1932

Abstract

Organophosphorus insecticide self-poisoning is a major global health problem, killing over 100,000 people annually. It is a complex multi-organ condition, involving the inhibition of cholinesterases, and perhaps other enzymes, and the effects of large doses of ingested solvents. Variability between organophosphorus insecticides—in lipophilicity, speed of activation, speed and potency of acetylcholinesterase inhibition, and in the chemical groups attached to the phosphorus—results in variable speed of poisoning onset, severity, clinical toxidrome, and case fatality. Current treatment is modestly effective, aiming only to reactivate acetylcholinesterase and counter the effects of excess acetylcholine at muscarinic receptors. Rapid titration of atropine during resuscitation is lifesaving and can be performed in the absence of oxygen. The role of oximes in therapy remains unclear. Novel antidotes have been tested in small trials, but the great variability in poisoning makes interpretation of such trials difficult. More effort is required to test treatments in adequately powered studies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010818-021842
2019-01-06
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/59/1/annurev-pharmtox-010818-021842.html?itemId=/content/journals/10.1146/annurev-pharmtox-010818-021842&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Mew EJ, Padmanathan P, Konradsen F, Eddleston M, Chang SS et al. 2017. The global burden of fatal self-poisoning with pesticides 2006–15: systematic review. J. Affect. Disord. 219:93–104
    [Google Scholar]
  2. 2.  Eddleston M, Phillips MR 2004. Self-poisoning with pesticides. BMJ 328:42–44
    [Google Scholar]
  3. 3.  Casida JE, Quistad GB 2005. Golden age of insecticide research: past, present, or future?. Annu. Rev. Entomol. 43:1–16
    [Google Scholar]
  4. 4.  Gunnell D, Fernando R, Hewagama M, Priyangika WDD, Konradsen F, Eddleston M 2007. The impact of pesticide regulations on suicide in Sri Lanka. Int. J. Epidemiol. 36:1235–42
    [Google Scholar]
  5. 5.  Knipe DM, Gunnell D, Eddleston M 2017. Preventing deaths from pesticide self-poisoning—learning from Sri Lanka's success. Lancet Global Health 5:e651–52
    [Google Scholar]
  6. 6.  Chowdhury FR, Dewan G, Verma VR, Knipe DW, Isha IT et al. 2018. Bans of WHO Class I pesticides in Bangladesh—suicide prevention without hampering agricultural output. Int. J. Epidemiol. 47:175–84
    [Google Scholar]
  7. 7.  World Health Organ 2010. The WHO recommended classification of pesticides by hazard and guidelines to classification: 2009 Rep., World Health Organ Geneva:
  8. 8.  Manuweera G, Eddleston M, Egodage S, Buckley NA 2008. Do targeted bans of insecticides to prevent deaths from self-poisoning result in reduced agricultural output?. Environ. Health Perspect. 116:492–95
    [Google Scholar]
  9. 9.  Knipe DW, Chang SS, Dawson A, Eddleston M, Konradsen F et al. 2017. Suicide prevention through means restriction: impact of the 2008–2011 pesticide restrictions on suicide in Sri Lanka. PLOS ONE 12:e0172893
    [Google Scholar]
  10. 10.  Gunnell D, Knipe D, Chang SS, Pearson M, Konradsen F et al. 2017. Prevention of suicide with regulations aimed at restricting access to highly hazardous pesticides: a systematic review of the international evidence. Lancet Global Health 5:e1026–37
    [Google Scholar]
  11. 11.  Eddleston M, Eyer P, Worek F, Mohamed F, Senarathna L et al. 2005. Differences between organophosphorus insecticides in human self-poisoning: a prospective cohort study. Lancet 366:1452–59
    [Google Scholar]
  12. 12.  Buckley NA, Karalliedde L, Dawson A, Senanayake N, Eddleston M 2004. Where is the evidence for the management of pesticide poisoning? Is clinical toxicology fiddling while the developing world burns?. J. Toxicol. Clin. Toxicol. 42:113–16
    [Google Scholar]
  13. 13.  Lotti M 2001. Clinical toxicology of anticholinesterase agents in humans. Handbook of Pesticide Toxicology, Vol. 2 Agents, ed. RI Krieger, J Doull 1043–85 San Diego: Academic
    [Google Scholar]
  14. 14.  Eddleston M 2018. Insecticides: organic phosphorus compounds and carbamates. Goldfrank's Toxicologic Emergencies LS Nelson, MA Howland, NA Lewin, SW Smith, LR Goldfrank, RS Hoffman 1486–1502 New York: McGraw-Hill Education/Medical. 11th ed.
    [Google Scholar]
  15. 15.  Peter JV, Sudarsan TI, Moran JL 2014. Clinical features of organophosphate poisoning: a review of different classification systems and approaches. Indian J. Crit. Care Med. 18:735–45
    [Google Scholar]
  16. 16.  Park JH, Shin SD, Song KJ, Park CB, Ro YS, Kwak YH 2012. Epidemiology and outcomes of poisoning-induced out-of-hospital cardiac arrest. Resuscitation 83:51–57
    [Google Scholar]
  17. 17.  Hulse EJ, Davies JO, Simpson AJ, Sciuto AM, Eddleston M 2014. Respiratory complications of organophosphorus nerve agent and insecticide poisoning. Implications for respiratory and critical care. Am. J. Respir. Crit. Care Med. 190:1342–54
    [Google Scholar]
  18. 18.  Eddleston M 2008. The pathophysiology of organophosphorus pesticide self-poisoning is not so simple. Neth. J. Med. 66:146–48
    [Google Scholar]
  19. 19.  Davies JOJ, Roberts DM, Eyer P, Buckley NA, Eddleston M 2008. Hypotension in severe dimethoate self-poisoning. Clin. Toxicol. 46:880–84
    [Google Scholar]
  20. 20.  Zilker T, Hibler A 1996. Treatment of severe parathion poisoning. Role of Oximes in the Treatment of Anticholinesterase Agent Poisoning L Szinicz, P Eyer, R Klimmek 9–17 Heidelberg, Ger: Spektrum Akad. Verlag
    [Google Scholar]
  21. 21.  Aardema H, Meertens JH, Ligtenberg JJ, Peters-Polman OM, Tulleken JE, Zijlstra JG 2008. Organophosphorus pesticide poisoning: cases and developments. Neth. J. Med. 66:149–53
    [Google Scholar]
  22. 22.  Wadia RS, Sadagopan C, Amin RB, Sardesai HV 1974. Neurological manifestations of organophosphate insecticide poisoning. J. Neurol. Neurosurg. Psychiatry 37:841–47
    [Google Scholar]
  23. 23.  Senanayake N, Karalliedde L 1987. Neurotoxic effects of organophosphate insecticides: an intermediate syndrome. N. Engl. J. Med. 316:761–63
    [Google Scholar]
  24. 24.  Jayawardane P, Senanayake N, Buckley NA, Dawson AH 2012. Electrophysiological correlates of respiratory failure in acute organophosphate poisoning: evidence for differential roles of muscarinic and nicotinic stimulation. Clin. Toxicol. 50:250–53
    [Google Scholar]
  25. 25.  Eddleston M, Mohamed F, Davies JOJ, Eyer P, Worek F et al. 2006. Respiratory failure in acute organophosphorus pesticide self-poisoning. QJM 99:513–22
    [Google Scholar]
  26. 26.  Eddleston M, Eyer P, Worek F, Sheriff MHR, Buckley NA 2008. Predicting outcome using butyrylcholinesterase activity in organophosphorus pesticide self-poisoning. QJM 101:467–74
    [Google Scholar]
  27. 27.  Casida JE, Quistad GB 2004. Organophosphate toxicology: safety aspects of nonacetylcholinesterase secondary targets. Chem. Res. Toxicol. 17:983–98
    [Google Scholar]
  28. 28.  Casida JE, Quistad GB 2005. Serine hydrolase targets of organophosphorus toxicants. Chem. Biol. Interact. 157–158:277–83
    [Google Scholar]
  29. 29.  Quistad GB, Fisher KJ, Owen SC, Klintenberg R, Casida JE 2005. Platelet-activating factor acetylhydrolase: selective inhibition by potent n-alkyl methylphosphonofluoridates. Toxicol. Appl. Pharmacol. 205:149–56
    [Google Scholar]
  30. 30.  Mechoulam R, Parker LA 2013. The endocannabinoid system and the brain. Annu. Rev. Psychol. 64:21–47
    [Google Scholar]
  31. 31.  Quistad GB, Klintenberg R, Caboni P, Liang SN, Casida JE 2006. Monoacylglycerol lipase inhibition by organophosphorus compounds leads to elevation of brain 2-arachidonoylglycerol and the associated hypomotility in mice. Toxicol. Appl. Pharmacol. 211:78–83
    [Google Scholar]
  32. 32.  Quistad GB, Sparks SE, Segall Y, Nomura DK, Casida JE 2002. Selective inhibitors of fatty acid amide hydrolase relative to neuropathy target esterase and acetylcholinesterase: toxicological implications. Toxicol. Appl. Pharmacol. 179:57–63
    [Google Scholar]
  33. 33.  Rathod AL, Garg RK 2017. Chlorpyrifos poisoning and its implications in human fatal cases: a forensic perspective with reference to Indian scenario. J. Forensic Legal Med. 47:29–34
    [Google Scholar]
  34. 34.  Eddleston M, Buckley NA, Eyer P, Dawson AH 2008. Medical management of acute organophosphorus pesticide poisoning. Lancet 371:597–607
    [Google Scholar]
  35. 35.  Benfenati E, Gini G, Piclin N, Roncaglioni A, Vari MR 2003. Predicting log P of pesticides using different software. Chemosphere 53:1155–64
    [Google Scholar]
  36. 36.  Yamanaka S, Ohta K, Tomita Y, Takayanagi A, Nomura T, Takaesu Y 1996. Effects on acute organophosphorus poisoning in rats in aging and solubility of organophosphates. Environ. Health Prev. Med. 1:119–27
    [Google Scholar]
  37. 37.  Davies JE, Barquet A, Freed VH, Haque R, Morgade C et al. 1975. Human pesticide poisonings by a fat soluble organophosphate pesticide. Arch. Environ. Health 30:608–13
    [Google Scholar]
  38. 38.  Lee DH, Jung KY, Choi YH, Cheon YJ 2014. Body mass index as a prognostic factor in organophosphate-poisoned patients. Am. J. Emerg. Med. 32:693–96
    [Google Scholar]
  39. 39.  Buratti FM, Volpe MT, Meneguz A, Vittozzi L, Testai E 2003. CYP-specific bioactivation of four organophosphorothioate pesticides by human liver microsomes. Toxicol. Appl. Pharmacol. 186:143–54
    [Google Scholar]
  40. 40.  Buratti FM, D'Aniello A, Volpe MT, Meneguz A, Testai E 2005. Malathion bioactivation in the human liver: the contribution of different cytochrome P450 isoforms. Drug. Metab. Dispos. 33:295–302
    [Google Scholar]
  41. 41.  Eyer F, Meischner V, Kiderlen D, Thiermann H, Worek F et al. 2003. Human parathion poisoning. A toxicokinetic analysis. Toxicol. Rev. 22:143–63
    [Google Scholar]
  42. 42.  Buratti FM, Volpe MT, Fabrizi L, Meneguz A, Vittozzi L, Testai E 2002. Kinetic parameters of OPT pesticide desulfuration by c-DNA expressed human CYPs. Environ. Toxicol. Pharmacol. 11:181–90
    [Google Scholar]
  43. 43.  Eyer P 2003. The role of oximes in the management of organophosphorus pesticide poisoning. Toxicol. Rev. 22:165–90
    [Google Scholar]
  44. 44.  Eddleston M, Szinicz L, Eyer P, Buckley N 2002. Oximes in acute organophosphorus pesticide poisoning: a systematic review of clinical trials. QJM 95:275–83
    [Google Scholar]
  45. 45.  Eddleston M, Worek F, Eyer P, Thiermann H, von Meyer L et al. 2009. Poisoning with the S-alkyl organophosphorus insecticides profenofos and prothiofos. QJM 102:785–92
    [Google Scholar]
  46. 46.  Casida JE, Sanderson DM 1961. Toxic hazard from formulating the insecticide dimethoate in methyl ‘Cellosolve’. Nature 189:507–8
    [Google Scholar]
  47. 47.  Baker EL, Warren M, Zack M, Dobbin RD, Miles JW et al. 1978. Epidemic malathion poisoning in Pakistan malaria workers. Lancet 311:31–34
    [Google Scholar]
  48. 48.  Soliman SA, Sovocool GW, Curley A, Ahmed NS, El-Fiki S, El-Sebae SK 1982. Two acute human poisoning cases resulting from exposure to diazinon transformation products in Egypt. Arch. Environ. Health 37:207–12
    [Google Scholar]
  49. 49.  Meleney WP, Peterson HO 1964. The relationship of shelf age to toxicity of dimethoate to sheep. J. Am. Vet. Med. Assoc. 144:756–58
    [Google Scholar]
  50. 50. Courier. 2005. From active substance to product—the formulation is the key. Courier 1:6–9
    [Google Scholar]
  51. 51.  Eddleston M, Street JM, Self I, Thompson A, King T et al. 2012. A role for solvents in the toxicity of agricultural organophosphorus pesticides. Toxicology 294:94–103
    [Google Scholar]
  52. 52.  Choi CY, Cho N, Park SY, Park S, Gil HW, Hong SY 2017. Urine methyl hippuric acid levels in acute pesticide poisoning: estimation of ingested xylene volume and association with clinical outcome parameters. J. Korean Med. Sci. 32:2051–57
    [Google Scholar]
  53. 53.  Martinez MA, Ballesteros S 2012. Two suicidal fatalities due to the ingestion of chlorfenvinphos formulations: simultaneous determination of the pesticide and the petroleum distillates in tissues by gas chromatography-flame-ionization detection and gas chromatography-mass spectrometry. J. Anal. Toxicol. 36:44–51
    [Google Scholar]
  54. 54.  Takayasu T, Ishida Y, Nosaka M, Kawaguchi M, Kuninaka Y et al. 2012. High concentration of methidathion detected in a fatal case of organophosphate-poisoning. Leg. Med. 14:263–66
    [Google Scholar]
  55. 55.  Kinoshita H, Tanaka N, Jamal M, Kumihashi M, Tsutsui K, Ameno K 2013. Xylene: a useful marker for agricultural products ingestion. Soud. Lek. 58:59–60
    [Google Scholar]
  56. 56.  Sainio MA Sr 2015. Neurotoxicity of solvents. Handb. Clin. Neurol. 131:93–110
    [Google Scholar]
  57. 57.  Gil HW, Hong JR, Song HY, Hong SY 2012. A case of methanol intoxication caused by methomyl pesticide ingestion. Hum. Exp. Toxicol. 31:1299–302
    [Google Scholar]
  58. 58.  Tanabe K, Ikezaki T, Takano A, Suzuki T, Kitazawa H et al. 2013. A case report of organophosphorus pesticide poisoning resulted in delayed severe lower intestinal hemorrhage. Sci. Postprint 1:e00011
    [Google Scholar]
  59. 59.  Kinoshita H, Nishiguchi M, Ouchi H, Minami T, Yamamura T et al. 2005. Methanol: Toxicity of the solvent in a commercial product should also be considered. Hum. Exp. Toxicol. 24:663–64
    [Google Scholar]
  60. 60.  McMartin K, Jacobsen D, Hovda KE 2016. Antidotes for poisoning by alcohols that form toxic metabolites. Br. J. Clin. Pharmacol. 81:505–15
    [Google Scholar]
  61. 61.  Lee SH, Park S, Lee JW, Hwang IW, Moon HJ et al. 2016. The anion gap is a predictive clinical marker for death in patients with acute pesticide intoxication. J. Korean Med. Sci. 31:1150–59
    [Google Scholar]
  62. 62.  van der Hoek W, Konradsen F 2005. Risk factors for acute pesticide poisoning in Sri Lanka. Trop. Med. Int. Health 10:589–96
    [Google Scholar]
  63. 63.  Eddleston M, Buckley NA, Gunnell D, Dawson AH, Konradsen F 2006. Identification of strategies to prevent death after pesticide self-poisoning using a Haddon matrix. Inj. Prev. 12:333–37
    [Google Scholar]
  64. 64.  Eddleston M, Gunnell D, Von Meyer L, Eyer P 2009. Relationship between blood alcohol concentration on admission and outcome in dimethoate organophosphorus self-poisoning. Br. J. Clin. Pharmacol. 68:916–19
    [Google Scholar]
  65. 65.  Lee YH, Oh YT, Lee WW, Ahn HC, Sohn YD et al. 2016. The association of alcohol consumption with patient survival after organophosphate poisoning: a multicenter retrospective study. Intern. Emerg. Med. 12:519–26
    [Google Scholar]
  66. 66.  Eddleston M, Dawson A, Karalliedde L, Dissanayake W, Hittarage A et al. 2004. Early management after self-poisoning with an organophosphorus or carbamate pesticide—a treatment protocol for junior doctors. Crit. Care 8:R391–97
    [Google Scholar]
  67. 67.  Freeman G, Epstein MA 1955. Therapeutic factors in survival after lethal cholinesterase inhibition by phosphorus pesticides. N. Engl. J. Med. 253:266–71
    [Google Scholar]
  68. 68.  Durham WF, Hayes WJ Jr 1962. Organic phosphorus poisoning and its therapy. With special reference to modes of action and compounds that reactivate inhibited cholinesterase. Arch. Environ. Health 5:21–47
    [Google Scholar]
  69. 69.  Eddleston M, Buckley NA, Checketts H, Senarathna L, Mohamed F et al. 2004. Speed of initial atropinisation in significant organophosphorus pesticide poisoning—a systematic comparison of recommended regimens. J. Toxicol. Clin. Toxicol. 42:865–75
    [Google Scholar]
  70. 70.  Aaron CK 2001. Organophosphates and carbamates. Clinical Toxicology MD Ford, KA Delaney, LJ Ling, T Erickson 819–28 Philadelphia: W.B. Saunders
    [Google Scholar]
  71. 71.  Connors NJ, Harnett ZH, Hoffman RS 2014. Comparison of current recommended regimens of atropinization in organophosphate poisoning. J. Med. Toxicol. 10:143–47
    [Google Scholar]
  72. 72.  Abedin MJ, Sayeed AA, Basher A, Maude RJ, Hoque G, Faiz MA 2012. Open-label randomized clinical trial of atropine bolus injection versus incremental boluses plus infusion for organophosphate poisoning in Bangladesh. J. Med. Toxicol. 8:108–17
    [Google Scholar]
  73. 73.  Thiermann H, Steinritz D, Worek F, Radtke M, Eyer P et al. 2011. Atropine maintenance dosage in patients with severe organophosphate pesticide poisoning. Toxicol. Lett. 206:77–83
    [Google Scholar]
  74. 74.  Perera PM, Shahmy S, Gawarammana I, Dawson AH 2008. Comparison of two commonly practiced atropinization regimens in acute organophosphorus and carbamate poisoning, doubling doses vs. ad hoc: a prospective observational study. Hum. Exp. Toxicol. 27:513–18
    [Google Scholar]
  75. 75.  Konickx LA, Bingham K, Eddleston M 2014. Is oxygen required before atropine administration in organophosphorus or carbamate pesticide poisoning?—A cohort study. Clin. Toxicol. 52:531–37
    [Google Scholar]
  76. 76.  Namba T, Hiraki K 1958. PAM (pyridine-2-aldoxime methiodide) therapy of alkylphosphate poisoning. JAMA 166:1834–39
    [Google Scholar]
  77. 77.  Namba T, Taniguchi Y, Okazaki S, Uematsu Y, Nagamatsu H et al. 1959. Treatment of severe organophosphorus poisoning by large doses of PAM. Naika Ryoiki 7:709–13
    [Google Scholar]
  78. 78.  Namba T, Greenfield M, Grob D 1970. Malathion poisoning. A fatal case with cardiac manifestations. Arch. Environ. Health 21:533–41
    [Google Scholar]
  79. 79.  Namba T, Nolte C, Jackrel J, Grob D 1971. Poisoning due to organophosphate insecticides. Am. J. Med. 50:475–92
    [Google Scholar]
  80. 80.  de Silva HJ, Wijewickrema R, Senanayake N 1992. Does pralidoxime affect outcome of management in acute organophosphate poisoning?. Lancet 339:1136–38
    [Google Scholar]
  81. 81.  Johnson MK, Vale JA, Marrs TC, Meredith TJ 1992. Pralidoxime for organophosphorus poisoning. Lancet 340:64
    [Google Scholar]
  82. 82.  Johnson MK, Jacobsen D, Meredith TJ, Eyer P, Heath AJW et al. 2000. Evaluation of antidotes for poisoning by organophosphorus pesticides. Emerg. Med. 12:22–37
    [Google Scholar]
  83. 83.  Thiermann H, Szinicz L, Eyer F, Worek F, Eyer P et al. 1999. Modern strategies in therapy of organophosphate poisoning. Toxicol. Lett. 107:233–39
    [Google Scholar]
  84. 84.  Worek F, Backer M, Thiermann H, Szinicz L, Mast U et al. 1997. Reappraisal of indications and limitations of oxime therapy in organophosphate poisoning. Hum. Exp. Toxicol. 16:466–72
    [Google Scholar]
  85. 85.  Eyer P, Radtke M, Worek F 2008. Reactions of isodimethoate with human red cell acetylcholinesterase. Biochem. Pharmacol. 75:2045–53
    [Google Scholar]
  86. 86.  Worek F, Thiermann H, Wille T 2016. Oximes in organophosphate poisoning: 60 years of hope and despair. Chem. Biol. Interact. 259:93–98
    [Google Scholar]
  87. 87.  Buckley NA, Eddleston M, Li Y, Bevan M, Robertson J 2011. Oximes for acute organophosphate pesticide poisoning. Cochrane Database Syst. Rev. 2:CD005085
    [Google Scholar]
  88. 88.  Blumenberg A, Benabbas R, deSouza IS, Conigliaro A, Paladino L et al. 2017. Utility of 2-pyridine aldoxime methyl chloride (2-PAM) for acute organophosphate poisoning: a systematic review and meta-analysis. J. Med. Toxicol. 14:91–98
    [Google Scholar]
  89. 89.  Eddleston M 2018. Are oximes still indicated for acute organophosphorus insecticide self-poisoning?. J. Med. Toxicol. 14:11–2
    [Google Scholar]
  90. 90.  Pawar KS, Bhoite RR, Pillay CP, Chavan SC, Malshikare DS, Garad SG 2006. Continuous pralidoxime infusion versus repeated bolus injection to treat organophosphorus pesticide poisoning: a randomised controlled trial. Lancet 368:2136–41
    [Google Scholar]
  91. 91.  Eddleston M, Eyer P, Worek F, Juszczak E, Alder N et al. 2009. Pralidoxime in acute organophosphorus insecticide poisoning—a randomised controlled trial. PLOS Med 6:e1000104
    [Google Scholar]
  92. 92.  Pham D 2007. The change of plasma cholinesterase in acute organophosphate poisoning patients. Asia Pac. Assoc. Med. Toxicol. Congr. 6:27 Abstr
    [Google Scholar]
  93. 93.  Khan S, Hemalatha R, Jeyaseelan L, Oommen A, Zachariah A 2001. Neuroparalysis and oxime efficacy in organophosphate poisoning: a study of butyrylcholinesterase. Hum. Exp. Toxicol. 20:169–74
    [Google Scholar]
  94. 94.  Konickx LA, Worek F, Jayamanne S, Thiermann H, Buckley NA, Eddleston M 2013. Reactivation of plasma butyrylcholinesterase by pralidoxime chloride in patients poisoned by WHO Class II toxicity organophosphorus insecticides. Toxicol. Sci. 136:274–83
    [Google Scholar]
  95. 95.  Marrs TC 2003. Diazepam in the treatment of organophosphorus ester pesticide poisoning. Toxicol. Rev. 22:75–81
    [Google Scholar]
  96. 96.  Shih TM, Duniho SM, McDonough JH 2003. Control of nerve agent-induced seizures is critical for neuroprotection and survival. Toxicol. Appl. Pharmacol. 188:69–80
    [Google Scholar]
  97. 97.  Tattersall J 2009. Seizure activity post organophosphate exposure. Front. Biosci. 14:3688–711
    [Google Scholar]
  98. 98.  Jett DA 2012. Chemical toxins that cause seizures. Neurotoxicology 33:1473–75
    [Google Scholar]
  99. 99.  Shih TM, Rowland TC, McDonough JH 2007. Anticonvulsants for nerve agent-induced seizures: the influence of the therapeutic dose of atropine. J. Pharmacol. Exp. Ther. 320:154–61
    [Google Scholar]
  100. 100.  Levy-Khademi F, Tenenbaum AN, Wexler ID, Amitai Y 2007. Unintentional organophosphate intoxication in children. Pediatr. Emerg. Care 23:716–18
    [Google Scholar]
  101. 101.  Panda M, Hutin YJ, Ramachandran V, Murhekar M 2009. A fatal waterborne outbreak of pesticide poisoning caused by damaged pipelines, Sindhikela, Bolangir, Orissa, India, 2008. J. Toxicol. 2009:692496
    [Google Scholar]
  102. 102.  Peter JV, Moran JL, Pichamuthu K, Chacko B 2008. Adjuncts and alternatives to oxime therapy in organophosphate poisoning—is there evidence of benefit in human poisoning? A review. Anaesth. Intensive Care 36:339–50
    [Google Scholar]
  103. 103.  Dretchen KL, Bowles AM, Raines A 1986. Protection by phenytoin and calcium channel blocking agents against the toxicity of diisopropylfluorophosphate. Toxicol. Appl. Pharmacol. 83:584–89
    [Google Scholar]
  104. 104.  Petroianu G, Toomes LM, Petroianu A, Bergler W, Rufer R 1998. Control of blood pressure, heart rate and haematocrit during high-dose intravenous paraoxon exposure in minipigs. J. Appl. Toxicol. 18:293–98
    [Google Scholar]
  105. 105.  Choudhary S, Gill KD 2001. Protective effect of nimodipine on dichlorvos-induced delayed neurotoxicity in rat brain. Biochem. Pharmacol. 62:1265–72
    [Google Scholar]
  106. 106.  Brvar M, Chan MY, Dawson AH, Ribchester RR, Eddleston M 2018. Magnesium and calcium channel blocking drugs as antidotes for acute organophosphorus insecticide poisoning—a systematic review and meta-analysis. Clin. Toxicol. 56:725–36
    [Google Scholar]
  107. 107.  Pajoumand A, Shadnia A, Rezaie A, Abdi M, Abdollahi M 2004. Benefits of magnesium sulfate in the management of acute human poisoning by organophosphorus insecticides. Hum. Exp. Toxicol. 23:565–69
    [Google Scholar]
  108. 108.  Cordoba D, Cadavid S, Angulo D, Ramos I 1983. Organophosphate poisoning: modifications in acid base equilibrium and use of sodium bicarbonate as an aid in the treatment of toxicity in dogs. Vet. Hum. Toxicol. 25:1–3
    [Google Scholar]
  109. 109.  Wong A, Sandron CA, Magalhaes AS, Rocha LCS 2000. Comparative efficacy of pralidoxime versus sodium bicarbonate in rats and humans severely poisoned with O-P pesticide. J. Toxicol. Clin. Toxicol. 38:554–55 Abstr
    [Google Scholar]
  110. 110.  Bradberry SM, Thanacoody HK, Watt BE, Thomas SH, Vale JA 2005. Management of the cardiovascular complications of tricyclic antidepressant poisoning: role of sodium bicarbonate. Toxicol. Rev. 24:195–204
    [Google Scholar]
  111. 111.  Roberts D, Buckley NA 2005. Alkalinisation for organophosphorus pesticide poisoning. Cochrane Database Syst. Rev. 2005:1CD004897
    [Google Scholar]
  112. 112.  Roberts DM, Dawson AH, Hittarage A, Jeganathan K, Sheriff MH, Buckley NA 2007. Plasma alkalinization for acute organophosphorus poisoning—Is it a reality in the developing world?. Clin. Toxicol. 45:90–91
    [Google Scholar]
  113. 113.  Mutlu GM, Factor P 2008. Alveolar epithelial β2-adrenergic receptors. Am. J. Respir. Cell. Mol. Biol. 38:127–34
    [Google Scholar]
  114. 114.  Moriña P, Herrera M, Venegas J, Mora D, Rodriguez M, Pino E 1997. Effects of nebulized salbutamol on respiratory mechanics in adult respiratory distress syndrome. Intensive Care Med 23:58–64
    [Google Scholar]
  115. 115.  Chowdhury FR, Rahman MM, Ullah P, Ruhan AM, Bari MS et al. 2018. Salbutamol in acute organophosphorus insecticide poisoning—a pilot dose-response phase II study. Clin. Toxicol. 56:820–27
    [Google Scholar]
  116. 116.  Karalliedde L, Baker D, Marrs TC 2006. Organophosphate-induced intermediate syndrome: aetiology and relationships with myopathy. Toxicol. Rev. 25:1–14
    [Google Scholar]
  117. 117.  de Bleecker JL 1995. The intermediate syndrome in organophosphate poisoning: an overview of experimental and clinical observations. J. Toxicol. Clin. Toxicol. 33:683–86
    [Google Scholar]
  118. 118.  Sheridan RD, Smith AP, Turner SR, Tattersall JEH 2005. Nicotinic antagonists in the treatment of nerve agent poisoning. J. R. Soc. Med. 98:114–15
    [Google Scholar]
  119. 119.  Buckley NA, Dawson AH 2013. The intralipid genie is out of the bottle—spin and wishful thinking. Anaesth. Intensive Care 41:154–56
    [Google Scholar]
  120. 120.  Gosselin S, Hoegberg LC, Hoffman RS, Graudins A, Stork CM et al. 2016. Evidence-based recommendations on the use of intravenous lipid emulsion therapy in poisoning. Clin. Toxicol. 54:899–923
    [Google Scholar]
  121. 121.  Zhou Y, Zhan C, Li Y, Zhong Q, Pan H, Yang G 2010. Intravenous lipid emulsions combine extracorporeal blood purification: a novel therapeutic strategy for severe organophosphate poisoning. Med. Hypotheses 74:309–11
    [Google Scholar]
  122. 122.  Dunn C, Bird SB, Gaspari R 2012. Intralipid fat emulsion decreases respiratory failure in a rat model of parathion exposure. Acad. Emerg. Med. 19:504–9
    [Google Scholar]
  123. 123.  Bhalla A, Chhabria B, Shafiq N, Kumar S, Sharma N 2017. Role of lipid emulsion in management of organophosphate compound poisoning Paper presented at the 14th Annual Meeting of the American College of Medical Toxicology (ACMT) San Juan: Puerto Rico
  124. 124.  Von Der Wellen J, Worek F, Thiermann H, Wille T 2013. Investigations of kinetic interactions between lipid emulsions, hydroxyethyl starch or dextran and organophosphorus compounds. Clin. Toxicol. 51:918–22
    [Google Scholar]
  125. 125.  Pena-Llopis S 2005. Antioxidants as potentially safe antidotes for organophosphorus poisoning. Curr. Enzyme Inhib. 1:147–56
    [Google Scholar]
  126. 126.  Yurumez Y, Cemek M, Yavuz Y, Birdane YO, Buyukokuroglu ME 2007. Beneficial effect of N-acetylcysteine against organophosphate toxicity in mice. Biol. Pharm. Bull. 30:490–94
    [Google Scholar]
  127. 127.  El-Ebiary AA, Elsharkawy RE, Soliman NA, Soliman MA, Hashem AA 2016. N-acetylcysteine in acute organophosphorus pesticide poisoning: a randomized clinical trial. Basic Clin. Pharmacol. Toxicol. 119:222–27
    [Google Scholar]
  128. 128.  Shadnia S, Ashrafivand S, Mostafalou S, Abdollahi M 2011. N-acetylcysteine a novel treatment for acute human organophosphate poisoning. Int. J. Pharmacol. 7:732–35
    [Google Scholar]
  129. 129.  Cherian AM, Peter JV, Samuel J, Jaydevan R, Peter S, Joel S et al. 1997. Effectiveness of P2AM (PAM-pralidoxime) in the treatment of organophosphorus poisoning (OPP): a randomised, double blind placebo controlled trial. J. Assoc. Physicians India 45:22–24
    [Google Scholar]
  130. 130.  Cherian MA, Roshini C, Visalakshi J, Jeyaseelan L, Cherian AM 2005. Biochemical and clinical profile after organophosphorus poisoning—a placebo-controlled trial using pralidoxime. J. Assoc. Physicians India 53:427–31
    [Google Scholar]
  131. 131.  Banerjee I, Tripathi SK, Sinha Roy AA 2011. Study on comparative evaluation of add-on pralidoxime therapy over atropine in the management of organophosphorus poisoning in a tertiary care hospital. JK Sci 13:65–69
    [Google Scholar]
  132. 132.  Syed S, Gurcoo SA, Farooqui AK, Nisa W, Sofi K, Wani TM 2015. Is the World Health Organization-recommended dose of pralidoxime effective in the treatment of organophosphorus poisoning? A randomized, double-blinded and placebo-controlled trial. Saudi J. Anaesth. 9:49–54
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010818-021842
Loading
/content/journals/10.1146/annurev-pharmtox-010818-021842
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error