1932

Abstract

G protein–coupled receptors (GPCRs) mediate the effects of numerous hormones and neurotransmitters and are major pharmacological targets. Classical studies with crude cell lysates or membrane preparations have identified the main biochemical steps involved in GPCR signaling. Moreover, recent studies on purified proteins have provided astounding details at the atomic level of the 3-D structures of receptors in multiple conformations, including in complex with G proteins and β-arrestins. However, several fundamental questions remain regarding the highly specific effects and rapid nature of GPCR signaling. Recent developments in single-molecule microscopy are providing important contributions to answering these questions. Overall, single-molecule studies have revealed unexpected levels of complexity, with receptors existing in different conformations and dynamically interacting among themselves, their signaling partners, and structural elements of the plasma membrane to produce highly localized signals in space and time. These findings may provide a new basis to develop innovative strategies to modulate GPCR function for pharmacological purposes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010919-023348
2020-01-06
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/60/1/annurev-pharmtox-010919-023348.html?itemId=/content/journals/10.1146/annurev-pharmtox-010919-023348&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Pierce KL, Premont RT, Lefkowitz RJ 2002. Seven-transmembrane receptors. Nat. Rev. Mol. Cell Biol. 3:639–50
    [Google Scholar]
  2. 2. 
    Hauser AS, Attwood MM, Rask-Andersen M, Schiöth HB, Gloriam DE 2017. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov. 16:829–42
    [Google Scholar]
  3. 3. 
    Beavo JA, Brunton LL. 2002. Cyclic nucleotide research—still expanding after half a century. Nat. Rev. Mol. Cell Biol. 3:710–18
    [Google Scholar]
  4. 4. 
    Weis WI, Kobilka BK. 2018. The molecular basis of G protein-coupled receptor activation. Annu. Rev. Biochem. 87:897–919
    [Google Scholar]
  5. 5. 
    Shenoy SK, Lefkowitz RJ. 2011. β-arrestin-mediated receptor trafficking and signal transduction. Trends Pharmacol. Sci. 32:521–33
    [Google Scholar]
  6. 6. 
    Smith JS, Rajagopal S. 2016. The β-arrestins: multifunctional regulators of G protein–coupled receptors. J. Biol. Chem. 291:8969–77
    [Google Scholar]
  7. 7. 
    Peterson YK, Luttrell LM. 2017. The diverse roles of arrestin scaffolds in G protein–coupled receptor signaling. Pharmacol. Rev. 69:256–97
    [Google Scholar]
  8. 8. 
    Safdari HA, Pandey S, Shukla AK, Dutta S 2018. Illuminating GPCR signaling by cryo-EM. Trends Cell Biol 28:591–94
    [Google Scholar]
  9. 9. 
    Rasmussen SG, Choi HJ, Fung JJ, Pardon E, Casarosa P et al. 2011. Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature 469:175–80
    [Google Scholar]
  10. 10. 
    Rosenbaum DM, Zhang C, Lyons JA, Holl R, Aragao D et al. 2011. Structure and function of an irreversible agonist-β2 adrenoceptor complex. Nature 469:236–40
    [Google Scholar]
  11. 11. 
    Lebon G, Warne T, Edwards PC, Bennett K, Langmead CJ et al. 2011. Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature 474:521–25
    [Google Scholar]
  12. 12. 
    Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS et al. 2007. High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318:1258–65
    [Google Scholar]
  13. 13. 
    Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS et al. 2007. Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature 450:383–87
    [Google Scholar]
  14. 14. 
    Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY et al. 2011. Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 477:549–55
    [Google Scholar]
  15. 15. 
    Carpenter B, Nehme R, Warne T, Leslie AG, Tate CG 2016. Structure of the adenosine A2A receptor bound to an engineered G protein. Nature 536:104–7
    [Google Scholar]
  16. 16. 
    Liang YL, Khoshouei M, Radjainia M, Zhang Y, Glukhova A et al. 2017. Phase-plate cryo-EM structure of a class B GPCR-G-protein complex. Nature 546:118–23
    [Google Scholar]
  17. 17. 
    Zhang Y, Sun B, Feng D, Hu H, Chu M et al. 2017. Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein. Nature 546:248–53
    [Google Scholar]
  18. 18. 
    Koehl A, Hu H, Maeda S, Zhang Y, Qu Q et al. 2018. Structure of the μ-opioid receptor–Gi protein complex. Nature 558:547–52
    [Google Scholar]
  19. 19. 
    Draper-Joyce CJ, Khoshouei M, Thal DM, Liang YL, Nguyen ATN et al. 2018. Structure of the adenosine-bound human adenosine A1 receptor-Gi complex. Nature 558:559–63
    [Google Scholar]
  20. 20. 
    Garcia-Nafria J, Nehme R, Edwards PC, Tate CG 2018. Cryo-EM structure of the serotonin 5-HT1B receptor coupled to heterotrimeric Go. Nature 558:620–23
    [Google Scholar]
  21. 21. 
    Kang Y, Kuybeda O, de Waal PW, Mukherjee S, Van Eps N et al. 2018. Cryo-EM structure of human rhodopsin bound to an inhibitory G protein. Nature 558:553–58
    [Google Scholar]
  22. 22. 
    Liang YL, Khoshouei M, Deganutti G, Glukhova A, Koole C et al. 2018. Cryo-EM structure of the active, Gs-protein complexed, human CGRP receptor. Nature 561:492–97
    [Google Scholar]
  23. 23. 
    Kang Y, Zhou XE, Gao X, He Y, Liu W et al. 2015. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523:561–67
    [Google Scholar]
  24. 24. 
    Zhou XE, He Y, de Waal PW, Gao X, Kang Y et al. 2017. Identification of phosphorylation codes for arrestin recruitment by G protein-coupled receptors. Cell 170:457–69.e13
    [Google Scholar]
  25. 25. 
    Latorraca NR, Venkatakrishnan AJ, Dror RO 2017. GPCR dynamics: structures in motion. Chem. Rev. 117:139–55
    [Google Scholar]
  26. 26. 
    Manglik A, Kim TH, Masureel M, Altenbach C, Yang Z et al. 2015. Structural insights into the dynamic process of β2-adrenergic receptor signaling. Cell 161:1101–11
    [Google Scholar]
  27. 27. 
    Manglik A, Kobilka B. 2014. The role of protein dynamics in GPCR function: insights from the β2AR and rhodopsin. Curr. Opin. Cell Biol. 27:136–43
    [Google Scholar]
  28. 28. 
    de Mendoza A, Sebe-Pedros A, Ruiz-Trillo I 2014. The evolution of the GPCR signaling system in eukaryotes: modularity, conservation, and the transition to metazoan multicellularity. Genome Biol. Evol. 6:606–19
    [Google Scholar]
  29. 29. 
    Lefkimmiatis K, Zaccolo M. 2014. cAMP signaling in subcellular compartments. Pharmacol. Ther. 143:295–304
    [Google Scholar]
  30. 30. 
    Calebiro D, Maiellaro I. 2014. cAMP signaling microdomains and their observation by optical methods. Front. Cell Neurosci. 8:350
    [Google Scholar]
  31. 31. 
    Maiellaro I, Lohse MJ, Kittel RJ, Calebiro D 2016. cAMP signals in Drosophila motor neurons are confined to single synaptic boutons. Cell Rep 17:1238–46
    [Google Scholar]
  32. 32. 
    Calebiro D, Nikolaev VO, Gagliani MC, de Filippis T, Dees C et al. 2009. Persistent cAMP-signals triggered by internalized G-protein-coupled receptors. PLOS Biol 7:e1000172
    [Google Scholar]
  33. 33. 
    Ferrandon S, Feinstein TN, Castro M, Wang B, Bouley R et al. 2009. Sustained cyclic AMP production by parathyroid hormone receptor endocytosis. Nat. Chem. Biol. 5:734–42
    [Google Scholar]
  34. 34. 
    Irannejad R, Tomshine JC, Tomshine JR, Chevalier M, Mahoney JP et al. 2013. Conformational biosensors reveal GPCR signalling from endosomes. Nature 495:534–38
    [Google Scholar]
  35. 35. 
    Godbole A, Lyga S, Lohse MJ, Calebiro D 2017. Internalized TSH receptors en route to the TGN induce local Gs-protein signaling and gene transcription. Nat. Commun. 8:443
    [Google Scholar]
  36. 36. 
    Irannejad R, Pessino V, Mika D, Huang B, Wedegaertner PB et al. 2017. Functional selectivity of GPCR-directed drug action through location bias. Nat. Chem. Biol. 13:799–806
    [Google Scholar]
  37. 37. 
    Wootten D, Christopoulos A, Marti-Solano M, Babu MM, Sexton PM 2018. Mechanisms of signalling and biased agonism in G protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 19:638–53
    [Google Scholar]
  38. 38. 
    Smith JS, Lefkowitz RJ, Rajagopal S 2018. Biased signalling: from simple switches to allosteric microprocessors. Nat. Rev. Drug Discov. 17:243–60
    [Google Scholar]
  39. 39. 
    Kim TH, Chung KY, Manglik A, Hansen AL, Dror RO et al. 2013. The role of ligands on the equilibria between functional states of a G protein-coupled receptor. J. Am. Chem. Soc. 135:9465–74
    [Google Scholar]
  40. 40. 
    Basith S, Cui MH, Macalino SJY, Park J, Clavio NAB et al. 2018. Exploring G protein-coupled receptors (GPCRs) ligand space via cheminformatics approaches: impact on rational drug design. Front. Pharmacol. 9:128
    [Google Scholar]
  41. 41. 
    Wingler LM, Elgeti M, Hilger D, Latorraca NR, Lerch MT et al. 2019. Angiotensin analogs with divergent bias stabilize distinct receptor conformations. Cell 176:468–78.e11
    [Google Scholar]
  42. 42. 
    Calebiro D, Koszegi Z. 2019. The subcellular dynamics of GPCR signaling. Mol. Cell Endocrinol. 483:24–30
    [Google Scholar]
  43. 43. 
    Milligan G, Bouvier M. 2005. Methods to monitor the quaternary structure of G protein-coupled receptors. FEBS J 272:2914–25
    [Google Scholar]
  44. 44. 
    Lohse MJ, Nuber S, Hoffmann C 2012. Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling. Pharmacol. Rev. 64:299–336
    [Google Scholar]
  45. 45. 
    Lohse MJ, Maiellaro I, Calebiro D 2014. Kinetics and mechanism of G protein-coupled receptor activation. Curr. Opin. Cell Biol. 27:87–93
    [Google Scholar]
  46. 46. 
    Betzig E. 2015. Single molecules, cells, and super-resolution optics (Nobel lecture). Angew. Chem. Int. Ed. 54:8034–53
    [Google Scholar]
  47. 47. 
    Moerner WE. 2015. Single-molecule spectroscopy, imaging, and photocontrol: foundations for super-resolution microscopy (Nobel lecture). Angew. Chem. Int. Ed. 54:8067–93
    [Google Scholar]
  48. 48. 
    Moerner WE, Kador L. 1989. Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett. 62:2535–38
    [Google Scholar]
  49. 49. 
    Walter NG, Huang CY, Manzo AJ, Sobhy MA 2008. Do-it-yourself guide: how to use the modern single-molecule toolkit. Nat. Methods 5:475–89
    [Google Scholar]
  50. 50. 
    Calebiro D, Sungkaworn T. 2018. Single-molecule imaging of GPCR interactions. Trends Pharmacol. Sci. 39:109–22
    [Google Scholar]
  51. 51. 
    Suzuki K, Ritchie K, Kajikawa E, Fujiwara T, Kusumi A 2005. Rapid hop diffusion of a G-protein-coupled receptor in the plasma membrane as revealed by single-molecule techniques. Biophys. J. 88:3659–80
    [Google Scholar]
  52. 52. 
    Kusumi A, Suzuki KG, Kasai RS, Ritchie K, Fujiwara TK 2011. Hierarchical mesoscale domain organization of the plasma membrane. Trends Biochem. Sci. 36:604–15
    [Google Scholar]
  53. 53. 
    Insel PA, Head BP, Patel HH, Roth DM, Bundey RA, Swaney JS 2005. Compartmentation of G-protein-coupled receptors and their signalling components in lipid rafts and caveolae. Biochem. Soc. Trans. 33:1131–34
    [Google Scholar]
  54. 54. 
    Simons K, Ikonen E. 1997. Functional rafts in cell membranes. Nature 387:569–72
    [Google Scholar]
  55. 55. 
    Simons K, Toomre D. 2000. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1:31–39
    [Google Scholar]
  56. 56. 
    Xiang Y, Rybin VO, Steinberg SF, Kobilka B 2002. Caveolar localization dictates physiologic signaling of β2-adrenoceptors in neonatal cardiac myocytes. J. Biol. Chem. 277:34280–86
    [Google Scholar]
  57. 57. 
    Nikolaev VO, Moshkov A, Lyon AR, Miragoli M, Novak P et al. 2010. β2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science 327:1653–57
    [Google Scholar]
  58. 58. 
    MacDougall DA, Agarwal SR, Stopford EA, Chu HJ, Collins JA et al. 2012. Caveolae compartmentalise β2-adrenoceptor signals by curtailing cAMP production and maintaining phosphatase activity in the sarcoplasmic reticulum of the adult ventricular myocyte. J. Mol. Cell Cardiol. 52:388–400
    [Google Scholar]
  59. 59. 
    Wright PT, Nikolaev VO, O'Hara T, Diakonov I, Bhargava A et al. 2014. Caveolin-3 regulates compartmentation of cardiomyocyte β2-adrenergic receptor-mediated cAMP signaling. J. Mol. Cell Cardiol. 67:38–48
    [Google Scholar]
  60. 60. 
    Munro S. 2003. Lipid rafts. Cell 115:377–88
    [Google Scholar]
  61. 61. 
    Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K et al. 2009. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457:1159–62
    [Google Scholar]
  62. 62. 
    Eggeling C. 2015. Super-resolution optical microscopy of lipid plasma membrane dynamics. Essays Biochem 57:69–80
    [Google Scholar]
  63. 63. 
    Romano C, Yang WL, O'Malley KL 1996. Metabotropic glutamate receptor 5 is a disulfide-linked dimer. J. Biol. Chem. 271:28612–16
    [Google Scholar]
  64. 64. 
    Jones KA. 1998. GABAB receptors function as a heteromeric assembly of the subunits GABABR1 and GABABR2. Nature 396:674–79
    [Google Scholar]
  65. 65. 
    White JH. 1998. Heterodimerization is required for the formation of a functional GABAB receptor. Nature 396:679–82
    [Google Scholar]
  66. 66. 
    Pin JP, Kniazeff J, Liu J, Binet V, Goudet C et al. 2005. Allosteric functioning of dimeric class C G-protein-coupled receptors. FEBS J 272:2947–55
    [Google Scholar]
  67. 67. 
    Milligan G. 2004. G protein-coupled receptor dimerization: function and ligand pharmacology. Mol. Pharmacol. 66:1–7
    [Google Scholar]
  68. 68. 
    Terrillon S, Bouvier M. 2004. Roles of G-protein-coupled receptor dimerization. EMBO Rep 5:30–34
    [Google Scholar]
  69. 69. 
    Albizu L, Cottet M, Kralikova M, Stoev S, Seyer R et al. 2010. Time-resolved FRET between GPCR ligands reveals oligomers in native tissues. Nat. Chem. Biol. 6:587–94
    [Google Scholar]
  70. 70. 
    Hern JA, Baig AH, Mashanov GI, Birdsall B, Corrie JE et al. 2010. Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. PNAS 107:2693–98
    [Google Scholar]
  71. 71. 
    Kasai RS, Suzuki KG, Prossnitz ER, Koyama-Honda I, Nakada C et al. 2011. Full characterization of GPCR monomer-dimer dynamic equilibrium by single molecule imaging. J. Cell Biol. 192:463–80
    [Google Scholar]
  72. 72. 
    Calebiro D, Rieken F, Wagner J, Sungkaworn T, Zabel U et al. 2013. Single-molecule analysis of fluorescently labeled G-protein-coupled receptors reveals complexes with distinct dynamics and organization. PNAS 110:743–48
    [Google Scholar]
  73. 73. 
    Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, Johnsson K 2003. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 21:86–89
    [Google Scholar]
  74. 74. 
    Tabor A, Weisenburger S, Banerjee A, Purkayastha N, Kaindl JM et al. 2016. Visualization and ligand-induced modulation of dopamine receptor dimerization at the single molecule level. Sci. Rep. 6:33233
    [Google Scholar]
  75. 75. 
    Calebiro D, Sungkaworn T, Maiellaro I 2014. Real-time monitoring of GPCR/cAMP signalling by FRET and single-molecule microscopy. Horm. Metab. Res. 46:827–32
    [Google Scholar]
  76. 76. 
    Lerner E, Cordes T, Ingargiola A, Alhadid Y, Chung S et al. 2018. Toward dynamic structural biology: two decades of single-molecule Forster resonance energy transfer. Science 359:eaan1133
    [Google Scholar]
  77. 77. 
    Vafabakhsh R, Levitz J, Isacoff EY 2015. Conformational dynamics of a class C G-protein-coupled receptor. Nature 524:497–501
    [Google Scholar]
  78. 78. 
    Knopfel T, Gasparini F. 1996. Metabotropic glutamate receptors: potential drug targets. Drug Discov. Today 1:103–8
    [Google Scholar]
  79. 79. 
    Pitsikas N. 2014. The metabotropic glutamate receptors: potential drug targets for the treatment of anxiety disorders. ? Eur. J. Pharmacol. 723:181–84
    [Google Scholar]
  80. 80. 
    Battaglia G, Bruno V. 2018. Metabotropic glutamate receptor involvement in the pathophysiology of amyotrophic lateral sclerosis: new potential drug targets for therapeutic applications. Curr. Opin. Pharmacol. 38:65–71
    [Google Scholar]
  81. 81. 
    Gautier A, Juillerat A, Heinis C, Correa IR Jr, Kindermann M et al. 2008. An engineered protein tag for multiprotein labeling in living cells. Chem. Biol. 15:128–36
    [Google Scholar]
  82. 82. 
    Lau AY, Salazar H, Blachowicz L, Ghisi V, Plested AJR, Roux B 2013. A conformational intermediate in glutamate receptor activation. Neuron 79:492–503
    [Google Scholar]
  83. 83. 
    Olofsson L, Felekyan S, Doumazane E, Scholler P, Fabre L et al. 2014. Fine tuning of sub-millisecond conformational dynamics controls metabotropic glutamate receptors agonist efficacy. Nat. Commun. 5:5206
    [Google Scholar]
  84. 84. 
    Levitz J, Habrian C, Bharill S, Fu Z, Vafabakhsh R, Isacoff EY 2016. Mechanism of assembly and cooperativity of homomeric and heteromeric metabotropic glutamate receptors. Neuron 92:143–59
    [Google Scholar]
  85. 85. 
    Gregorio GG, Masureel M, Hilger D, Terry DS, Juette M et al. 2017. Single-molecule analysis of ligand efficacy in β2AR–G-protein activation. Nature 547:68–73
    [Google Scholar]
  86. 86. 
    Westfield GH, Rasmussen SG, Su M, Dutta S, DeVree BT et al. 2011. Structural flexibility of the Gαs α-helical domain in the β2-adrenoceptor Gs complex. PNAS 108:16086–91
    [Google Scholar]
  87. 87. 
    Chung KY, Rasmussen SG, Liu T, Li S, DeVree BT et al. 2011. Conformational changes in the G protein Gs induced by the β2 adrenergic receptor. Nature 477:611–15
    [Google Scholar]
  88. 88. 
    Dror RO, Mildorf TJ, Hilger D, Manglik A, Borhani DW et al. 2015. Structural basis for nucleotide exchange in heterotrimeric G proteins. Science 348:1361–65
    [Google Scholar]
  89. 89. 
    Cao C, Tan Q, Xu C, He L, Yang L et al. 2018. Structural basis for signal recognition and transduction by platelet-activating-factor receptor. Nat. Struct. Mol. Biol. 25:488–95
    [Google Scholar]
  90. 90. 
    Dijkman PM, Castell OK, Goddard AD, Munoz-Garcia JC, de Graaf C et al. 2018. Dynamic tuneable G protein-coupled receptor monomer-dimer populations. Nat. Commun. 9:1710
    [Google Scholar]
  91. 91. 
    Borroto-Escuela DO, Ravani A, Tarakanov AO, Brito I, Narvaez M et al. 2013. Dopamine D2 receptor signaling dynamics of dopamine D2-neurotensin 1 receptor heteromers. Biochem. Biophys. Res. Commun. 435:140–46
    [Google Scholar]
  92. 92. 
    Feifel D, Shilling PD, Fazlinejad AA, Melendez G 2016. Antipsychotic drug-like facilitation of latent inhibition by a brain-penetrating neurotensin-1 receptor agonist. J. Psychopharmacol. 30:312–17
    [Google Scholar]
  93. 93. 
    Sungkaworn T, Jobin ML, Burnecki K, Weron A, Lohse MJ, Calebiro D 2017. Single-molecule imaging reveals receptor-G protein interactions at cell surface hot spots. Nature 550:543–47
    [Google Scholar]
  94. 94. 
    Hein P, Frank M, Hoffmann C, Lohse MJ, Bünemann M 2005. Dynamics of receptor/G protein coupling in living cells. EMBO J 24:4106–14
    [Google Scholar]
  95. 95. 
    Touhara KK, MacKinnon R. 2018. Molecular basis of signaling specificity between GIRK channels and GPCRs. eLife 7:e42908
    [Google Scholar]
  96. 96. 
    Gahbauer S, Bockmann RA. 2016. Membrane-mediated oligomerization of G protein coupled receptors and its implications for GPCR function. Front. Physiol. 7:494
    [Google Scholar]
  97. 97. 
    Triller A, Choquet D. 2003. Synaptic structure and diffusion dynamics of synaptic receptors. Biol. Cell 95:465–76
    [Google Scholar]
  98. 98. 
    Treppiedi D, Jobin ML, Peverelli E, Giardino E, Sungkaworn T et al. 2018. Single-molecule microscopy reveals dynamic FLNA interactions governing SSTR2 clustering and internalization. Endocrinology 159:2953–65
    [Google Scholar]
  99. 99. 
    Calebiro D, Jobin ML. 2018. Hot spots for GPCR signaling: lessons from single-molecule microscopy. Curr. Opin. Cell Biol. 57:57–63
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010919-023348
Loading
/content/journals/10.1146/annurev-pharmtox-010919-023348
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error