1932

Abstract

Voltage-gated sodium and calcium channels are evolutionarily related transmembrane signaling proteins that initiate action potentials, neurotransmission, excitation-contraction coupling, and other physiological processes. Genetic or acquired dysfunction of these proteins causes numerous diseases, termed channelopathies, and sodium and calcium channels are the molecular targets for several major classes of drugs. Recent advances in the structural biology of these proteins using X-ray crystallography and cryo-electron microscopy have given new insights into the molecular basis for their function and pharmacology. Here we review this recent literature and integrate findings on sodium and calcium channels to reveal the structural basis for their voltage-dependent activation, fast and slow inactivation, ion conductance and selectivity, and complex pharmacology at the atomic level. We conclude with the theme that new understanding of the diseases and therapeutics of these channels will be derived from application of the emerging structural principles from these recent structural analyses.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010818-021757
2020-01-06
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/60/1/annurev-pharmtox-010818-021757.html?itemId=/content/journals/10.1146/annurev-pharmtox-010818-021757&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Hille B. 2001. Ionic Channels of Excitable Membranes Sunderland, MA: Sinauer Associates Inc. , 3rd ed..
  2. 2. 
    Hodgkin AL, Huxley AF. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117:500–44
    [Google Scholar]
  3. 3. 
    Adelman WJ, Palti Y. 1968. The effects of external potassium and long duration voltage conditioning on the amplitude of sodium currents in the giant axon of the squid Loligo pealei. J. Gen. Physiol 54:589–606
    [Google Scholar]
  4. 4. 
    Rudy B. 1978. Slow inactivation of the sodium conductance in squid giant axons. Pronase resistance. J. Physiol. 283:1–21
    [Google Scholar]
  5. 5. 
    Hille B. 1972. The permeability of the sodium channel to metal cations in myelinated nerve. J. Gen. Physiol. 59:637–58
    [Google Scholar]
  6. 6. 
    Hille B. 1975. Ionic selectivity, saturation, and block in sodium channels. A four-barrier model. J. Gen. Physiol. 66:535–60
    [Google Scholar]
  7. 7. 
    Catterall WA. 2000. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26:13–25
    [Google Scholar]
  8. 8. 
    Ahern CA, Payandeh J, Bosmans F, Chanda B 2016. The hitchhiker's guide to the voltage-gated sodium channel galaxy. J. Gen. Physiol. 147:1–24
    [Google Scholar]
  9. 9. 
    Reuter H. 1967. The dependence of slow inward current in Purkinje fibres on the extracellular calcium-concentration. J. Physiol. 192:479–92
    [Google Scholar]
  10. 10. 
    Reuter H. 1983. Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature 301:569–74
    [Google Scholar]
  11. 11. 
    Catterall WA. 2011. Voltage-gated calcium channels. Cold Spring Harb. Perspect. Biol. 3:a003947
    [Google Scholar]
  12. 12. 
    Godfraind T. 2017. Discovery and development of calcium channel blockers. Front. Pharmacol. 8:286
    [Google Scholar]
  13. 13. 
    Fleckenstein A. 1983. History of calcium antagonists. Circ. Res. 52:I3–16
    [Google Scholar]
  14. 14. 
    Yu FH, Catterall WA. 2004. The VGL-chanome: a protein superfamily specialized for electrical signaling and ionic homeostasis. Sci. STKE 2004: re15
    [Google Scholar]
  15. 15. 
    Ren D, Navarro B, Xu H, Yue L, Shi Q, Clapham DE 2001. A prokaryotic voltage-gated sodium channel. Science 294:2372–75
    [Google Scholar]
  16. 16. 
    Catterall WA. 1984. The molecular basis of neuronal excitability. Science 223:653–61
    [Google Scholar]
  17. 17. 
    Noda M, Ikeda T, Kayano T, Suzuki H, Takeshima H et al. 1986. Existence of distinct sodium channel messenger RNAs in rat brain. Nature 320:188–92
    [Google Scholar]
  18. 18. 
    Trimmer JS, Cooperman SS, Tomiko SA, Zhou JY, Crean SM et al. 1989. Primary structure and functional expression of a mammalian skeletal muscle sodium channel. Neuron 3:33–49
    [Google Scholar]
  19. 19. 
    O'Malley HA, Isom LL. 2015. Sodium channel β subunits: emerging targets in channelopathies. Annu. Rev. Physiol. 77:481–504
    [Google Scholar]
  20. 20. 
    Isom LL, De Jongh KS, Catterall WA 1994. Auxiliary subunits of voltage-gated ion channels. Neuron 12:1183–94
    [Google Scholar]
  21. 21. 
    Takahashi M, Seagar MJ, Jones JF, Reber BF, Catterall WA 1987. Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. PNAS 84:5478–82
    [Google Scholar]
  22. 22. 
    Tanabe T, Takeshima H, Mikami A, Flockerzi V, Takahashi H et al. 1987. Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 328:313–18
    [Google Scholar]
  23. 23. 
    Leung AT, Imagawa T, Campbell KP 1987. Structural characterization of the 1,4-dihydropyridine receptor of the voltage-dependent Ca2+ channel from rabbit skeletal muscle. Evidence for two distinct high molecular weight subunits. J. Biol. Chem. 262:7943–46
    [Google Scholar]
  24. 24. 
    Zamponi GW, Striessnig J, Koschak A, Dolphin AC 2015. The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol. Rev. 67:821–70
    [Google Scholar]
  25. 25. 
    Payandeh J, Scheuer T, Zheng N, Catterall WA 2011. The crystal structure of a voltage-gated sodium channel. Nature 475:353–58
    [Google Scholar]
  26. 26. 
    Catterall WA, Zheng N. 2015. Deciphering voltage-gated Na+ and Ca2+ channels by studying prokaryotic ancestors. Trends Biochem. Sci. 40:526–34
    [Google Scholar]
  27. 27. 
    Catterall WA. 2010. Ion channel voltage sensors: structure, function, and pathophysiology. Neuron 67:915–28
    [Google Scholar]
  28. 28. 
    Bezanilla F. 2000. The voltage sensor in voltage-dependent ion channels. Physiol. Rev. 80:555–92
    [Google Scholar]
  29. 29. 
    Horn R. 2002. Molecular basis for function in sodium channels. Novartis Found. Symp. 241:21–26
    [Google Scholar]
  30. 30. 
    Vilin YY, Ruben PC. 2001. Slow inactivation in voltage-gated sodium channels: molecular substrates and contributions to channelopathies. Cell Biochem. Biophys. 35:171–90
    [Google Scholar]
  31. 31. 
    Cantrell AR, Catterall WA. 2001. Neuromodulation of Na+ channels: an unexpected form of cellular plasticity. Nat. Rev. Neurosci. 2:397–407
    [Google Scholar]
  32. 32. 
    Pan X, Li Z, Zhou Q, Shen H, Wu K et al. 2018. Structure of the human voltage-gated sodium channel NaV1.4 in complex with β1. Science 362: 6412):eaau2486
    [Google Scholar]
  33. 33. 
    Shen H, Zhou Q, Pan X, Li Z, Wu J, Yan N 2017. Structure of a eukaryotic voltage-gated sodium channel at near-atomic resolution. Science 335: 6328):eaal4326
    [Google Scholar]
  34. 34. 
    Yan Z, Zhou Q, Wang L, Wu J, Zhao Y et al. 2017. Structure of the Nav1.4-β1 complex from electric eel. Cell 170:470–82.e11
    [Google Scholar]
  35. 35. 
    Pan X, Li Z, Huang X, Huang G, Gao S et al. 2019. Molecular basis for pore blockade of human Na+ channel NaV1.2 by the μ-conotoxin KIIIA. Science 363:1309–13
    [Google Scholar]
  36. 36. 
    Wu J, Yan Z, Li Z, Yan C, Lu S et al. 2015. Structure of the voltage-gated calcium channel CaV1.1 complex. Science 350:aad2395
    [Google Scholar]
  37. 37. 
    Wu J, Yan Z, Li Z, Qian X, Lu S et al. 2016. Structure of the voltage-gated calcium channel CaV1.1 at 3.6 Å resolution. Nature 537:191–96
    [Google Scholar]
  38. 38. 
    Van Petegem F, Clark KA, Chatelain FC, Minor DL Jr 2004. Structure of a complex between a voltage-gated calcium channel β-subunit and an α-subunit domain. Nature 429:671–75
    [Google Scholar]
  39. 39. 
    Chen YH, Li MH, Zhang Y, He LL, Yamada Y et al. 2004. Structural basis of the α1-β subunit interaction of voltage-gated Ca2+ channels. Nature 429:675–80
    [Google Scholar]
  40. 40. 
    Davies A, Kadurin I, Alvarez-Laviada A, Douglas L, Nieto-Rostro M et al. 2010. The α2δ subunits of voltage-gated calcium channels form GPI-anchored proteins, a posttranslational modification essential for function. PNAS 107:1654–659
    [Google Scholar]
  41. 41. 
    Armstrong CM, Bezanilla F. 1973. Currents related to movement of the gating particles of the sodium channels. Nature 242:459–61
    [Google Scholar]
  42. 42. 
    Yang N, George AL Jr., Horn R 1996. Molecular basis of charge movement in voltage-gated sodium channels. Neuron 16:113–22
    [Google Scholar]
  43. 43. 
    Yang N, Horn R. 1995. Evidence for voltage-dependent S4 movement in sodium channels. Neuron 15:213–18
    [Google Scholar]
  44. 44. 
    DeCaen PG, Yarov-Yarovoy V, Zhao Y, Scheuer T, Catterall WA 2008. Disulfide locking a sodium channel voltage sensor reveals ion pair formation during activation. PNAS 105:15142–47
    [Google Scholar]
  45. 45. 
    DeCaen PG, Yarov-Yarovoy V, Sharp EM, Scheuer T, Catterall WA 2009. Sequential formation of ion pairs during activation of a sodium channel voltage sensor. PNAS 106:22498–503
    [Google Scholar]
  46. 46. 
    DeCaen PG, Yarov-Yarovoy V, Scheuer T, Catterall WA 2011. Gating charge interactions with the S1 segment during activation of a Na+ channel voltage sensor. PNAS 108:18825–30
    [Google Scholar]
  47. 47. 
    Yarov-Yarovoy V, Decaen PG, Westenbroek RE, Pan CY, Scheuer T et al. 2012. Structural basis for gating charge movement in the voltage sensor of a sodium channel. PNAS 109:E93–102
    [Google Scholar]
  48. 48. 
    Catterall WA. 1986. Molecular properties of voltage-sensitive sodium channels. Annu. Rev. Biochem. 55:953–85
    [Google Scholar]
  49. 49. 
    Bagneris C, Naylor CE, McCusker EC, Wallace BA 2015. Structural model of the open-closed-inactivated cycle of prokaryotic voltage-gated sodium channels. J. Gen. Physiol. 145:5–16
    [Google Scholar]
  50. 50. 
    Lenaeus MJ, Gamal El-Din TM, Ing C, Ramanadane K, Pomes R et al. 2017. Structures of closed and open states of a voltage-gated sodium channel. PNAS 114:E3051–60
    [Google Scholar]
  51. 51. 
    Wisedchaisri G, Tonggu L, McCord E, Gamal El-Din TM, Wang L et al. 2019. Resting state structure and gating mechanism of a voltage-gated sodium channel. Cell 178:9931003.e12
    [Google Scholar]
  52. 52. 
    Chakrabarti N, Ing C, Payandeh J, Zheng N, Catterall WA, Pomes R 2013. Catalysis of Na+ permeation in the bacterial sodium channel NaVAb. PNAS 110:11331–36
    [Google Scholar]
  53. 53. 
    Ulmschneider MB, Bagneris C, McCusker EC, DeCaen PG, Delling M et al. 2013. Molecular dynamics of ion transport through the open conformation of a bacterial voltage-gated sodium channel. PNAS 110:6364–69
    [Google Scholar]
  54. 54. 
    Naylor CE, Bagneris C, DeCaen PG, Sula A, Scaglione A et al. 2016. Molecular basis of ion permeability in a voltage-gated sodium channel. EMBO J 35:820–30
    [Google Scholar]
  55. 55. 
    Heinemann SH, Terlau H, Stühmer W, Imoto K, Numa S 1992. Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 356:441–43
    [Google Scholar]
  56. 56. 
    Boiteux C, Vorobyov I, Allen TW 2014. Ion conduction and conformational flexibility of a bacterial voltage-gated sodium channel. PNAS 111:3454–59
    [Google Scholar]
  57. 57. 
    Yue L, Navarro B, Ren D, Ramos A, Clapham DE 2002. The cation selectivity filter of the bacterial sodium channel, NaChBac. J. Gen. Physiol. 120:845–53
    [Google Scholar]
  58. 58. 
    Tang L, Gamal El-Din TM, Payandeh J, Martinez GQ, Heard TM et al. 2014. Structural basis for Ca2+ selectivity of a voltage-gated calcium channel. Nature 505:56–61
    [Google Scholar]
  59. 59. 
    Hess P, Tsien RW. 1984. Mechanism of ion permeation through calcium channels. Nature 309:453–56
    [Google Scholar]
  60. 60. 
    Almers W, McCleskey EW, Palade PT 1984. A nonselective cation conductance in frog muscle membrane blocked by micromolar external calcium channels. J. Physiol. 353:565–83
    [Google Scholar]
  61. 61. 
    Sather WA, McCleskey EW. 2003. Permeation and selectivity in calcium channels. Annu. Rev. Physiol. 65:133–59
    [Google Scholar]
  62. 62. 
    Eaton D, Brodwick M, Oxford G, Rudy B 1978. Arginine-specific reagents remove sodium channel inactivation. Nature 271:473–76
    [Google Scholar]
  63. 63. 
    Pavlov E, Bladen C, Winkfein R, Diao C, Dhaliwal P, French RJ 2005. The pore, not cytoplasmic domains, underlies inactivation in a prokaryotic sodium channel. Biophys. J. 89:232–42
    [Google Scholar]
  64. 64. 
    Gamal El-Din TM, Martinez GQ, Payandeh J, Scheuer T, Catterall WA 2013. A gating charge interaction required for late slow inactivation of the bacterial sodium channel NavAb. J. Gen. Physiol. 142:181–90
    [Google Scholar]
  65. 65. 
    Gamal El-Din TM, Lenaeus MJ, Ramanadane K, Zheng N, Catterall WA 2018. Molecular dissection of multiphase inactivation of the bacterial sodium channel NaVAb. J. Gen. Physiol. 151:174–85
    [Google Scholar]
  66. 66. 
    Payandeh J, Gamal El-Din TM, Scheuer T, Zheng N, Catterall WA 2012. Crystal structure of a voltage-gated sodium channel in two potentially inactivated states. Nature 486:135–39
    [Google Scholar]
  67. 67. 
    Zhang X, Ren W, DeCaen P, Yan C, Tao X et al. 2012. Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel. Nature 486:130–34
    [Google Scholar]
  68. 68. 
    Zhao Y, Scheuer T, Catterall WA 2004. Reversed voltage-dependent gating of a bacterial sodium channel with proline substitutions in the S6 transmembrane segment. PNAS 101:17873–78
    [Google Scholar]
  69. 69. 
    Zhao Y, Yarov-Yarovoy V, Scheuer T, Catterall WA 2004. A gating hinge in Na+ channels: a molecular switch for electrical signaling. Neuron 41:859–65
    [Google Scholar]
  70. 70. 
    O'Reilly JP, Wang SY, Wang GK 2001. Residue-specific effects on slow inactivation at V787 in D2-S6 of NaV1.4 sodium channels. Biophys. J. 81:2100–11
    [Google Scholar]
  71. 71. 
    Balser JR, Nuss HB, Chiamvimonvat N, Pérez-García MT, Marban E, Tomaselli GF 1996. External pore residue mediates slow inactivation in μ1 rat skeletal muscle sodium channels. J. Physiol. 494:431–42
    [Google Scholar]
  72. 72. 
    Brown AM, Morimoto K, Tsuda Y, Wilson DL 1981. Calcium current–dependent and voltage-dependent inactivation of calcium channels in Helix aspersa. J. Physiol 320:193–218
    [Google Scholar]
  73. 73. 
    Kass RS, Sanguinetti MC. 1984. Inactivation of calcium channel current in the calf cardiac Purkinje fiber. Evidence for voltage- and calcium-mediated mechanisms. J. Gen. Physiol. 84:705–26
    [Google Scholar]
  74. 74. 
    Lee KS, Marban E, Tsien RW 1985. Inactivation of calcium channels in mammalian heart cells: joint dependence on membrane potential and intracellular calcium. J. Physiol. 364:395–411
    [Google Scholar]
  75. 75. 
    Zühlke RD, Pitt GS, Deisseroth K, Tsien RW, Reuter H 1999. Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature 399:159–62
    [Google Scholar]
  76. 76. 
    Lee A, Wong ST, Gallagher D, Li B, Storm DR et al. 1999. Ca2+/calmodulin binds to and modulates P/Q-type calcium channels. Nature 399:155–59
    [Google Scholar]
  77. 77. 
    Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P et al. 2004. CaV1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119:19–31
    [Google Scholar]
  78. 78. 
    Splawski I, Timothy KW, Decher N, Kumar P, Sachse FB et al. 2005. Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations. PNAS 102:8089–96
    [Google Scholar]
  79. 79. 
    Pinggera A, Mackenroth L, Rump A, Schallner J, Beleggia F et al. 2017. New gain-of-function mutation shows CACNA1D as recurrently mutated gene in autism spectrum disorders and epilepsy. Hum. Mol. Genet. 26:2923–32
    [Google Scholar]
  80. 80. 
    Pinggera A, Lieb A, Benedetti B, Lampert M, Monteleone S et al. 2015. CACNA1D de novo mutations in autism spectrum disorders activate Cav1.3 L-type calcium channels. Biol. Psychiatry 77:816–22
    [Google Scholar]
  81. 81. 
    Pinggera A, Negro G, Tuluc P, Brown MJ, Lieb A, Striessnig J 2018. Gating defects of disease-causing de novo mutations in Cav1.3 Ca2+ channels. Channels 12:388–402
    [Google Scholar]
  82. 82. 
    Hondeghem LM, Katzung BG. 1984. Antiarrhythmic agents: the modulated receptor mechanism of action of sodium and calcium channel blocking drugs. Annu. Rev. Pharmacol. Toxicol. 24:387–423
    [Google Scholar]
  83. 83. 
    Kanaya S, Arlock P, Katzung BG, Hondeghem LM 1983. Diltiazem and verapamil preferentially block inactivated cardiac calcium channels. J. Mol. Cell. Cardiol. 15:145–48
    [Google Scholar]
  84. 84. 
    Khodorov B, Shishkova L, Peganov E, Revenki S 1976. Inhibition of sodium currents in frog Ranvier node treated with local anesthetics: role of slow sodium inactivation. Biochim. Biophys. Acta 433:409–35
    [Google Scholar]
  85. 85. 
    Hodgkin AL, Huxley AF. 1952. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol 116:497–506
    [Google Scholar]
  86. 86. 
    Vassilev PM, Scheuer T, Catterall WA 1988. Identification of an intracellular peptide segment involved in sodium channel inactivation. Science 241:1658–61
    [Google Scholar]
  87. 87. 
    Vassilev P, Scheuer T, Catterall WA 1989. Inhibition of inactivation of single sodium channels by a site-directed antibody. PNAS 86:8147–51
    [Google Scholar]
  88. 88. 
    Stuhmer W, Conti F, Suzuki H, Wang X, Noda M et al. 1989. Structural parts involved in activation and inactivation of the sodium channel. Nature 339:597–603
    [Google Scholar]
  89. 89. 
    West JW, Patton DE, Scheuer T, Wang Y, Goldin AL, Catterall WA 1992. A cluster of hydrophobic amino acid residues required for fast Na+ channel inactivation. PNAS 89:10910–14
    [Google Scholar]
  90. 90. 
    Rohl CA, Boeckman FA, Baker C, Scheuer T, Catterall WA, Klevit RE 1999. Solution structure of the sodium channel inactivation gate. Biochemistry 38:855–61
    [Google Scholar]
  91. 91. 
    McPhee JC, Ragsdale DS, Scheuer T, Catterall WA 1994. A mutation in segment IVS6 disrupts fast inactivation of sodium channels. PNAS 91:12346–50
    [Google Scholar]
  92. 92. 
    McPhee JC, Ragsdale DS, Scheuer T, Catterall WA 1995. A critical role for transmembrane segment IVS6 of the sodium channel α subunit in fast inactivation. J. Biol. Chem. 270:12025–34
    [Google Scholar]
  93. 93. 
    McPhee JC, Ragsdale D, Scheuer T, Catterall WA 1998. A critical role for the S4-S5 intracellular loop in domain IV of the sodium channel a subunit in fast inactivation. J. Biol. Chem. 273:1121–29
    [Google Scholar]
  94. 94. 
    Smith MR, Goldin AL. 1997. Interaction between the sodium channel inactivation linker and domain III S4-S5. Biophys. J. 73:1885–95
    [Google Scholar]
  95. 95. 
    Tang LH, Kallen RG, Horn R 1996. Role of an S4-S5 linker in sodium channel inactivation probed by mutagenesis and a peptide blocker. J. Gen. Physiol. 108:89–104
    [Google Scholar]
  96. 96. 
    Rogers JC, Qu Y, Tanada TN, Scheuer T, Catterall WA 1996. Molecular determinants of high affinity binding of α-scorpion toxin and sea anemone toxin in the S3-S4 extracellular loop in domain IV of the Na+ channel α subunit. J. Biol. Chem. 271:15950–62
    [Google Scholar]
  97. 97. 
    Sheets MF, Kyle JW, Kallen RG, Hanck DA 1999. The Na channel voltage sensor associated with inactivation is localized to the external charged residues of domain IV, S4. Biophys. J. 77:747–57
    [Google Scholar]
  98. 98. 
    Chanda B, Bezanilla F. 2002. Tracking voltage-dependent conformational changes in skeletal muscle sodium channel during activation. J. Gen. Physiol. 120:629–45
    [Google Scholar]
  99. 99. 
    Capes DL, Goldschen-Ohm MP, Arcisio-Miranda M, Bezanilla F, Chanda B 2013. Domain IV voltage-sensor movement is both sufficient and rate limiting for fast inactivation in sodium channels. J. Gen. Physiol 142:101–12
    [Google Scholar]
  100. 100. 
    Hille B. 1977. Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reaction. J. Gen. Physiol. 69:497–515
    [Google Scholar]
  101. 101. 
    Catterall WA. 1987. Common modes of drug action on Na+ channels: local anesthetics, antiarrhythmics and anticonvulsants. Trends Pharmacol. Sci. 8:57–65
    [Google Scholar]
  102. 102. 
    Sampson KJ, Kass RK. 2011. Antiarrhythmic drugs. Goodman & Gilman's Pharmacological Basis of Therapeutics LL Brunton 815–48 New York: McGraw-Hill. , 12th ed..
    [Google Scholar]
  103. 103. 
    Bean BP. 1984. Nitrendipine block of cardiac calcium channels: high-affinity binding to the inactivated state. PNAS 81:6388–92
    [Google Scholar]
  104. 104. 
    Bean BP, Cohen CJ, Tsien RW 1983. Lidocaine block of cardiac sodium channels. J. Gen. Physiol. 81:613–42
    [Google Scholar]
  105. 105. 
    Hondeghem LM, Katzung BG. 1977. Timed- and voltage-dependent interactions of antiarrhythmic drugs with cardiac sodium channels. Biochim. Biophys. Acta 472:373–98
    [Google Scholar]
  106. 106. 
    Hille B. 1977. The pH-dependent rate of action of local anesthetics on the node of Ranvier. J. Gen. Physiol. 69:475–96
    [Google Scholar]
  107. 107. 
    Courtney KR. 1980. Structure-activity relations for frequency-dependent sodium channel block in nerve by local anesthetics. J. Pharmacol. Exp. Ther. 213:114–19
    [Google Scholar]
  108. 108. 
    Frazier DT, Narahashi T, Yamada M 1970. The site of action and active form of local anesthetics. II. Experiments with quaternary compounds. J. Pharmacol. Exp. Ther. 171:45–51
    [Google Scholar]
  109. 109. 
    Narahashi T, Frazier T, Yamada M 1970. The site of action and active form of local anesthetics. I. Theory and pH experiments with tertiary compounds. J. Pharmacol. Exp. Ther. 171:32–44
    [Google Scholar]
  110. 110. 
    Strichartz GR. 1973. The inhibition of sodium currents in myelinated nerve by quaternary derivatives of lidocaine. J. Gen. Physiol. 62:37–57
    [Google Scholar]
  111. 111. 
    Hille B, Courtney K, Dunn R 1975. Rate and site of action of local anesthetics in myelinated nerve fibers. Molecular Mechanisms of Anesthesia, Vol. 1: Progress in Anesthesiology BR Fink 13–20 New York: Raven Press
    [Google Scholar]
  112. 112. 
    Ragsdale DS, McPhee JC, Scheuer T, Catterall WA 1994. Molecular determinants of state-dependent block of sodium channels by local anesthetics. Science 265:1724–28
    [Google Scholar]
  113. 113. 
    Ragsdale DS, McPhee JC, Scheuer T, Catterall WA 1996. Common molecular determinants of local anesthetic, antiarrhythmic, and anticonvulsant block of voltage-gated Na+ channels. PNAS 93:9270–75
    [Google Scholar]
  114. 114. 
    Yarov-Yarovoy V, Brown J, Sharp E, Clare JJ, Scheuer T, Catterall WA 2001. Molecular determinants of voltage-dependent gating and binding of pore-blocking drugs in transmembrane segment IIIS6 of the Na+ channel α subunit. J. Biol. Chem. 276:20–27
    [Google Scholar]
  115. 115. 
    Yarov-Yarovoy V, McPhee JC, Idsvoog D, Pate C, Scheuer T, Catterall WA 2002. Role of amino acid residues in transmembrane segments IS6 and IIS6 of the sodium channel α subunit in voltage-dependent gating and drug block. J. Biol. Chem. 277:35393–401
    [Google Scholar]
  116. 116. 
    Liu G, Yarov-Yarovoy V, Qu Y, Nobbs M, Clare JJ et al. 2003. Differential interactions of lamotrigine and related drugs with transmembrane segment IVS6 of voltage-gated sodium channels. Neuropharmacology 44:413–22
    [Google Scholar]
  117. 117. 
    Wang GK, Quan C, Wang S 1998. A common local anesthetic receptor for benzocaine and etidocaine in voltage-gated mu1 Na+ channels. Pflugers Arch 435:293–302
    [Google Scholar]
  118. 118. 
    Nau C, Wang SY, Wang GK 2003. Point mutations at L1280 in NaV1.4 channel D3-S6 modulate binding affinity and stereoselectivity of bupivacaine enantiomers. Mol. Pharmacol. 63:1398–406
    [Google Scholar]
  119. 119. 
    Gamal El-Din TM, Lenaeus MJ, Zheng N, Catterall WA 2018. Fenestrations control resting-state block of a voltage-gated sodium channel. PNAS 115:13111–16
    [Google Scholar]
  120. 120. 
    Glossmann H, Ferry R, Goll A, Striessnig J, Schober M 1985. Calcium channels: basic properties as revealed by radioligand binding studies. J. Cardiovasc. Pharmacol. 7:520–30
    [Google Scholar]
  121. 121. 
    Gould RJ, Murphy KM, Snyder SH 1983. Studies on voltage-operated calcium channels using radioligands. Cold Spring Harb. Symp. Quant. Biol. 48:355–62
    [Google Scholar]
  122. 122. 
    Hockerman GH, Peterson BZ, Johnson BD, Catterall WA 1997. Molecular determinants of drug binding and action on L-type calcium channels. Annu. Rev. Pharmacol. Toxicol. 37:361–96
    [Google Scholar]
  123. 123. 
    Striessnig J, Glossmann H, Catterall WA 1990. Identification of a phenylalkylamine binding region within the alpha 1 subunit of skeletal muscle Ca2+ channels. PNAS 87:9108–12
    [Google Scholar]
  124. 124. 
    Nakayama H, Taki M, Striessnig J, Catterall WA, Kanaoka Y 1991. Identification of 1,4-dihydropyridine binding regions within the alpha 1 subunit of skeletal muscle Ca2+ channels by photoaffinity labeling with diazipine. PNAS 88:9203–7
    [Google Scholar]
  125. 125. 
    Striessnig J, Murphy BJ, Catterall WA 1991. Dihydropyridine receptor of L-type Ca2+ channels: identification of binding domains for [3H](+)-PN200-110 and [3H]azidopine within the alpha 1 subunit. PNAS 88:10769–73
    [Google Scholar]
  126. 126. 
    Catterall WA, Striessnig J. 1992. Receptor sites for Ca2+ channel antagonists. Trends Pharmacol. Sci. 13:256–62
    [Google Scholar]
  127. 127. 
    Regulla S, Schneider T, Nastainczyk W, Meyer HE, Hofmann F 1991. Identification of the site of interaction of the dihydropyridine channel blockers nitrendipine and azidopine with the calcium-channel alpha 1 subunit. EMBO J 10:45–49
    [Google Scholar]
  128. 128. 
    Schuster A, Lacinová L, Klugbauer N, Ito H, Birnbaumer L, Hofmann F 1996. The IVS6 segment of the L-type calcium channel is critical for the action of dihydropyridines and phenylalkylamines. EMBO J 15:2365–70
    [Google Scholar]
  129. 129. 
    Peterson BZ, Catterall WA. 1995. Calcium binding in the pore of L-type calcium channels modulates high affinity dihydropyridine binding. J. Biol. Chem. 270:18201–4
    [Google Scholar]
  130. 130. 
    Peterson BZ, Tanada TN, Catterall WA 1996. Molecular determinants of high affinity dihydropyridine binding in L-type calcium channels. J. Biol. Chem. 271:5293–96
    [Google Scholar]
  131. 131. 
    Peterson BZ, Hockerman GH, Abbot MR, Johnson BD, Scheuer T, Catterall WA 1997. Analysis of the dihydropyridine receptor site of L-type calcium channels by alanine-scanning mutagenesis. J. Biol. Chem. 272:18752–58
    [Google Scholar]
  132. 132. 
    Mitterdorfer J, Sinnegger MJ, Grabner M, Striessnig J, Glossmann H 1995. Coordination of Ca2+ by the pore region glutamates is essential for high-affinity dihydropyridine binding to the cardiac Ca2+ channel alpha 1 subunit. Biochemistry 34:9350–55
    [Google Scholar]
  133. 133. 
    Mitterdorfer J, Wang ZY, Sinnegger MJ, Hering S, Striessnig J et al. 1996. Two amino acid residues in the IIIS5 segment of L-type calcium channels differentially contribute to 1,4-dihydropyridine sensitivity. J. Biol. Chem. 271:30330–35
    [Google Scholar]
  134. 134. 
    Hockerman GH, Peterson BZ, Sharp E, Tanada TN, Scheuer T, Catterall WA 1997. Construction of a high-affinity receptor site for dihydropyridine agonists and antagonists by single amino acid substitutions in a non-L-type Ca2+ channel. PNAS 94:14906–11
    [Google Scholar]
  135. 135. 
    Sinnegger MJ, Wang ZY, Grabner M, Hering S, Striessnig J et al. 1997. Nine L-type amino acid residues confer full 1,4-dihydropyridine sensitivity to the neuronal calcium channel α1A subunit: role of L-type MET1188. J. Biol. Chem. 272:27686–93
    [Google Scholar]
  136. 136. 
    Lacinova L, Klugbauer N, Hu M, Hofmann F 1999. Reconstruction of the dihydropyridine site in a non-L-type calcium channel: the role of the IS6 segment. FEBS Lett 451:152–56
    [Google Scholar]
  137. 137. 
    Hockerman GH, Johnson BD, Scheuer T, Catterall WA 1995. Molecular determinants of high affinity phenylalkylamine block of L-type calcium channels. J. Biol. Chem. 270:22119–22
    [Google Scholar]
  138. 138. 
    Hockerman GH, Johnson BD, Abbott MR, Scheuer T, Catterall WA 1997. Molecular determinants of high affinity phenylalkylamine block of L-type calcium channels in transmembrane segment IIIS6 and the pore region of the α1 subunit. J. Biol. Chem. 272:18759–65
    [Google Scholar]
  139. 139. 
    Hockerman GH, Dilmac N, Scheuer T, Catterall WA 2000. Molecular determinants of diltiazem block in domains III S6 and IVS6 of L-type Ca2+ channels. Mol. Pharmacol. 58:1264–70
    [Google Scholar]
  140. 140. 
    Johnson BD, Hockerman GH, Scheuer T, Catterall WA 1996. Distinct effects of mutations in transmembrane segment IVS6 on block of L-type calcium channels by structurally similar phenylalkylamines. Mol. Pharmacol. 50:1388–400
    [Google Scholar]
  141. 141. 
    Brauns T, Cai ZW, Kimball SD, Kang HC, Haugland RP et al. 1995. Benzothiazepine binding domain of purified L-type calcium channels: direct labeling using a novel fluorescent diltiazem analogue. Biochemistry 34:3461–69
    [Google Scholar]
  142. 142. 
    Kraus R, Reichl B, Kimball SD, Grabner M, Murphy BJ et al. 1996. Identification of benz(othi)azepine-binding regions within L-type calcium channel α1 subunits. J. Biol. Chem. 271:20113–18
    [Google Scholar]
  143. 143. 
    Tang L, Gamal El-Din TM, Swanson TM, Pryde DC, Scheuer T et al. 2016. Structural basis for inhibition of a voltage-gated Ca2+ channel by Ca2+ antagonist drugs. Nature 537:117–21
    [Google Scholar]
  144. 144. 
    Lee KS, Tsien RW. 1983. Mechanism of calcium channel blockade by verapamil, D600, diltiazem, and nitrendipine in single dialysed heart cells. Nature 302:790–94
    [Google Scholar]
  145. 145. 
    Tang L, Gamal El-Din TM, Lenaeus MJ, Zheng N, Catterall WA 2019. Structural basis for diltiazem block of a voltage-gated Ca2+ channel. Mol. Pharmacol. 96:48592
    [Google Scholar]
  146. 146. 
    Zhao Y, Huang G, Wu J, Wu Q, Gao S et al. 2019. Molecular basis for ligand modulation of a mammalian voltage-gated Ca2+ channel. Cell 177:1495–506
    [Google Scholar]
  147. 147. 
    Davies A, Hendrich J, Van Minh AT, Wratten J, Douglas L, Dolphin AC 2007. Functional biology of the α2δ subunits of voltage-gated calcium channels. Trends Pharmacol. Sci. 28:220–28
    [Google Scholar]
  148. 148. 
    Hoppa MB, Lana B, Margas W, Dolphin AC, Ryan TA 2012. α2δ expression sets presynaptic calcium channel abundance and release probability. Nature 486:122–25
    [Google Scholar]
  149. 149. 
    Hendrich J, Van Minh AT, Heblich F, Nieto-Rostro M, Watschinger K et al. 2008. Pharmacological disruption of calcium channel trafficking by the α2δ ligand gabapentin. PNAS 105:3628–33
    [Google Scholar]
  150. 150. 
    Bauer CS, Nieto-Rostro M, Rahman W, Tran-Van-Minh A, Ferron L et al. 2009. The increased trafficking of the calcium channel subunit α2δ-1 to presynaptic terminals in neuropathic pain is inhibited by the α2δ ligand pregabalin. J. Neurosci. 29:4076–88
    [Google Scholar]
  151. 151. 
    Huang W, Liu M, Yan SF, Yan N 2017. Structure-based assessment of disease-related mutations in human voltage-gated sodium channels. Protein Cell 8:401–38
    [Google Scholar]
  152. 152. 
    Ashcroft FM. 2006. From molecule to malady. Nature 440:440–47
    [Google Scholar]
  153. 153. 
    Jiang D, Gamal El-Din TM, Ing C, Lu P, Pomes R et al. 2018. Structural basis for gating pore current in periodic paralysis. Nature 557:590–94
    [Google Scholar]
  154. 154. 
    Sokolov S, Scheuer T, Catterall WA 2010. Ion permeation and block of the gating pore in the voltage sensor of NaV1.4 channels with hypokalemic periodic paralysis mutations. J. Gen. Physiol. 136:225–36
    [Google Scholar]
  155. 155. 
    Ahuja S, Mukund S, Deng L, Khakh K, Chang E et al. 2015. Structural basis of Nav1.7 inhibition by an isoform-selective small-molecule antagonist. Science 350: aac5464
    [Google Scholar]
  156. 156. 
    Nanou E, Catterall WA 2018. Calcium channels, synaptic plasticity, and neuropsychiatric disease. Neuron 98:466–81
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010818-021757
Loading
/content/journals/10.1146/annurev-pharmtox-010818-021757
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error