1932

Abstract

The hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are voltage-gated ion channels that critically modulate neuronal activity. Four HCN subunits () have been cloned, each having a unique expression profile and distinctive effects on neuronal excitability within the brain. Consistent with this, the expression and function of these subunits are altered in diverse ways in neurological disorders. Here, we review current knowledge on the structure and distribution of the individual HCN channel isoforms, their effects on neuronal activity under physiological conditions, and how their expression and function are altered in neurological disorders, particularly epilepsy, neuropathic pain, and affective disorders. We discuss the suitability of HCN channels as therapeutic targets and how drugs might be strategically designed to specifically act on particular isoforms. We conclude that medicines that target individual HCN isoforms and/or their auxiliary subunit, TRIP8b, may provide valuable means of treating distinct neurological conditions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010919-023356
2020-01-06
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/60/1/annurev-pharmtox-010919-023356.html?itemId=/content/journals/10.1146/annurev-pharmtox-010919-023356&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Pape HC. 1996. Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. Annu. Rev. Physiol. 58:299–327
    [Google Scholar]
  2. 2. 
    Robinson RB, Siegelbaum SA. 2003. Hyperpolarization-activated cation currents: from molecules to physiological function. Annu. Rev. Physiol. 65:453–80
    [Google Scholar]
  3. 3. 
    Biel M, Wahl-Schott C, Michalakis S, Zong X 2009. Hyperpolarization-activated cation channels: from genes to function. Physiol. Rev. 89:3847–85
    [Google Scholar]
  4. 4. 
    Fala L. 2016. Corlanor (ivabradine), first HCN channel blocker, FDA approved for the treatment of patients with heart failure. Am. Health Drug Benefits 9: Spec. Feature 56–59
    [Google Scholar]
  5. 5. 
    Fain GL, Quandt FN, Bastian BL, Gerschenfeld HM 1978. Contribution of a caesium-sensitive conductance increase to the rod photoresponse. Nature 272:5652466–69
    [Google Scholar]
  6. 6. 
    Knop GC, Seeliger MW, Thiel F, Mataruga A, Kaupp UB et al. 2008. Light responses in the mouse retina are prolonged upon targeted deletion of the HCN1 channel gene. Eur. J. Neurosci. 28:112221–30
    [Google Scholar]
  7. 7. 
    Savelieva I, Camm AJ. 2006. Novel If current inhibitor ivabradine: safety considerations. Adv. Cardiol. 43:79–96
    [Google Scholar]
  8. 8. 
    Lee C-H, MacKinnon R. 2017. Structures of the human HCN1 hyperpolarization-activated channel. Cell 168:1–2111–20.e11
    [Google Scholar]
  9. 9. 
    Saponaro A, Cantini F, Porro A, Bucchi A, DiFrancesco D et al. 2018. A synthetic peptide that prevents cAMP regulation in mammalian hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. eLife 7:e35753
    [Google Scholar]
  10. 10. 
    Stieber J, Stöckl G, Herrmann S, Hassfurth B, Hofmann F 2005. Functional expression of the human HCN3 channel. J. Biol. Chem. 280:4134635–43
    [Google Scholar]
  11. 11. 
    Chen S, Wang J, Siegelbaum SA 2001. Properties of hyperpolarization-activated pacemaker current defined by coassembly of HCN1 and HCN2 subunits and basal modulation by cyclic nucleotide. J. Gen. Physiol. 117:5491–504
    [Google Scholar]
  12. 12. 
    Santoro B, Wainger BJ, Siegelbaum SA 2004. Regulation of HCN channel surface expression by a novel C-terminal protein-protein interaction. J. Neurosci. 24:4710750–62
    [Google Scholar]
  13. 13. 
    Santoro B, Piskorowski RA, Pian P, Hu L, Liu H, Siegelbaum SA 2009. TRIP8b splice variants form a family of auxiliary subunits that regulate gating and trafficking of HCN channels in the brain. Neuron 62:6802–13
    [Google Scholar]
  14. 14. 
    Zolles G, Wenzel D, Bildl W, Schulte U, Hofmann A et al. 2009. Association with the auxiliary subunit PEX5R/Trip8b controls responsiveness of HCN channels to cAMP and adrenergic stimulation. Neuron 62:6814–25
    [Google Scholar]
  15. 15. 
    Lewis AS, Schwartz E, Chan CS, Noam Y, Shin M et al. 2009. Alternatively spliced isoforms of TRIP8b differentially control h channel trafficking and function. J. Neurosci. 29:196250–65
    [Google Scholar]
  16. 16. 
    Hu L, Santoro B, Saponaro A, Liu H, Moroni A, Siegelbaum SA 2013. Binding of the auxiliary subunit TRIP8b to HCN channels shifts the mode of action of cAMP. J. Gen. Physiol. 142:6599–612
    [Google Scholar]
  17. 17. 
    Saponaro A, Pauleta SR, Cantini F, Matzapetakis M, Hammann C et al. 2014. Structural basis for the mutual antagonism of cAMP and TRIP8b in regulating HCN channel function. PNAS 111:4014577–82
    [Google Scholar]
  18. 18. 
    DeBerg HA, Bankston JR, Rosenbaum JC, Brzovic PS, Zagotta WN, Stoll S 2015. Structural mechanism for the regulation of HCN ion channels by the accessory protein TRIP8b. Structure 23:4734–44
    [Google Scholar]
  19. 19. 
    Derebe MG, Sauer DB, Zeng W, Alam A, Shi N, Jiang Y 2011. Tuning the ion selectivity of tetrameric cation channels by changing the number of ion binding sites. PNAS 108:2592–97
    [Google Scholar]
  20. 20. 
    Cowgill J, Klenchin VA, Alvarez-Baron C, Tewari D, Blair A, Chanda B 2019. Bipolar switching by HCN voltage sensor underlies hyperpolarization activation. PNAS 116:2670–78
    [Google Scholar]
  21. 21. 
    Dai G, Aman TK, DiMaio F, Zagotta WN 2019. The HCN channel voltage sensor undergoes a large downward motion during hyperpolarization. Nat. Struct. Mol. Biol. 26:18686–94
    [Google Scholar]
  22. 22. 
    Tran N, Proenza C, Macri V, Petigara F, Sloan E et al. 2002. A conserved domain in the NH2 terminus important for assembly and functional expression of pacemaker channels. J. Biol. Chem. 277:4643588–92
    [Google Scholar]
  23. 23. 
    Nava C, Dalle C, Rastetter A, Striano P, de Kovel CG et al. 2014. De novo mutations in HCN1 cause early infantile epileptic encephalopathy. Nat. Genet. 46:6640–45
    [Google Scholar]
  24. 24. 
    Barbuti A, Scavone A, Mazzocchi N, Terragni B, Baruscotti M, Difrancesco D 2012. A caveolin-binding domain in the HCN4 channels mediates functional interaction with caveolin proteins. J. Mol. Cell Cardiol. 53:2187–95
    [Google Scholar]
  25. 25. 
    Chen S, Wang J, Zhou L, George MS, Siegelbaum SA 2007. Voltage sensor movement and cAMP binding allosterically regulate an inherently voltage-independent closed-open transition in HCN channels. J. Gen. Physiol. 129:2175–88
    [Google Scholar]
  26. 26. 
    Kusch J, Biskup C, Thon S, Schulz E, Nache V et al. 2010. Interdependence of receptor activation and ligand binding in HCN2 pacemaker channels. Neuron 67:175–85
    [Google Scholar]
  27. 27. 
    Wu S, Vyzotskaya ZV, Xu X, Xie C, Liu Q, Zhou L 2011. State-dependent cAMP binding to functioning HCN channels studied by patch-clamp fluorometry. Biophys. J. 100:51226–32
    [Google Scholar]
  28. 28. 
    Notomi T, Shigemoto R. 2004. Immunohistochemical localization of Ih channel subunits, HCN1–4, in the rat brain. J. Comp. Neurol. 471:3241–76
    [Google Scholar]
  29. 29. 
    Nolan MF, Malleret G, Lee KH, Gibbs E, Dudman JT et al. 2003. The hyperpolarization-activated HCN1 channel is important for motor learning and neuronal integration by cerebellar Purkinje cells. Cell 115:5551–64
    [Google Scholar]
  30. 30. 
    Huang Z, Walker MC, Shah MM 2009. Loss of dendritic HCN1 subunits enhances cortical excitability and epileptogenesis. J. Neurosci. 29:3510979–88
    [Google Scholar]
  31. 31. 
    Santoro B, Lee JY, Englot DJ, Gildersleeve S, Piskorowski RA et al. 2010. Increased seizure severity and seizure-related death in mice lacking HCN1 channels. Epilepsia 51:81624–27
    [Google Scholar]
  32. 32. 
    Massella A, Gusciglio M, D'Intino G, Sivilia S, Ferraro L et al. 2009. Gabapentin treatment improves motor coordination in a mice model of progressive ataxia. Brain Res 1301:135–42
    [Google Scholar]
  33. 33. 
    Parrini E, Marini C, Mei D, Galuppi A, Cellini E et al. 2017. Diagnostic targeted resequencing in 349 patients with drug-resistant pediatric epilepsies identifies causative mutations in 30 different genes. Hum. Mutat. 38:2216–25
    [Google Scholar]
  34. 34. 
    Marini C, Porro A, Rastetter A, Dalle C, Rivolta I et al. 2018. HCN1 mutation spectrum: from neonatal epileptic encephalopathy to benign generalized epilepsy and beyond. Brain J. Neurol. 141:113160–78
    [Google Scholar]
  35. 35. 
    Piskorowski R, Santoro B, Siegelbaum SA 2011. TRIP8b splice forms act in concert to regulate the localization and expression of HCN1 channels in CA1 pyramidal neurons. Neuron 70:3495–509
    [Google Scholar]
  36. 36. 
    Ludwig A, Budde T, Stieber J, Moosmang S, Wahl C et al. 2003. Absence epilepsy and sinus dysrhythmia in mice lacking the pacemaker channel HCN2. EMBO J 22:2216–24
    [Google Scholar]
  37. 37. 
    Fisher DW, Luu P, Agarwal N, Kurz JE, Chetkovich DM 2018. Loss of HCN2 leads to delayed gastrointestinal motility and reduced energy intake in mice. PLOS ONE 13:2e0193012
    [Google Scholar]
  38. 38. 
    DiFrancesco JC, Barbuti A, Milanesi R, Coco S, Bucchi A et al. 2011. Recessive loss-of-function mutation in the pacemaker HCN2 channel causing increased neuronal excitability in a patient with idiopathic generalized epilepsy. J. Neurosci. 31:4817327–37
    [Google Scholar]
  39. 39. 
    Nakamura Y, Shi X, Numata T, Mori Y, Inoue R et al. 2013. Novel HCN2 mutation contributes to febrile seizures by shifting the channel's kinetics in a temperature-dependent manner. PLOS ONE 8:12e80376
    [Google Scholar]
  40. 40. 
    Li M, Malijevic S, Phillips AM, Petrovski S, Hildebrand MS et al. 2018. Gain-of-function HCN2 variants in genetic epilepsy. Hum. Mutat. 39:2202–9
    [Google Scholar]
  41. 41. 
    Hurtado R, Bub G, Herzlinger D 2014. A molecular signature of tissues with pacemaker activity in the heart and upper urinary tract involves coexpressed hyperpolarization-activated cation and T-type Ca2+ channels. FASEB J 28:2730–39
    [Google Scholar]
  42. 42. 
    Shahi PK, Choi S, Zho DC, Kim MY, Park CG et al. 2014. The possible roles of hyperpolarization-activated cyclic nucleotide channels in regulating pacemaker activity in colonic interstitial cells of Cajal. J. Gastroenterol. 49:61001–10
    [Google Scholar]
  43. 43. 
    Jackson HA, Marshall CR, Accili EA 2007. Evolution and structural diversification of hyperpolarization-activated cyclic nucleotide-gated channel genes. Physiol. Genom. 29:3231–45
    [Google Scholar]
  44. 44. 
    Fenske S, Mader R, Scharr A, Paparizos C, Cao-Ehlker X et al. 2011. HCN3 contributes to the ventricular action potential waveform in the murine heart. Circ. Res. 109:91015–23
    [Google Scholar]
  45. 45. 
    Stieglitz MS, Fenske S, Hammelmann V, Becirovic E, Schottle V et al. 2017. Disturbed processing of contextual information in HCN3 channel deficient mice. Front. Mol. Neurosci. 10:436
    [Google Scholar]
  46. 46. 
    Stieber J, Thomer A, Much B, Schneider A, Biel M, Hofmann F 2003. The hyperpolarization-activated channel HCN4 is required for the generation of pacemaker action potentials in the embryonic heart. PNAS 100:2515235–40
    [Google Scholar]
  47. 47. 
    Herrmann S, Stieber J, Stöckl G, Hofmann F, Ludwig A 2007. HCN4 provides a “depolarization reserve” and is not required for heart rate acceleration in mice. EMBO J 26:214423–32
    [Google Scholar]
  48. 48. 
    Baruscotti M, Bucchi A, Viscomi C, Mandelli G, Consalez G et al. 2011. Deep bradycardia and heart block caused by inducible cardiac-specific knockout of the pacemaker channel gene Hcn4. . PNAS 108:41705–10
    [Google Scholar]
  49. 49. 
    Verkerk AO, Wilders R. 2015. Pacemaker activity of the human sinoatrial node: an update on the effects of mutations in HCN4 on the hyperpolarization-activated current. Int. J. Mol. Sci. 16:23071–94
    [Google Scholar]
  50. 50. 
    Baruscotti M, Bucci A, Milanesi R, Paina M, Barbuti A et al. 2017. A gain-of-function mutation in the cardiac pacemaker HCN4 channel increasing cAMP sensitivity is associated with familial inappropriate sinus tachycardia. Eur. Heart J. 38:4280–88
    [Google Scholar]
  51. 51. 
    Zobeiri M, Chaudhary R, Blaich A, Rottmann M, Herrmann S et al. 2019. The hyperpolarization-activated HCN4 channel is important for proper maintenance of oscillatory activity in the thalamocortical system. Cereb. Cortex 29:52291–304
    [Google Scholar]
  52. 52. 
    Shah MM. 2014. Cortical HCN channels: function, trafficking and plasticity. J. Physiol. 592:132711–19
    [Google Scholar]
  53. 53. 
    Gasparini S, DiFrancesco D. 1997. Action of the hyperpolarization-activated current (Ih) blocker ZD 7288 in hippocampal CA1 neurons. Pflüg. Arch 435:199–106
    [Google Scholar]
  54. 54. 
    Magee JC. 1998. Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J. Neurosci. 18:197613–24
    [Google Scholar]
  55. 55. 
    Stuart G, Spruston N. 1998. Determinants of voltage attenuation in neocortical pyramidal neuron dendrites. J. Neurosci. 18:103501–10
    [Google Scholar]
  56. 56. 
    Magee JC. 1999. Dendritic Ih normalizes temporal summation in hippocampal CA1 neurons. Nat. Neurosci. 2:6508–14
    [Google Scholar]
  57. 57. 
    Nolan MF, Malleret G, Dudman JT, Buhl DL, Santoro B et al. 2004. A behavioral role for dendritic integration: HCN1 channels constrain spatial memory and plasticity at inputs to distal dendrites of CA1 pyramidal neurons. Cell 119:5719–32
    [Google Scholar]
  58. 58. 
    Nolan MF, Dudman JT, Dodson PD, Santoro B 2007. HCN1 channels control resting and active integrative properties of stellate cells from layer II of the entorhinal cortex. J. Neurosci. 27:4612440–51
    [Google Scholar]
  59. 59. 
    Shah MM, Anderson AE, Leung V, Lin X, Johnston D 2004. Seizure-induced plasticity of h channels in entorhinal cortical layer III pyramidal neurons. Neuron 44:3495–508
    [Google Scholar]
  60. 60. 
    Poolos NP, Migliore M, Johnston D 2002. Pharmacological upregulation of h-channels reduces the excitability of pyramidal neuron dendrites. Nat. Neurosci. 5:8767–74
    [Google Scholar]
  61. 61. 
    Kase D, Imoto K. 2012. The role of HCN channels on membrane excitability in the nervous system. J. Signal Transduct. 2012:619747
    [Google Scholar]
  62. 62. 
    George MS, Abbott LF, Siegelbaum SA 2009. HCN hyperpolarization-activated cation channels inhibit EPSPs by interactions with M-type K+ channels. Nat. Neurosci. 12:5577–84
    [Google Scholar]
  63. 63. 
    Migliore M, Migliore R. 2012. Know your current Ih: Interaction with a shunting current explains the puzzling effects of its pharmacological or pathological modulations. PLOS ONE 7:5e36867
    [Google Scholar]
  64. 64. 
    Amarillo Y, Zagha E, Mato G, Rudy B, Nadal MS 2014. The interplay of seven subthreshold conductances controls the resting membrane potential and the oscillatory behavior of thalamocortical neurons. J. Neurophysiol. 112:2393–410
    [Google Scholar]
  65. 65. 
    Hu W, Bean BP. 2018. Differential control of axonal and somatic resting potential by voltage-dependent conductances in cortical layer 5 pyramidal neurons. Neuron 97:61315–26.e3
    [Google Scholar]
  66. 66. 
    Harnett MT, Magee JC, Williams SR 2015. Distribution and function of HCN channels in the apical dendritic tuft of neocortical pyramidal neurons. J. Neurosci. 35:31024–37
    [Google Scholar]
  67. 67. 
    Lörincz A, Notomi T, Tamás G, Shigemoto R, Nusser Z 2002. Polarized and compartment-dependent distribution of HCN1 in pyramidal cell dendrites. Nat. Neurosci. 5:111185–93
    [Google Scholar]
  68. 68. 
    Berger T, Larkum ME, Lüscher HR 2001. High Ih channel density in the distal apical dendrite of layer V pyramidal cells increases bidirectional attenuation of EPSPs. J. Neurophysiol. 85:2855–68
    [Google Scholar]
  69. 69. 
    Williams SR, Stuart GJ. 2000. Site independence of EPSP time course is mediated by dendritic Ih in neocortical pyramidal neurons. J. Neurophysiol. 83:53177–82
    [Google Scholar]
  70. 70. 
    Maccaferri G, Mangoni M, Lazzari A, DiFrancesco D 1993. Properties of the hyperpolarization-activated current in rat hippocampal CA1 pyramidal cells. J. Neurophysiol. 69:62129–36
    [Google Scholar]
  71. 71. 
    Huang Z, Lujan R, Martinez-Hernandez J, Lewis AS, Chetkovich DM, Shah MM 2012. TRIP8b-independent trafficking and plasticity of adult cortical presynaptic HCN1 channels. J. Neurosci. 32:4214835–48
    [Google Scholar]
  72. 72. 
    Tsay D, Dudman JT, Siegelbaum SA 2007. HCN1 channels constrain synaptically evoked Ca2+ spikes in distal dendrites of CA1 pyramidal neurons. Neuron 56:61076–89
    [Google Scholar]
  73. 73. 
    Maroso M, Szabo GG, Kim HK, Alexander A, Bui AD et al. 2016. Cannabinoid control of learning and memory through HCN channels. Neuron 89:51059–73
    [Google Scholar]
  74. 74. 
    Williams SR, Stuart GJ. 2003. Voltage- and site-dependent control of the somatic impact of dendritic IPSPs. J. Neurosci. 23:197358–67
    [Google Scholar]
  75. 75. 
    Pavlov I, Scimemi A, Savtchenko L, Kullmann DM, Walker MC 2011. Ih-mediated depolarization enhances the temporal precision of neuronal integration. Nat. Commun. 2:199
    [Google Scholar]
  76. 76. 
    Aponte Y, Lien C-C, Reisinger E, Jonas P 2006. Hyperpolarization-activated cation channels in fast-spiking interneurons of rat hippocampus. J. Physiol. 574:Pt. 1229–43
    [Google Scholar]
  77. 77. 
    Huang Z, Lujan R, Kadurin I, Uebele VN, Renger JJ et al. 2011. Presynaptic HCN1 channels regulate CaV3.2 activity and neurotransmission at select cortical synapses. Nat. Neurosci. 14:4478–86
    [Google Scholar]
  78. 78. 
    Huang Z, Li G, Aguado C, Lujan R, Shah MM 2017. HCN1 channels reduce the rate of exocytosis from a subset of cortical synaptic terminals. Sci. Rep. 7:40257
    [Google Scholar]
  79. 79. 
    Loewenstein Y, Mahon S, Chadderton P, Kitamura K, Sompolinsky H et al. 2005. Bistability of cerebellar Purkinje cells modulated by sensory stimulation. Nat. Neurosci. 8:2202–11
    [Google Scholar]
  80. 80. 
    Williams SR, Christensen SR, Stuart GJ, Häusser M 2002. Membrane potential bistability is controlled by the hyperpolarization-activated current IH in rat cerebellar Purkinje neurons in vitro. J. Physiol. 539:Pt. 2469–83
    [Google Scholar]
  81. 81. 
    De Zeeuw CI, Heobeek FE, Bosman LW, Schonewille M, Witter L, Koekkoek SK 2011. Spatiotemporal firing patterns in the cerebellum. Nat. Rev. Neurosci. 12:6327–44
    [Google Scholar]
  82. 82. 
    Santoro B, Chen S, Luthi A, Pavlidis P, Shumyatsky GP et al. 2000. Molecular and functional heterogeneity of hyperpolarization-activated pacemaker channels in the mouse CNS. J. Neurosci. 20:145264–75
    [Google Scholar]
  83. 83. 
    Garden DLF, Oostland M, Jelitai M, Rinaldi A, Duguid I, Nolan MF 2018. Inferior olive HCN1 channels coordinate synaptic integration and complex spike timing. Cell Rep 22:71722–33
    [Google Scholar]
  84. 84. 
    Rinaldi A, Defterali C, Mialot A, Garden DL, Beraneck M, Nolan MF 2013. HCN1 channels in cerebellar Purkinje cells promote late stages of learning and constrain synaptic inhibition. J. Physiol. 591:225691–709
    [Google Scholar]
  85. 85. 
    Soltesz I, Lightowler S, Leresche N, Jassik-Gerschenfeld D, Pollard CE, Crunelli V 1991. Two inward currents and the transformation of low-frequency oscillations of rat and cat thalamocortical cells. J. Physiol. 441:175–97
    [Google Scholar]
  86. 86. 
    McCormick DA, Pape HC. 1990. Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J. Physiol. 431:291–318
    [Google Scholar]
  87. 87. 
    Hughes SW, Cope DW, Crunelli V 1998. Dynamic clamp study of Ih modulation of burst firing and δ oscillations in thalamocortical neurons in vitro. Neuroscience 87:3541–50
    [Google Scholar]
  88. 88. 
    Atherton JF, Kitano K, Baufreton J, Fan K, Wokosin D et al. 2010. Selective participation of somatodendritic HCN channels in inhibitory but not excitatory synaptic integration in neurons of the subthalamic nucleus. J. Neurosci. 30:4716025–40
    [Google Scholar]
  89. 89. 
    Oswald MJ, Oorschot DE, Schulz JM, Lipski J, Reynolds JNJ 2009. IH current generates the afterhyperpolarisation following activation of subthreshold cortical synaptic inputs to striatal cholinergic interneurons. J. Physiol. 587:Pt. 245879–97
    [Google Scholar]
  90. 90. 
    Cheng J, Umschweif G, Leung J, Sagi Y, Greengard P 2019. HCN2 channels in cholinergic interneurons of nucleus accumbens shell regulate depressive behaviors. Neuron 101:4662–72.e5
    [Google Scholar]
  91. 91. 
    Zhong P, Vickstrom CR, Liu X, Hu Y, Yu L et al. 2018. HCN2 channels in the ventral tegmental area regulate behavioral responses to chronic stress. eLife 7:e32420
    [Google Scholar]
  92. 92. 
    Chan CS, Glajch KE, Gertler TS, Guzman JN, Mercer JN et al. 2011. HCN channelopathy in external globus pallidus neurons in models of Parkinson's disease. Nat. Neurosci. 14:185–92
    [Google Scholar]
  93. 93. 
    Neuhoff H, Neu A, Liss B, Roeper J 2002. Ih channels contribute to the different functional properties of identified dopaminergic subpopulations in the midbrain. J. Neurosci. 22:41290–302
    [Google Scholar]
  94. 94. 
    Ying S-W, Jia F, Abbas SY, Hofmann F, Ludwig A, Goldstein PA 2007. Dendritic HCN2 channels constrain glutamate-driven excitability in reticular thalamic neurons. J. Neurosci. 27:328719–32
    [Google Scholar]
  95. 95. 
    Cuttle MF, Rusznák Z, Wong AY, Owens S, Forsythe ID 2001. Modulation of a presynaptic hyperpolarization-activated cationic current (Ih) at an excitatory synaptic terminal in the rat auditory brainstem. J. Physiol. 534:Pt. 3733–44
    [Google Scholar]
  96. 96. 
    Huang H, Trussell LO. 2014. Presynaptic HCN channels regulate vesicular glutamate transport. Neuron 84:2340–46
    [Google Scholar]
  97. 97. 
    Ko KW, Rasband MN, Meseguer V, Kramer RH, Golding NL 2016. Serotonin modulates spike probability in the axon initial segment through HCN channels. Nat. Neurosci. 19:6826–34
    [Google Scholar]
  98. 98. 
    Chen K, Aradi I, Thon N, Eghbal-Ahmadi M, Baram TZ, Soltesz I 2001. Persistently modified h-channels after complex febrile seizures convert the seizure-induced enhancement of inhibition to hyperexcitability. Nat. Med. 7:3331–37
    [Google Scholar]
  99. 99. 
    Brewster A, Bender RA, Chen Y, Dube C, Eghbal-Ahmadi M, Baram TZ 2002. Developmental febrile seizures modulate hippocampal gene expression of hyperpolarization-activated channels in an isoform- and cell-specific manner. J. Neurosci. 22:114591–99
    [Google Scholar]
  100. 100. 
    Dyhrfjeld-Johnsen J, Morgan RJ, Földy C, Soltesz I 2008. Upregulated H-current in hyperexcitable CA1 dendrites after febrile seizures. Front. Cell Neurosci. 2:2
    [Google Scholar]
  101. 101. 
    Brager DH, Akhavan AR, Johnston D 2012. Impaired dendritic expression and plasticity of h-channels in the fmr1−/y mouse model of fragile X syndrome. Cell Rep 1:3225–33
    [Google Scholar]
  102. 102. 
    Jung S, Jones TD, Lugo JN Jr, Sheerin AH, Miller JW et al. 2007. Progressive dendritic HCN channelopathy during epileptogenesis in the rat pilocarpine model of epilepsy. J. Neurosci. 27:4713012–21
    [Google Scholar]
  103. 103. 
    Jung S, Warner LN, Pitsch J, Becker AJ, Poolos NP 2011. Rapid loss of dendritic HCN channel expression in hippocampal pyramidal neurons following status epilepticus. J. Neurosci. 31:4014291–95
    [Google Scholar]
  104. 104. 
    Marcelin B, Chauviere L, Becker A, Migliore M, Esclapez M, Bernard C 2009. h channel-dependent deficit of theta oscillation resonance and phase shift in temporal lobe epilepsy. Neurobiol. Dis. 33:3436–47
    [Google Scholar]
  105. 105. 
    Brennan GP, Baram TZ, Poolos NP 2016. hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in epilepsy. Cold Spring Harb. Perspect. Med. 6:3a022384
    [Google Scholar]
  106. 106. 
    McClelland S, Flynn C, Dube C, Richichi C, Zha Q et al. 2011. Neuron-restrictive silencer factor-mediated hyperpolarization-activated cyclic nucleotide gated channelopathy in experimental temporal lobe epilepsy. Ann. Neurol. 70:3454–64
    [Google Scholar]
  107. 107. 
    McClelland S, Brennan GP, Dube C, Rajpara S, Iyer S et al. 2014. The transcription factor NRSF contributes to epileptogenesis by selective repression of a subset of target genes. eLife 3:e01267
    [Google Scholar]
  108. 108. 
    Wierschke S, Lehmann TN, Dehnicke C, Horn P, Nitsch R, Deisz RA 2010. Hyperpolarization-activated cation currents in human epileptogenic neocortex. Epilepsia 51:3404–14
    [Google Scholar]
  109. 109. 
    David F, Carcak N, Furdan S, Onat F, Gould T et al. 2018. Suppression of hyperpolarization-activated cyclic nucleotide-gated channel function in thalamocortical neurons prevents genetically determined and pharmacologically induced absence seizures. J. Neurosci. 38:306615–27
    [Google Scholar]
  110. 110. 
    Nishitani A, Kunisawa N, Sugimura T, Sato K, Yoshida Y et al. 2019. Loss of HCN1 subunits causes absence epilepsy in rats. Brain Res 1706:209–17
    [Google Scholar]
  111. 111. 
    Tibbs GR, Posson DJ, Goldstein PA 2016. Voltage-gated ion channels in the PNS: novel therapies for neuropathic pain?. Trends Pharmacol. Sci. 37:7522–42
    [Google Scholar]
  112. 112. 
    Tsantoulas C, Mooney ER, McNaughton PA 2016. HCN2 ion channels: basic science opens up possibilities for therapeutic intervention in neuropathic pain. Biochem. J. 473:182717–36
    [Google Scholar]
  113. 113. 
    Chaplan SR, Guo HQ, Lee DH, Luo L, Liu C et al. 2003. Neuronal hyperpolarization-activated pacemaker channels drive neuropathic pain. J. Neurosci. 23:41169–78
    [Google Scholar]
  114. 114. 
    Yao H, Donnelly DF, Ma C, LaMotte RH 2003. Upregulation of the hyperpolarization-activated cation current after chronic compression of the dorsal root ganglion. J. Neurosci. 23:62069–74
    [Google Scholar]
  115. 115. 
    Jiang Y-Q, Xing GG, Wang SL, Tu HY, Chi YN et al. 2008. Axonal accumulation of hyperpolarization-activated cyclic nucleotide-gated cation channels contributes to mechanical allodynia after peripheral nerve injury in rat. Pain 137:3495–506
    [Google Scholar]
  116. 116. 
    Emery EC, Young GT, Berrocoso EM, Chen L, McNaughton PA 2011. HCN2 ion channels play a central role in inflammatory and neuropathic pain. Science 333:60481462–66
    [Google Scholar]
  117. 117. 
    Tsantoulas C, Lainez S, Wong S, Mehta I, Vilar B, McNaughton PA 2017. Hyperpolarization-activated cyclic nucleotide-gated 2 (HCN2) ion channels drive pain in mouse models of diabetic neuropathy. Sci. Transl. Med. 9:409eaam6072
    [Google Scholar]
  118. 118. 
    Herrmann S, Rajab H, Christ I, Schirdewahn C, Hofler D et al. 2017. Protein kinase A regulates inflammatory pain sensitization by modulating HCN2 channel activity in nociceptive sensory neurons. Pain 158:102012–24
    [Google Scholar]
  119. 119. 
    Santello M, Nevian T. 2015. Dysfunction of cortical dendritic integration in neuropathic pain reversed by serotoninergic neuromodulation. Neuron 86:1233–46
    [Google Scholar]
  120. 120. 
    Santello M, Bisco A, Nevian NE, Lacivita E, Leopoldo M, Nevian T 2017. The brain-penetrant 5-HT7 receptor agonist LP-211 reduces the sensory and affective components of neuropathic pain. Neurobiol. Dis. 106:214–21
    [Google Scholar]
  121. 121. 
    Dini L, Del Lundo M, Resta F, Melchiorre M, Spinelli V et al. 2018. Selective blockade of HCN1/HCN2 channels as a potential pharmacological strategy against pain. Front. Pharmacol. 9:1252
    [Google Scholar]
  122. 122. 
    Young GT, Emery EC, Mooney ER, Tsantoulas C, McNaughton PA 2014. Inflammatory and neuropathic pain are rapidly suppressed by peripheral block of hyperpolarisation-activated cyclic nucleotide-gated ion channels. Pain 155:91708–19
    [Google Scholar]
  123. 123. 
    Lewis AS, Vaidya SP, Blaiss CA, Liu Z, Stoub TR et al. 2011. Deletion of the hyperpolarization-activated cyclic nucleotide-gated channel auxiliary subunit TRIP8b impairs hippocampal Ih localization and function and promotes antidepressant behavior in mice. J. Neurosci. 31:207424–40
    [Google Scholar]
  124. 124. 
    Kim CS, Chang PY, Johnston D 2012. Enhancement of dorsal hippocampal activity by knockdown of HCN1 channels leads to anxiolytic- and antidepressant-like behaviors. Neuron 75:3503–16
    [Google Scholar]
  125. 125. 
    Chen X, Shu S, Bayliss DA 2009. HCN1 channel subunits are a molecular substrate for hypnotic actions of ketamine. J. Neurosci. 29:3600–9
    [Google Scholar]
  126. 126. 
    Kim CS, Brager DH, Johnston D 2018. Perisomatic changes in h-channels regulate depressive behaviors following chronic unpredictable stress. Mol. Psychiatry 23:4892–903
    [Google Scholar]
  127. 127. 
    Ku SM, Han M-H. 2017. HCN channel targets for novel antidepressant treatment. Neurotherapeutics 14:3698–715
    [Google Scholar]
  128. 128. 
    Friedman AK, Walsh JJ, Juarez B, Ku SM, Chaudhury D et al. 2014. Enhancing depression mechanisms in midbrain dopamine neurons achieves homeostatic resilience. Science 344:6181313–19
    [Google Scholar]
  129. 129. 
    Omrani A, van der Vaart T, Mientjes E, van Woerden GM, Hojjati MR et al. 2015. HCN channels are a novel therapeutic target for cognitive dysfunction in neurofibromatosis type 1. Mol. Psychiatry 20:111311–21
    [Google Scholar]
  130. 130. 
    Hussaini SA, Kempadoo KA, Thuault SJ, Siegelbaum SA, Kandel ER 2011. Increased size and stability of CA1 and CA3 place fields in HCN1 knockout mice. Neuron 72:4643–53
    [Google Scholar]
  131. 131. 
    Giocomo LM, Hussaini SA, Zheng F, Kendel ER, Moser MB, Moser EI 2011. Grid cells use HCN1 channels for spatial scaling. Cell 147:51159–70
    [Google Scholar]
  132. 132. 
    Wang M, Ramos BP, Paspalas CD, Shu Y, Simen A et al. 2007. α2A-adrenoceptors strengthen working memory networks by inhibiting cAMP-HCN channel signaling in prefrontal cortex. Cell 129:2397–410
    [Google Scholar]
  133. 133. 
    Mallory CS, Hardcastle K, Bant JS, Giocomo LM 2018. Grid scale drives the scale and long-term stability of place maps. Nat. Neurosci. 21:2270–82
    [Google Scholar]
  134. 134. 
    Thuault SJ, Malleret G, Constantinople CM, Nicholls R, Chen I et al. 2013. Prefrontal cortex HCN1 channels enable intrinsic persistent neural firing and executive memory function. J. Neurosci. 33:3413583–99
    [Google Scholar]
  135. 135. 
    Musial TF, Molina-Campos E, Bean LA, Ybarra N, Borenstein R et al. 2018. Store depletion-induced h-channel plasticity rescues a channelopathy linked to Alzheimer's disease. Neurobiol. Learn. Mem. 154:141–57
    [Google Scholar]
  136. 136. 
    Saito Y, Inoue T, Zhu G, Kimura N, Okada M et al. 2012. Hyperpolarization-activated cyclic nucleotide gated channels: a potential molecular link between epileptic seizures and Aβ generation in Alzheimer's disease. Mol. Neurodegener. 7:50
    [Google Scholar]
  137. 137. 
    Romanelli MN, Sartiani L, Masi A, Mannaioni G, Manetti D et al. 2016. HCN channels modulators: the need for selectivity. Curr. Top. Med. Chem. 16:161764–91
    [Google Scholar]
  138. 138. 
    McClure KJ, Maher M, Wu N, Chaplan SR, Eckert WA 3rd et al. 2011. Discovery of a novel series of selective HCN1 blockers. Bioorg. Med. Chem. Lett. 21:185197–201
    [Google Scholar]
  139. 139. 
    Del Lungo M, Melchiorre M, Guandalini L, Sartiani L, Mugelli A et al. 2012. Novel blockers of hyperpolarization-activated current with isoform selectivity in recombinant cells and native tissue. Br. J. Pharmacol. 166:2602–16
    [Google Scholar]
  140. 140. 
    Peng B-W, Justice JA, Zhang K, He X-H, Sanchez RM 2010. Increased basal synaptic inhibition of hippocampal area CA1 pyramidal neurons by an antiepileptic drug that enhances IH. Neuropsychopharmacology 35:2464–72
    [Google Scholar]
  141. 141. 
    Surges R, Freiman TM, Feuerstein TJ 2003. Gabapentin increases the hyperpolarization-activated cation current Ih in rat CA1 pyramidal cells. Epilepsia 44:2150–56
    [Google Scholar]
  142. 142. 
    Huang Y-Y, Liu YC, Lee CT, Lin YC, Wang ML et al. 2016. Revisiting the lamotrigine-mediated effect on hippocampal GABAergic transmission. Int. J. Mol. Sci. 17:71191
    [Google Scholar]
  143. 143. 
    Tae H-S, Smith KM, Phillips AS, Boyle KA, Li M et al. 2017. Gabapentin modulates HCN4 channel voltage-dependence. Front. Pharmacol. 8:554
    [Google Scholar]
  144. 144. 
    Shin KS, Rothberg BS, Yellen G 2001. Blocker state dependence and trapping in hyperpolarization-activated cation channels: evidence for an intracellular activation gate. J. Gen. Physiol. 117:291–101
    [Google Scholar]
  145. 145. 
    Bucchi A, Baruscotti M, Nardini M, Barbuti A, Micheloni S et al. 2013. Identification of the molecular site of ivabradine binding to HCN4 channels. PLOS ONE 8:1e53132
    [Google Scholar]
  146. 146. 
    Lolicato M, Bucchi A, Arrigoni C, Zucca S, Nardini M et al. 2014. Cyclic dinucleotides bind the C-linker of HCN4 to control channel cAMP responsiveness. Nat. Chem. Biol. 10:6457–62
    [Google Scholar]
  147. 147. 
    Joyce RL, Beyer NP, Vasilopoulos G, Woll KA, Hall AC et al. 2019. Alkylphenol inverse agonists of HCN1 gating: H-bond propensity, ring saturation and adduct geometry differentially determine efficacy and potency. Biochem. Pharmacol. 163:493–508
    [Google Scholar]
  148. 148. 
    Lolicato M, Arrigoni C, Mori T, Sekioka Y, Bryant C et al. 2017. K2P2.1 (TREK-1)-activator complexes reveal a cryptic selectivity filter binding site. Nature 547:7663364–68
    [Google Scholar]
  149. 149. 
    Syeda R, Santos JS, Montal M 2016. The sensorless pore module of voltage-gated K+ channel family 7 embodies the target site for the anticonvulsant retigabine. J. Biol. Chem. 291:62931–37
    [Google Scholar]
  150. 150. 
    Sanguinetti MC. 2014. HERG1 channel agonists and cardiac arrhythmia. Curr. Opin. Pharmacol. 15:22–27
    [Google Scholar]
  151. 151. 
    Heuermann RJ, Jaramillo TC, Ying SW, Suter BA, Lyman KA et al. 2016. Reduction of thalamic and cortical Ih by deletion of TRIP8b produces a mouse model of human absence epilepsy. Neurobiol. Dis. 85:81–92
    [Google Scholar]
  152. 152. 
    Han Y, Noam Y, Lewis AS, Gallagher JJ, Wadman WJ et al. 2015. Identification of small-molecule inhibitors of hyperpolarization-activated cyclic nucleotide-gated channels. J. Biomol. Screen. 20:91124–31
    [Google Scholar]
  153. 153. 
    Saunders A, Macosko EZ, Wysoker A, Goldman M, Krienen FM et al. 2018. Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174:41015–30.e16
    [Google Scholar]
  154. 154. 
    Kalmbach BE, Buchin A, Long B, Close J, Nandi A et al. 2018. h-channels contribute to divergent intrinsic membrane properties of supragranular pyramidal neurons in human versus mouse cerebral cortex. Neuron 100:51194–208.e5
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010919-023356
Loading
/content/journals/10.1146/annurev-pharmtox-010919-023356
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error