID, Lohner V, Moynihan B, Khan U, Hassan A et al. 2017. Using DTI to assess white matter microstructure in cerebral small vessel disease (SVD) in multicentre studies. Clin. Sci. 131:121361–73
    [Google Scholar]
  118. 118. 
    Zeestraten EA, Lawrence AJ, Lambert C, Benjamin P, Brookes RL et al. 2017. Change in multimodal MRI markers predicts dementia risk in cerebral small vessel disease. Neurology 89:181869–76
    [Google Scholar]
  119. 119. 
    Ling Y, De Guio F, Jouvent E, Duering M, Hervé D et al. 2018. Clinical correlates of longitudinal MRI changes in CADASIL. J. Cereb. Blood Flow Metab. 39:1299–305
    [Google Scholar]
  120. 120. 
    Uiterwijk R, van Oostenbrugge RJ, Huijts M, De Leeuw PW, Kroon AA, Staals J 2016. Total cerebral small vessel disease MRI score is associated with cognitive decline in executive function in patients with hypertension. Front. Aging Neurosci. 8:301
    [Google Scholar]
  121. 121. 
    De Guio F, Jouvent E, Biessels GJ, Black SE, Brayne C et al. 2016. Reproducibility and variability of quantitative magnetic resonance imaging markers in cerebral small vessel disease. J. Cereb. Blood Flow Metab. 36:81319–37
    [Google Scholar]
  122. 122. 
    Yusuf S, Diener H-C, Sacco RL, Cotton D, Ounpuu S et al. 2008. Telmisartan to prevent recurrent stroke and cardiovascular events. N. Engl. J. Med. 359:121225–37
    [Google Scholar]
  123. 123. 
    Weber R, Weimar C, Blatchford J, Hermansson K, Wanke I et al. 2012. Telmisartan on top of antihypertensive treatment does not prevent progression of cerebral white matter lesions in the Prevention Regimen for Effectively Avoiding Second Strokes (PRoFESS) MRI substudy. Stroke 43:92336–42
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010818-021712
Loading
/content/journals/10.1146/annurev-pharmtox-010818-021712
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error