1932

Abstract

Chronic pain treatment remains a sore challenge, and in our aging society, the number of patients reporting inadequate pain relief continues to grow. Current treatment options all have their drawbacks, including limited efficacy and the propensity of abuse and addiction; the latter is exemplified by the ongoing opioid crisis. Extensive research in the last few decades has focused on mechanisms underlying chronic pain states, thereby producing attractive opportunities for novel, effective and safe pharmaceutical interventions. Members of the transient receptor potential (TRP) ion channel family represent innovative targets to tackle pain sensation at the root. Three TRP channels, TRPV1, TRPM3, and TRPA1, are of particular interest, as they were identified as sensors of chemical- and heat-induced pain in nociceptor neurons. This review summarizes the knowledge regarding TRP channel–based pain therapies, including the bumpy road of the clinical development of TRPV1 antagonists, the current status of TRPA1 antagonists, and the future potential of targeting TRPM3.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010919-023238
2021-01-06
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/61/1/annurev-pharmtox-010919-023238.html?itemId=/content/journals/10.1146/annurev-pharmtox-010919-023238&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Nahin RL. 2015. Estimates of pain prevalence and severity in adults: United States, 2012. J. Pain 16:8769–80
    [Google Scholar]
  2. 2. 
    Breivik H, Collett B, Ventafridda V, Cohen R, Gallacher D 2006. Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. Eur. J. Pain 10:4287–333
    [Google Scholar]
  3. 3. 
    Lynch ME, Watson CPN. 2006. The pharmacotherapy of chronic pain: a review. Pain Res. Manag. 11:111–38
    [Google Scholar]
  4. 4. 
    Calabresi M. 2015. Why America can't kick its painkiller problem. Time June 4. https://time.com/3908648/why-america-cant-kick-its-painkiller-problem/
    [Google Scholar]
  5. 5. 
    Skolnick P. 2018. The opioid epidemic: crisis and solutions. Annu. Rev. Pharmacol. Toxicol. 58:143–59
    [Google Scholar]
  6. 6. 
    Cosens DJ, Manning A. 1969. Abnormal electroretinogram from a Drosophila mutant. Nature 224:285–87
    [Google Scholar]
  7. 7. 
    Minke B, Wu CF, Pak WL 1975. Induction of photoreceptor voltage noise in the dark in Drosophila mutant. Nature 258:553084–87
    [Google Scholar]
  8. 8. 
    Montell C, Rubin GM. 1989. Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2:41313–23
    [Google Scholar]
  9. 9. 
    Gees M, Owsianik G, Nilius B, Voets T 2012. TRP channels. Compr. Physiol. 2:1563–608
    [Google Scholar]
  10. 10. 
    Julius D, Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD 1997. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:6653816–24
    [Google Scholar]
  11. 11. 
    Bevan S, Quallo T, Andersson DA 2014. TRPV1. Mammalian Transient Receptor Potential (TRP) Cation Channels B Nilius, V Flockerzi 207–45 Heidelberg: Springer
    [Google Scholar]
  12. 12. 
    Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J et al. 2000. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288:5464306–13
    [Google Scholar]
  13. 13. 
    Davis JB, Gray J, Gunthorpe MJ, Hatcher JP, Davey PT et al. 2000. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405:6783183–87
    [Google Scholar]
  14. 14. 
    Vriens J, Nilius B, Voets T 2014. Peripheral thermosensation in mammals. Nat. Rev. Neurosci. 15:9573–89
    [Google Scholar]
  15. 15. 
    Dhaka A, Viswanath V, Patapoutian A 2006. TRP ion channels and temperature sensation. Annu. Rev. Neurosci. 29:135–61
    [Google Scholar]
  16. 16. 
    Vandewauw I, De Clercq K, Mulier M, Held K, Pinto S et al. 2018. A TRP channel trio mediates acute noxious heat sensing. Nature 555:7698662–66
    [Google Scholar]
  17. 17. 
    Nilius B, Appendino G. 2013. Spices: the savory and beneficial science of pungency. Rev. Physiol. Biochem. Pharmacol. 164:1–76
    [Google Scholar]
  18. 18. 
    Kaneko Y, Szallasi A. 2014. Transient receptor potential (TRP) channels: a clinical perspective. Br. J. Pharmacol. 171:102474–507
    [Google Scholar]
  19. 19. 
    Szallasi A, Blumberg PM. 1999. Vanilloid (capsaicin) receptors and mechanisms. Pharmacol. Rev. 51:2159–212
    [Google Scholar]
  20. 20. 
    Kissin I, Szallasi A. 2011. Therapeutic targeting of TRPV1 by resiniferatoxin, from preclinical studies to clinical trials. Curr. Top. Med. Chem. 11:172159–70
    [Google Scholar]
  21. 21. 
    Appendino G, Szallasi A. 1997. Euphorbium: Modern research on its active principle, resiniferatoxin, revives an ancient medicine. Life Sci 60:10681–96
    [Google Scholar]
  22. 22. 
    Brown DC. 2016. Resiniferatoxin: the evolution of the “molecular scalpel” for chronic pain relief. Pharmaceuticals 9:347
    [Google Scholar]
  23. 23. 
    Heiss J, Iadarola M, Cantor F, Oughourli A, Smith R, Mannes A 2014. A phase I study of the intrathecal administration of resiniferatoxin for treating severe refractory pain associated with advanced cancer. J. Pain 15:4S67
    [Google Scholar]
  24. 24. 
    Wong GY, Gavva NR. 2009. Therapeutic potential of vanilloid receptor TRPV1 agonists and antagonists as analgesics: recent advances and setbacks. Brain Res. Rev. 60:1267–77
    [Google Scholar]
  25. 25. 
    Ross RA. 2003. Anandamide and vanilloid TRPV1 receptors. Br. J. Pharmacol. 140:5790–801
    [Google Scholar]
  26. 26. 
    Zygmunt PM, Petersson J, Andersson DA, Chuang HH, Sørgård M et al. 1999. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400:6743452–57
    [Google Scholar]
  27. 27. 
    Smart D, Gunthorpe MJ, Jerman JC, Nasir S, Gray J et al. 2000. The endogenous lipid anandamide is a full agonist at the human vanilloid receptor (hVR1). Br. J. Pharmacol. 129:2227–30
    [Google Scholar]
  28. 28. 
    Zygmunt PM, Chuang H, Movahed P, Julius D, Högestätt ED 2000. The anandamide transport inhibitor AM404 activates vanilloid receptors. Eur. J. Pharmacol. 396:139–42
    [Google Scholar]
  29. 29. 
    Mallet C, Barrière DA, Ermund A, Jönsson BAG, Eschalier A et al. 2010. TRPV1 in brain is involved in acetaminophen-induced antinociception. PLOS ONE 5:9e12748
    [Google Scholar]
  30. 30. 
    Bevan S, Hothi S, Hughes G, James IF, Rang HP et al. 1992. Capsazepine: a competitive antagonist of the sensory neurone excitant capsaicin. Br. J. Pharmacol. 107:2544–52
    [Google Scholar]
  31. 31. 
    Walpole CSJ, Bevan S, Bovermann G, Boelsterli JJ, Breckenridge R et al. 1994. The discovery of capsazepine, the first competitive antagonist of the sensory neuron excitants capsaicin and resiniferatoxin. J. Med. Chem. 37:131942–54
    [Google Scholar]
  32. 32. 
    Chizh BA, O'Donnell MB, Napolitano A, Wang J, Brooke AC et al. 2007. The effects of the TRPV1 antagonist SB-705498 on TRPV1 receptor-mediated activity and inflammatory hyperalgesia in humans. Pain 132:1132–41
    [Google Scholar]
  33. 33. 
    Palmer J, Lai R, Thomas N, Bullman J, Ali Z et al. 2009. Randomised, placebo-controlled, parallel-group study of the effect of SB-705498, a TRPV1 receptor antagonist, on pain following third molar tooth extraction. Eur. J. Pain 13:S1S202
    [Google Scholar]
  34. 34. 
    Chizh B, Palmer J, Lai R, Guillard F, Bullman J et al. 2009. A randomised, two-period cross-over study to investigate the efficacy of the TRPV1 antagonist SB-705498 in acute migraine. Eur. J. Pain 13:S1S202
    [Google Scholar]
  35. 35. 
    Bareille P, Murdoch RD, Denyer J, Bentley J, Smart K et al. 2013. The effects of a TRPV1 antagonist, SB-705498, in the treatment of seasonal allergic rhinitis. Int. J. Clin. Pharmacol. Ther. 51:7576–84
    [Google Scholar]
  36. 36. 
    Khalid S, Murdoch R, Newlands A, Smart K, Kelsall A et al. 2014. Transient receptor potential vanilloid 1 (TRPV1) antagonism in patients with refractory chronic cough: a double-blind randomized controlled trial. J. Allergy Clin. Immunol. 134:156–62.e4
    [Google Scholar]
  37. 37. 
    Gibson RA, Robertson J, Mistry H, McCallum S, Fernando D et al. 2014. A randomised trial evaluating the effects of the TRPV1 antagonist SB705498 on pruritus induced by histamine, and cowhage challenge in healthy volunteers. PLOS ONE 9:7e100610
    [Google Scholar]
  38. 38. 
    Gibson KR, Cox PJ, Stevens E, Winchester WJ, Gerlach AC et al. 2014. Ion channel modulators. Pain Therapeutics: Current and Future Treatment Paradigms C Allerton 131–70 Cambridge, UK: RSC Publ.
    [Google Scholar]
  39. 39. 
    Broad LM, Keding SJ, Blanco M-J 2008. Recent progress in the development of selective TRPV1 antagonists for pain. Curr. Top. Med. Chem. 8:161431–41
    [Google Scholar]
  40. 40. 
    Gavva NR, Treanor JJS, Garami A, Fang L, Surapaneni S et al. 2008. Pharmacological blockade of the vanilloid receptor TRPV1 elicits marked hyperthermia in humans. Pain 136:1202–10
    [Google Scholar]
  41. 41. 
    Gavva NR, Bannon AW, Hovland DN, Lehto SG, Klionsky L et al. 2007. Repeated administration of vanilloid receptor TRPV1 antagonists attenuates hyperthermia elicited by TRPV1 blockade. J. Pharmacol. Exp. Ther. 323:1128–37
    [Google Scholar]
  42. 42. 
    Garami A, Pakai E, Oliveira DL, Steiner AA, Wanner SP et al. 2011. Thermoregulatory phenotype of the Trpv1 knockout mouse: thermoeffector dysbalance with hyperkinesis. J. Neurosci. 31:51721–33
    [Google Scholar]
  43. 43. 
    Schaffler K, Reeh P, Duan WR, Best AE, Othman AA et al. 2013. An oral TRPV1 antagonist attenuates laser radiant-heat-evoked potentials and pain ratings from UVB-inflamed and normal skin. Br. J. Clin. Pharmacol. 75:2404–14
    [Google Scholar]
  44. 44. 
    Honore P, Chandran P, Hernandez G, Gauvin DM, Mikusa JP et al. 2009. Repeated dosing of ABT-102, a potent and selective TRPV1 antagonist, enhances TRPV1-mediated analgesic activity in rodents, but attenuates antagonist-induced hyperthermia. Pain 142:1–227–35
    [Google Scholar]
  45. 45. 
    Othman AA, Nothaft W, Awni WM, Dutta S 2013. Effects of the TRPV1 antagonist ABT-102 on body temperature in healthy volunteers: pharmacokinetic/pharmacodynamic analysis of three phase 1 trials. Br. J. Clin. Pharmacol. 75:41029–40
    [Google Scholar]
  46. 46. 
    Rowbotham MC, Nothaft W, Duan WR, Wang Y, Faltynek C et al. 2011. Oral and cutaneous thermosensory profile of selective TRPV1 inhibition by ABT-102 in a randomized healthy volunteer trial. Pain 152:51192–200
    [Google Scholar]
  47. 47. 
    Karlsten R, Jonzon B, Quiding H, Carlsson MA, Segerdahl M et al. 2010. The TRPV1 antagonist AZD1386 inhibits capsaicin and heat evoked pain in healthy volunteers Paper presented at the 13th World Congress on Pain, Montréal Québec: Aug. 30
  48. 48. 
    Quiding H, Jonzon B, Svensson O, Webster L, Reimfelt A et al. 2013. TRPV1 antagonistic analgesic effect: a randomized study of AZD1386 in pain after third molar extraction. Pain 154:6808–12
    [Google Scholar]
  49. 49. 
    Gomtsyan A, Brederson JD. 2015. Clinical and preclinical experience with TRPV1 antagonists as potential analgesic agents. TRP Channels as Therapeutic Targets: From Basic Science to Clinical Use A Szallasi 129–44 London: Elsevier
    [Google Scholar]
  50. 50. 
    Miller F, Björnsson M, Svensson O, Karlsten R 2014. Experiences with an adaptive design for a dose-finding study in osteoarthritis. Contemp. Clin. Trials 37:2189–99
    [Google Scholar]
  51. 51. 
    Parsons WH, Calvo RR, Cheung W, Lee Y-K, Patel S et al. 2015. Benzo[d]imidazole transient receptor potential vanilloid 1 antagonists for the treatment of pain: discovery of trans-2-(2-{2-[2-(4-Trifluoromethyl-phenyl)-vinyl]-1H-benzimidazol-5-yl}-phenyl)-propan-2-ol (Mavatrep). J. Med. Chem. 58:93859–74
    [Google Scholar]
  52. 52. 
    Manitpisitkul P, Brandt M, Flores CM, Kenigs V, Moyer JA et al. 2016. TRPV1 antagonist JNJ-39439335 (mavatrep) demonstrates proof of pharmacology in healthy men: a first-in-human, double-blind, placebo-controlled, randomized, sequential group study. Pain Rep 1:4e576
    [Google Scholar]
  53. 53. 
    Mayorga AJ, Flores CM, Trudeau JJ, Moyer JA, Shalayda K et al. 2017. A randomized study to evaluate the analgesic efficacy of a single dose of the TRPV1 antagonist mavatrep in patients with osteoarthritis. Scand. J. Pain 17:1134–43
    [Google Scholar]
  54. 54. 
    Manitpisitkul P, Flores CM, Moyer JA, Romano G, Shalayda K et al. 2018. A multiple-dose double-blind randomized study to evaluate the safety, pharmacokinetics, pharmacodynamics and analgesic efficacy of the TRPV1 antagonist JNJ-39439335 (mavatrep). Scand. J. Pain 18:2151–64
    [Google Scholar]
  55. 55. 
    Crutchlow M, Dong Y, Schulz V, Van Hoydonck P, Laethem T et al. 2009. Pharmacologic inhibition of TRPV1 impairs sensation of potentially injurious heat in healthy subjects Paper presented at the 110th Annual Meeting of the American Society for Clinical Pharmacology and Therapeutics National Harbor, MD:
  56. 56. 
    Eid SR. 2011. Therapeutic targeting of TRP channels—the TR(i)P to pain relief. Curr. Top. Med. Chem. 11:172118–30
    [Google Scholar]
  57. 57. 
    Arendt-Nielsen L, Harris S, Whiteside GT, Hummel M, Knappenberger T et al. 2016. A randomized, double-blind, positive-controlled, 3-way cross-over human experimental pain study of a TRPV1 antagonist (V116517) in healthy volunteers and comparison with preclinical profile. Pain 157:92057–67
    [Google Scholar]
  58. 58. 
    Tafesse L, Kanemasa T, Kurose N, Yu J, Asaki T et al. 2014. Structure-activity relationship studies and discovery of a potent transient receptor potential vanilloid (TRPV1) antagonist 4-[3-chloro-5-[(1 S)-1,2-dihydroxyethyl]-2-pyridyl]-N-[5-(trifluoromethyl)-2-pyridyl]-3, 6-dihydro-2H-pyridine-1-carboxamide (V116517) as a clinical candidate for pain management. J. Med. Chem. 57:156781–94
    [Google Scholar]
  59. 59. 
    Glenmark Pharm., Eli Lilly. 2007. Glenmark's lead candidate for pain, GRC 6211, to enter Phase II Press Release, May 28. https://pipelinereview.com/index.php/2007052912039/Small-Molecules/Glenmarks-lead-candidate-for-pain-GRC-6211-to-enter-Phase-II.html
  60. 60. 
    Glenmark Pharm., Eli Lilly. 2008. Further clinical trials in osteoarthritis pain suspended for GRC 6211 Press Release, Oct. 24. https://www.fiercebiotech.com/biotech/further-clinical-trials-osteoarthritis-pain-suspended-for-grc-6211
  61. 61. 
    Xia R, Dekermendjian K, Lullau E, Dekker N 2011. TRPV1: a therapy target that attracts the pharmaceutical interests. Transient Receptor Potential Channels S Islam 637–65 Dordrecht: Springer
    [Google Scholar]
  62. 62. 
    Kitagawa Y, Miyai A, Usui K, Hamada Y, Deai K et al. 2012. Pharmacological characterization of (3S)-3-(hydroxymethyl)-4-(5-methylpyridin-2-yl)-N-[6-(2,2,2-trifluoroethoxy)pyridin-3-yl]-3,4-dihydro-2H-benzo[b][1,4]oxazine-8-carboxamide (JTS-653), a novel transient receptor potential vanilloid 1 antagonist. J. Pharmacol. Exp. Ther. 342:2520–28
    [Google Scholar]
  63. 63. 
    Lee J, Kim BH, Yu KS, Kim HS, Kim JD et al. 2017. A first-in-human, double-blind, placebo-controlled, randomized, dose escalation study of DWP05195, a novel TRPV1 antagonist, in healthy volunteers. Drug Des. Dev. Ther. 11:1301–13
    [Google Scholar]
  64. 64. 
    Pan Z, Wang Z, Yang H, Zhang F, Reinach PS 2011. TRPV1 activation is required for hypertonicity-stimulated inflammatory cytokine release in human corneal epithelial cells. Investig. Ophthalmol. Vis. Sci. 52:1485–93
    [Google Scholar]
  65. 65. 
    Benitez-Del-Castillo JM, Moreno-Montañés J, Jiménez-Alfaro I, Muñoz-Negrete FJ, Turman K et al. 2016. Safety and efficacy clinical trials for SYL1001, a novel short interfering RNA for the treatment of dry eye disease. Investig. Ophthalmol. Vis. Sci. 57:146447–54
    [Google Scholar]
  66. 66. 
    Bleau A-M, Ruz V, González V, Martínez T, Vargas B, Jimenez AI 2018. Development of tivanisiran, a topical siRNA designed to treat dry eye disease. Integr. Clin. Med. 2: https://doi.org/10.15761/ICM.1000124
    [Crossref] [Google Scholar]
  67. 67. 
    Lehto SG, Tamir R, Deng H, Klionsky L, Kuang R et al. 2008. Antihyperalgesic effects of (R,E)-N-(2-Hydroxy-2,3-dihydro-1H-inden-4-yl)-3-(2-(piperidin-1-yl)-4-(trifluoromethyl)phenyl)-acrylamide (AMG8562), a novel transient receptor potential vanilloid type 1 modulator that does not cause hyperthermia in rats. J. Pharmacol. Exp. Ther. 326:1218–29
    [Google Scholar]
  68. 68. 
    Brown W, Leff RL, Griffin A, Hossack S, Aubray R et al. 2017. Safety, pharmacokinetics, and pharmacodynamics study in healthy subjects of oral NEO6860, a modality selective transient receptor potential vanilloid subtype 1 antagonist. J. Pain 18:6726–38
    [Google Scholar]
  69. 69. 
    Chiche D, Brown W, Walker P 2016. NEO6860, a novel modality selective TRPV1 antagonist: results from a phase I, double-blind, placebo-controlled study in healthy subjects. J. Pain 17:4S79
    [Google Scholar]
  70. 70. 
    Arsenault P, Leff R, Katz N, Walker P, Chiche D 2017. Analgesic potential of NEO6860, a modality selective TRPV1 antagonist, in osteoarthritis knee pain: results of a randomized, controlled, proof-of-concept trial Poster presented at the American College of Rheumatology Annual Meeting San Diego, CA: Nov. 7
  71. 71. 
    Nilius B, Szallasi A. 2014. Transient receptor potential channels as drug targets: from the science of basic research to the art of medicine. Pharmacol. Rev. 66:3676–814
    [Google Scholar]
  72. 72. 
    Romanovsky AA, Almeida MC, Garami A, Steiner AA, Norman MH et al. 2009. The transient receptor potential vanilloid-1 channel in thermoregulation: A thermosensor it is not. Pharmacol. Rev. 61:3228–61
    [Google Scholar]
  73. 73. 
    Garami A, Pakai E, McDonald HA, Reilly RM, Gomtsyan A et al. 2018. TRPV1 antagonists that cause hypothermia, instead of hyperthermia, in rodents: compounds’ pharmacological profiles, in vivo targets, thermoeffectors recruited and implications for drug development. Acta Physiol 223:3e13038
    [Google Scholar]
  74. 74. 
    Garami A, Shimansky YP, Rumbus Z, Vizin RCL, Farkas N et al. 2020. Hyperthermia induced by transient receptor potential vanilloid-1 (TRPV1) antagonists in human clinical trials: insights from mathematical modeling and meta-analysis. Pharmacol. Ther. 208:107474
    [Google Scholar]
  75. 75. 
    Binshtok AM, Bean BP, Woolf CJ 2007. Inhibition of nociceptors by TRPV1-mediated entry of impermeant sodium channel blockers. Nature 449:7162607–10
    [Google Scholar]
  76. 76. 
    Gerner P, Binshtok AM, Wang C-F, Hevelone ND, Bean BP et al. 2008. Capsaicin combined with local anesthetics preferentially prolongs sensory/nociceptive block in rat sciatic nerve. Anesthesiology 109:5872–78
    [Google Scholar]
  77. 77. 
    Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J et al. 2003. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112:6819–29
    [Google Scholar]
  78. 78. 
    Zygmunt PM, Högestätt ED. 2014. TRPA1. Mammalian Transient Receptor Potential (TRP) Cation Channels B Nilius, V Flockerzi 583–630 Heidelberg: Springer
    [Google Scholar]
  79. 79. 
    Karashima Y, Talavera K, Everaerts W, Janssens A, Kwan KY et al. 2009. TRPA1 acts as a cold sensor in vitro and in vivo. PNAS 106:41273–78
    [Google Scholar]
  80. 80. 
    Chen J, Kym PR. 2009. TRPA1: the species difference. J. Gen. Physiol. 133:6623–25
    [Google Scholar]
  81. 81. 
    Talavera K, Gees M, Karashima Y, Meseguer VM, Vanoirbeek JAJ et al. 2009. Nicotine activates the chemosensory cation channel TRPA1. Nat. Neurosci. 12:101293–99
    [Google Scholar]
  82. 82. 
    Andersson DA, Gentry C, Moss S, Bevan S 2008. Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J. Neurosci. 28:102485–94
    [Google Scholar]
  83. 83. 
    Materazzi S, Nassini R, Andre E, Campi B, Amadesi S et al. 2008. Cox-dependent fatty acid metabolites cause pain through activation of the irritant receptor TRPA1. PNAS 105:3312045–50
    [Google Scholar]
  84. 84. 
    Sawada Y, Hosokawa H, Matsumura K, Kobayashi S 2008. Activation of transient receptor potential ankyrin 1 by hydrogen peroxide. Eur. J. Neurosci. 27:51131–42
    [Google Scholar]
  85. 85. 
    Nazıroğlu M, Braidy N. 2017. Thermo-sensitive TRP channels: novel targets for treating chemotherapy-induced peripheral pain. Front. Physiol. 8:1040
    [Google Scholar]
  86. 86. 
    Trevisan G, Materazzi S, Fusi C, Altomare A, Aldini G et al. 2013. Novel therapeutic strategy to prevent chemotherapy-induced persistent sensory neuropathy by TRPA1 blockade. Cancer Res 73:103120–31
    [Google Scholar]
  87. 87. 
    Zhao M, Isami K, Nakamura S, Shirakawa H, Nakagawa T, Kaneko S 2012. Acute cold hypersensitivity characteristically induced by oxaliplatin is caused by the enhanced responsiveness of TRPA1 in mice. Mol. Pain 8:55
    [Google Scholar]
  88. 88. 
    Materazzi S, Fusi C, Benemei S, Pedretti P, Patacchini R et al. 2012. TRPA1 and TRPV4 mediate paclitaxel-induced peripheral neuropathy in mice via a glutathione-sensitive mechanism. Pflügers Arch 463:4561–69
    [Google Scholar]
  89. 89. 
    Wei H, Hämäläinen MM, Saarnilehto M, Koivisto A, Pertovaara A 2009. Attenuation of mechanical hypersensitivity by an antagonist of the TRPA1 ion channel in diabetic animals. Anesthesiology 111:1147–54
    [Google Scholar]
  90. 90. 
    Eberhardt MJ, Filipovic MR, Leffler A, de la Roche J, Kistner K et al. 2012. Methylglyoxal activates nociceptors through transient receptor potential channel A1 (TRPA1): a possible mechanism of metabolic neuropathies. J. Biol. Chem. 287:3428291–306
    [Google Scholar]
  91. 91. 
    Bautista DM, Jordt S-E, Nikai T, Tsuruda PR, Read AJ et al. 2006. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124:61269–82
    [Google Scholar]
  92. 92. 
    Kremeyer B, Lopera F, Cox JJ, Momin A, Rugiero F et al. 2010. A gain-of-function mutation in TRPA1 causes familial episodic pain syndrome. Neuron 66:5671–80
    [Google Scholar]
  93. 93. 
    Andersson DA, Gentry C, Alenmyr L, Killander D, Lewis SE et al. 2011. TRPA1 mediates spinal antinociception induced by acetaminophen and the cannabinoid Δ9-tetrahydrocannabiorcol. Nat. Commun. 2:1551
    [Google Scholar]
  94. 94. 
    McNamara CR, Mandel-Brehm J, Bautista DM, Siemens J, Deranian KL et al. 2007. TRPA1 mediates formalin-induced pain. PNAS 104:3313525–30
    [Google Scholar]
  95. 95. 
    Eid SR, Crown ED, Moore EL, Liang HA, Choong K-C et al. 2008. HC-030031, a TRPA1 selective antagonist, attenuates inflammatory- and neuropathy-induced mechanical hypersensitivity. Mol. Pain 4:48
    [Google Scholar]
  96. 96. 
    Caceres AI, Brackmann M, Elia MD, Bessac BF, del Camino D et al. 2009. A sensory neuronal ion channel essential for airway inflammation and hyperreactivity in asthma. PNAS 106:229099–104
    [Google Scholar]
  97. 97. 
    Chen J, Hackos DH. 2015. TRPA1 as a drug target—promise and challenges. Naunyn Schmiedebergs Arch. Pharmacol. 388:4451–63
    [Google Scholar]
  98. 98. 
    Rech JC, Eckert WA, Maher MP, Banke T, Bhattacharya A, Wickenden AD 2010. Recent advances in the biology and medicinal chemistry of TRPA1. Future Med. Chem. 2:5843–58
    [Google Scholar]
  99. 99. 
    Glenmark Pharm. 2012. Glenmark's novel molecule “GRC 17536” for pain and respiratory conditions successfully completes Phase I trials in Europe Press Release, Feb. 14. https://www.glenmarkpharma.com/sites/default/files/Glenmark_GRC_17536_Phase_I_completion_0.pdf
  100. 100. 
    Glenmark Pharm. 2017. Glenmark's TRPA1 antagonist ‘GRC 17536’ shows positive data in a proof of concept study Press Release, Sep. 17. https://www.prnewswire.com/news-releases/glenmarks-trpa1-antagonist-grc-17536-shows-positive-data-in-a-proof-of-concept-study-275445961.html
  101. 101. 
    Skerratt S. 2017. Recent progress in the discovery and development of TRPA1 modulators. Prog. Med. Chem. 56:81–115
    [Google Scholar]
  102. 102. 
    Cubist Pharm., Hydra Biosci. 2012. Cubist Pharmaceuticals and Hydra Biosciences announce plans to begin phase 1 clinical trial for novel TRPA1 modulator to treat acute pain Press Release, Jan. 10. https://www.businesswire.com/news/home/20120110005326/en/Cubist-Pharmaceuticals-Hydra-Biosciences-Announce-Plans-Phase
  103. 103. 
    Bianchi BR, Zhang X-F, Reilly RM, Kym PR, Yao BB, Chen J 2012. Species comparison and pharmacological characterization of human, monkey, rat, and mouse TRPA1 channels. J. Pharmacol. Exp. Ther. 341:2360–68
    [Google Scholar]
  104. 104. 
    Reese RM, Dourado M, Anderson K, Warming S, Stark KL et al. 2020. Behavioral characterization of a CRISPR-generated TRPA1 knockout rat in models of pain, itch, and asthma. Sci. Rep. 10:1979
    [Google Scholar]
  105. 105. 
    Klionsky L, Tamir R, Gao B, Wang W, Immke DC et al. 2007. Species-specific pharmacology of trichloro(sulfanyl)ethyl benzamides as transient receptor potential ankyrin 1 (TRPA1) antagonists. Mol. Pain 3:39
    [Google Scholar]
  106. 106. 
    Rooney L, Vidal A, D'Souza A-M, Devereux N, Masick B et al. 2014. Discovery, optimization, and biological evaluation of 5-(2-(trifluoromethyl)phenyl)indazoles as a novel class of transient receptor potential A1 (TRPA1) antagonists. J. Med. Chem. 57:125129–40
    [Google Scholar]
  107. 107. 
    Heber S, Gold-Binder M, Ciotu CI, Witek M, Ninidze N et al. 2019. A human TRPA1-specific pain model. J. Neurosci. 39:203845–55
    [Google Scholar]
  108. 108. 
    Orion Corporation Arvela R, Holm P, Vesalainen A 2015. TRPA1 modulators WO Patent 2015/144976
  109. 109. 
    Buntinx L, Chang L, Amin A, Morlion B, de Hoon J 2017. Development of an in vivo target-engagement biomarker for TRPA1 antagonists in humans. Br. J. Clin. Pharmacol. 83:3603–11
    [Google Scholar]
  110. 110. 
    Van der Schueren BJ, de Hoon JN, Vanmolkot FH, Van Hecken A, Depre M et al. 2007. Reproducibility of the capsaicin-induced dermal blood flow response as assessed by laser Doppler perfusion imaging. Br. J. Clin. Pharmacol. 64:5580–90
    [Google Scholar]
  111. 111. 
    Preti D, Saponaro G, Szallasi A 2015. Transient receptor potential ankyrin 1 (TRPA1) antagonists. Pharm. Pat. Anal. 4:275–94
    [Google Scholar]
  112. 112. 
    Kwan KY, Allchorne AJ, Vollrath MA, Christensen AP, Zhang D-S et al. 2006. TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50:2277–89
    [Google Scholar]
  113. 113. 
    de Oliveira C, Garami A, Lehto SG, Pakai E, Tekus V et al. 2014. Transient receptor potential channel ankyrin-1 is not a cold sensor for autonomic thermoregulation in rodents. J. Neurosci. 34:134445–52
    [Google Scholar]
  114. 114. 
    Chen J, Kang D, Xu J, Lake M, Hogan JO et al. 2013. Species differences and molecular determinant of TRPA1 cold sensitivity. Nat. Commun. 4:12501
    [Google Scholar]
  115. 115. 
    Lee KJ, Wang W, Padaki R, Bi V, Plewa CA, Gavva NR 2014. Mouse monoclonal antibodies to transient receptor potential ankyrin 1 act as antagonists of multiple modes of channel activation. J. Pharmacol. Exp. Ther. 350:2223–31
    [Google Scholar]
  116. 116. 
    Grimm C, Kraft R, Sauerbruch S, Schultz G, Harteneck C 2003. Molecular and functional characterization of the melastatin-related cation channel TRPM3. J. Biol. Chem. 278:2421493–501
    [Google Scholar]
  117. 117. 
    Wagner TFJ, Loch S, Lambert S, Straub I, Mannebach S et al. 2008. Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic β cells. Nat. Cell Biol. 10:121421–30
    [Google Scholar]
  118. 118. 
    Vriens J, Held K, Voets T 2017. The nociceptive TRPM3 channel as potential therapeutic target for chronic pain. Intern. Med. Rev. 3:8 http://dx.doi.org/10.18103/imr.v3i8.535
    [Crossref] [Google Scholar]
  119. 119. 
    Vriens J, Owsianik G, Hofmann T, Philipp SE, Stab J et al. 2011. TRPM3 is a nociceptor channel involved in the detection of noxious heat. Neuron 70:3482–94
    [Google Scholar]
  120. 120. 
    Held K, Kichko T, De Clercq K, Klaassen H, Van Bree R et al. 2015. Activation of TRPM3 by a potent synthetic ligand reveals a role in peptide release. PNAS 112:11E1363–72
    [Google Scholar]
  121. 121. 
    Vriens J, Held K, Janssens A, Tóth BI, Kerselaers S et al. 2014. Opening of an alternative ion permeation pathway in a nociceptor TRP channel. Nat. Chem. Biol. 10:3188–95
    [Google Scholar]
  122. 122. 
    Vriens J, Voets T. 2018. Sensing the heat with TRPM3. Pflügers Arch 470:5799–807
    [Google Scholar]
  123. 123. 
    Dembla S, Behrendt M, Mohr F, Goecke C, Sondermann J et al. 2017. Anti-nociceptive action of peripheral mu-opioid receptors by G-beta-gamma protein-mediated inhibition of TRPM3 channels. eLife 6:e26280
    [Google Scholar]
  124. 124. 
    Alkhatib O, da Costa R, Gentry C, Quallo T, Bevan S, Andersson DA 2019. Promiscuous G-protein-coupled receptor inhibition of transient receptor potential melastatin 3 ion channels by Gβγ subunits. J. Neurosci. 39:407840–52
    [Google Scholar]
  125. 125. 
    Yudin Y, Rohacs T. 2019. The G‐protein‐biased agents PZM21 and TRV130 are partial agonists of μ‐opioid receptor‐mediated signalling to ion channels. Br. J. Pharmacol. 176:173110–25
    [Google Scholar]
  126. 126. 
    Badheka D, Yudin Y, Borbiro I, Hartle CM, Yazici A et al. 2017. Inhibition of transient receptor potential melastatin 3 ion channels by G-protein βγ subunits. eLife 6:e26147
    [Google Scholar]
  127. 127. 
    Quallo T, Alkhatib O, Gentry C, Andersson DA, Bevan S 2017. G protein βγ subunits inhibit TRPM3 ion channels in sensory neurons. eLife 6:e26138
    [Google Scholar]
  128. 128. 
    Vangeel L, Benoit M, Miron Y, Miller PE, De Clercq K et al. 2020. Functional expression and pharmacological modulation of TRPM3 in human sensory neurons. Br. J. Pharmacol. 177:122683–95
    [Google Scholar]
  129. 129. 
    Suzuki H, Sasaki E, Nakagawa A, Muraki Y, Hatano N, Muraki K 2016. Diclofenac, a nonsteroidal anti-inflammatory drug, is an antagonist of human TRPM3 isoforms. Pharmacol. Res. Perspect. 4:3e00232
    [Google Scholar]
  130. 130. 
    Hu H, Tian J, Zhu Y, Wang C, Xiao R et al. 2010. Activation of TRPA1 channels by fenamate nonsteroidal anti-inflammatory drugs. Pflügers Arch 459:4579–92
    [Google Scholar]
  131. 131. 
    Dyment DA, Terhal PA, Rustad CF, Tveten K, Griffith C et al. 2019. De novo substitutions of TRPM3 cause intellectual disability and epilepsy. Eur. J. Hum. Genet. 27:101611–18
    [Google Scholar]
  132. 132. 
    Zhao S, Yudin Y, Rohacs T 2020. Disease-associated mutations in the human TRPM3 render the channel overactive via two distinct mechanisms. eLife 9:e55634
    [Google Scholar]
  133. 133. 
    Van Hoeymissen E, Held K, Freitas ACN, Janssens A, Voets T, Vriens J 2020. Gain of channel function and modified gating properties in TRPM3 mutants causing intellectual disability and epilepsy. eLife 9:e57190
    [Google Scholar]
  134. 134. 
    Krügel U, Straub I, Beckmann H, Schaefer M 2017. Primidone inhibits TRPM3 and attenuates thermal nociception in vivo. Pain 158:5856–67
    [Google Scholar]
  135. 135. 
    Straub I, Krugel U, Mohr F, Teichert J, Rizun O et al. 2013. Flavanones that selectively inhibit TRPM3 attenuate thermal nociception in vivo. Mol. Pharmacol. 84:5736–50
    [Google Scholar]
  136. 136. 
    Patapoutian A, Peier AM, Story GM, Viswanath V 2003. ThermoTRP channels and beyond: mechanisms of temperature sensation. Nat. Rev. Neurosci. 4:7529–39
    [Google Scholar]
  137. 137. 
    Fein A. 2014. Nociceptors and the perception of pain PhD Thesis, Univ. Conn. Health Cent Farmington:
  138. 138. 
    Malin SA, Molliver DC, Koerber HR, Cornuet P, Frye R et al. 2006. Glial cell line-derived neurotrophic factor family members sensitize nociceptors in vitro and produce thermal hyperalgesia in vivo. J. Neurosci. 26:338588–99
    [Google Scholar]
  139. 139. 
    Ji R-R, Samad TA, Jin S-X, Schmoll R, Woolf CJ 2002. p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron 36:157–68
    [Google Scholar]
  140. 140. 
    Julius D. 2013. TRP channels and pain. Annu. Rev. Cell Dev. Biol. 29:355–84
    [Google Scholar]
  141. 141. 
    Richardson JD, Vasko MR. 2002. Cellular mechanisms of neurogenic inflammation. J. Pharmacol. Exp. Ther. 302:3839–45
    [Google Scholar]
  142. 142. 
    Gao Y, Cao E, Julius D, Cheng Y 2016. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534:7607347–51
    [Google Scholar]
  143. 143. 
    Buntinx L, Vermeersch S, de Hoon J 2015. Development of anti-migraine therapeutics using the capsaicin-induced dermal blood flow model. Br. J. Clin. Pharmacol. 80:5992–1000
    [Google Scholar]
  144. 144. 
    Grant AD, Gerard NP, Brain SD 2002. Evidence of a role for NK1 and CGRP receptors in mediating neurogenic vasodilatation in the mouse ear. Br. J. Pharmacol. 135:2356–62
    [Google Scholar]
  145. 145. 
    Aubdool AA, Kodji X, Abdul-Kader N, Heads R, Fernandes ES et al. 2016. TRPA1 activation leads to neurogenic vasodilatation: involvement of reactive oxygen nitrogen species in addition to CGRP and NO. Br. J. Pharmacol. 173:152419–33
    [Google Scholar]
  146. 146. 
    Suo Y, Wang Z, Zubcevic L, Hsu AL, He Q et al. 2020. Structural insights into electrophile irritant sensing by the human TRPA1 channel. Neuron 105:5882–94.e5
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010919-023238
Loading
/content/journals/10.1146/annurev-pharmtox-010919-023238
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error