1932

Abstract

The three small-conductance calcium-activated potassium (K2) channels and the related intermediate-conductance K3.1 channel are voltage-independent K+ channels that mediate calcium-induced membrane hyperpolarization. When intracellular calcium increases in the channel vicinity, it calcifies the flexible N lobe of the channel-bound calmodulin, which then swings over to the S4-S5 linker and opens the channel. K2 and K3.1 channels are highly druggable and offer multiple binding sites for venom peptides and small-molecule blockers as well as for positive- and negative-gating modulators. In this review, we briefly summarize the physiological role of K channels and then discuss the pharmacophores and the mechanism of action of the most commonly used peptidic and small-molecule K2 and K3.1 modulators. Finally, we describe the progress that has been made in advancing K3.1 blockers and K2.2 negative- and positive-gating modulators toward the clinic for neurological and cardiovascular diseases and discuss the remaining challenges.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010919-023420
2020-01-06
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/60/1/annurev-pharmtox-010919-023420.html?itemId=/content/journals/10.1146/annurev-pharmtox-010919-023420&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Hille B. 2001. Ion Channels of Excitable Membranes Sunderland, MA: Sinauer Associates
  2. 2. 
    Alexander SP, Kelly E, Marrion NV, Peters JA, Faccenda E et al. 2017. The concise guide to pharmacology 2017/18: Overview. Br. J. Pharmacol. 174:Suppl. 1S1–16
    [Google Scholar]
  3. 3. 
    Kaczmarek LK, Aldrich RW, Chandy KG, Grissmer S, Wei AD, Wulff H 2017. International union of basic and clinical pharmacology. C. Nomenclature and properties of calcium-activated and sodium-activated potassium channels. Pharmacol. Rev. 69:1–11
    [Google Scholar]
  4. 4. 
    Monaghan AS, Benton DC, Bahia PK, Hosseini R, Shah YA et al. 2004. The SK3 subunit of small conductance Ca2+-activated K+ channels interacts with both SK1 and SK2 subunits in a heterologous expression system. J. Biol. Chem. 279:1003–9
    [Google Scholar]
  5. 5. 
    Kohler M, Hirschberg B, Bond CT, Kinzie JM, Marrion NV et al. 1996. Small-conductance, calcium-activated potassium channels from mammalian brain. Science 273:1709–14
    [Google Scholar]
  6. 6. 
    Xia XM, Fakler B, Rivard A, Wayman G, Johnson-Pais T et al. 1998. Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature 395:503–7
    [Google Scholar]
  7. 7. 
    Ishii TM, Silvia C, Hirschberg B, Bond CT, Adelman JP, Maylie J 1997. A human intermediate conductance calcium-activated potassium channel. PNAS 94:11651–56
    [Google Scholar]
  8. 8. 
    Joiner WJ, Wang LY, Tang MD, Kaczmarek LK 1997. hSK4, a member of a novel subfamily of calcium-activated potassium channels. PNAS 94:11013–18
    [Google Scholar]
  9. 9. 
    Fanger CM, Ghanshani S, Logsdon NJ, Rauer H, Kalman K et al. 1999. Calmodulin mediates calcium-dependent activation of the intermediate conductance KCa channel, IKCa1. J. Biol. Chem. 274:5746–54
    [Google Scholar]
  10. 10. 
    Adelman JP, Maylie J, Sah P 2012. Small-conductance Ca2+-activated K+ channels: form and function. Annu. Rev. Physiol. 74:245–69
    [Google Scholar]
  11. 11. 
    Bond CT, Herson PS, Strassmaier T, Hammond R, Stackman R et al. 2004. Small conductance Ca2+-activated K+ channel knock-out mice reveal the identity of calcium-dependent afterhyperpolarization currents. J. Neurosci. 24:5301–6
    [Google Scholar]
  12. 12. 
    Hammond RS, Bond CT, Strassmaier T, Ngo-Anh TJ, Adelman JP et al. 2006. Small-conductance Ca2+-activated K+ channel type 2 (SK2) modulates hippocampal learning, memory, and synaptic plasticity. J. Neurosci. 26:1844–53
    [Google Scholar]
  13. 13. 
    Wolfart J, Neuhoff H, Franz O, Roeper J 2001. Differential expression of the small-conductance, calcium-activated potassium channel SK3 is critical for pacemaker control in dopaminergic midbrain neurons. J. Neurosci. 21:3443–56
    [Google Scholar]
  14. 14. 
    Rouchet N, Waroux O, Lamy C, Massotte L, Scuvee-Moreau J et al. 2008. SK channel blockade promotes burst firing in dorsal raphe serotonergic neurons. Eur. J. Neurosci. 28:1108–15
    [Google Scholar]
  15. 15. 
    Stocker M. 2004. Ca2+-activated K+ channels: molecular determinants and function of the SK family. Nat. Rev. Neurosci. 5:758–70
    [Google Scholar]
  16. 16. 
    Messier C, Mourre C, Bontempi B, Sif J, Lazdunski M, Destrade C 1991. Effect of apamin, a toxin that inhibits Ca2+-dependent K+ channels, on learning and memory processes. Brain Res 551:322–26
    [Google Scholar]
  17. 17. 
    Stackman RW, Hammond RS, Linardatos E, Gerlach A, Maylie J et al. 2002. Small conductance Ca2+-activated K+ channels modulate synaptic plasticity and memory encoding. J. Neurosci. 22:10163–71
    [Google Scholar]
  18. 18. 
    McKay BM, Oh MM, Galvez R, Burgdorf J, Kroes RA et al. 2012. Increasing SK2 channel activity impairs associative learning. J. Neurophysiol. 108:863–70
    [Google Scholar]
  19. 19. 
    Bahia PK, Suzuki R, Benton DC, Jowett AJ, Chen MX et al. 2005. A functional role for small-conductance calcium-activated potassium channels in sensory pathways including nociceptive processes. J. Neurosci. 25:3489–98
    [Google Scholar]
  20. 20. 
    Pagadala P, Park CK, Bang S, Xu ZZ, Xie RG et al. 2013. Loss of NR1 subunit of NMDARs in primary sensory neurons leads to hyperexcitability and pain hypersensitivity: involvement of Ca2+-activated small conductance potassium channels. J. Neurosci. 33:13425–30
    [Google Scholar]
  21. 21. 
    Brahler S, Kaistha A, Schmidt VJ, Wolfle SE, Busch C et al. 2009. Genetic deficit of SK3 and IK1 channels disrupts the endothelium-derived hyperpolarizing factor vasodilator pathway and causes hypertension. Circulation 119:2323–32
    [Google Scholar]
  22. 22. 
    Edwards G, Dora KA, Gardener MJ, Garland CJ, Weston AH 1998. K+ is an endothelium-derived hyperpolarizing factor in rat arteries. Nature 396:269–72
    [Google Scholar]
  23. 23. 
    Tuteja D, Xu D, Timofeyev V, Lu L, Sharma D et al. 2005. Differential expression of small-conductance Ca2+-activated K+ channels SK1, SK2, and SK3 in mouse atrial and ventricular myocytes. Am. J. Physiol. Heart Circ. Physiol. 289:H2714–23
    [Google Scholar]
  24. 24. 
    Zhang Q, Timofeyev V, Lu L, Li N, Singapuri A et al. 2008. Functional roles of a Ca2+-activated K+ channel in atrioventricular nodes. Circ. Res. 102:465–71
    [Google Scholar]
  25. 25. 
    Ellinor PT, Lunetta KL, Glazer NL, Pfeufer A, Alonso A et al. 2010. Common variants in KCNN3 are associated with lone atrial fibrillation. Nat. Genet. 42:240–44
    [Google Scholar]
  26. 26. 
    Olesen MS, Jabbari J, Holst AG, Nielsen JB, Steinbruchel DA et al. 2011. Screening of KCNN3 in patients with early-onset lone atrial fibrillation. Europace 13:963–67
    [Google Scholar]
  27. 27. 
    Zhang XD, Timofeyev V, Li N, Myers RE, Zhang DM et al. 2014. Critical roles of a small conductance Ca2+-activated K+ channel (SK3) in the repolarization process of atrial myocytes. Cardiov. Res. 101:317–25
    [Google Scholar]
  28. 28. 
    Barfod ET, Moore AL, Lidofsky SD 2001. Cloning and functional expression of a liver isoform of the small conductance Ca2+-activated K+ channel SK3. Am. J. Physiol. Cell. Physiol. 280:C836–42
    [Google Scholar]
  29. 29. 
    Vandorpe DH, Shmukler BE, Jiang L, Lim B, Maylie J et al. 1998. cDNA cloning and functional characterization of the mouse Ca2+-gated K+ channel, mIK1: roles in regulatory volume decrease and erythroid differentiation. J. Biol. Chem. 273:21542–53
    [Google Scholar]
  30. 30. 
    Hoffman JF, Joiner W, Nehrke K, Potapova O, Foye K, Wickrema A 2003. The hSK4 (KCNN4) isoform is the Ca2+-activated K+ channel (Gardos channel) in human red blood cells. PNAS 100:7366–71
    [Google Scholar]
  31. 31. 
    Gardos G. 1958. The function of calcium in the potassium permeability of human erythrocytes. Biochem. Biophys. Acta 30:653–54
    [Google Scholar]
  32. 32. 
    Glogowska E, Lezon-Geyda K, Maksimova Y, Schulz VP, Gallagher PG 2015. Mutations in the Gardos channel (KCNN4) are associated with hereditary xerocytosis. Blood 126:1281–84
    [Google Scholar]
  33. 33. 
    Andolfo I, Russo R, Manna F, Shmukler BE, Gambale A et al. 2015. Novel Gardos channel mutations linked to dehydrated hereditary stomatocytosis (xerocytosis). Am. J. Hematol. 90:921–26
    [Google Scholar]
  34. 34. 
    Ghanshani S, Wulff H, Miller MJ, Rohm H, Neben A et al. 2000. Up-regulation of the IKCa1 potassium channel during T-cell activation: molecular mechanism and functional consequences. J. Biol. Chem. 275:37137–49
    [Google Scholar]
  35. 35. 
    Wulff H, Knaus HG, Pennington M, Chandy KG 2004. K+ channel expression during B-cell differentiation: implications for immunomodulation and autoimmunity. J. Immunol. 173:776–86
    [Google Scholar]
  36. 36. 
    Shumilina E, Lam RS, Wolbing F, Matzner N, Zemtsova IM et al. 2008. Blunted IgE-mediated activation of mast cells in mice lacking the Ca2+-activated K+ channel KCa3.1. J. Immunol. 180:8040–47
    [Google Scholar]
  37. 37. 
    Toyama K, Wulff H, Chandy KG, Azam P, Raman G et al. 2008. The intermediate-conductance calcium-activated potassium channel KCa3.1 contributes to atherogenesis in mice and humans. J. Clin. Investig. 118:3025–37
    [Google Scholar]
  38. 38. 
    Kaushal V, Koeberle PD, Wang Y, Schlichter LC 2007. The Ca2+-activated K+ channel KCNN4/KCa3.1 contributes to microglia activation and nitric oxide-dependent neurodegeneration. J. Neurosci. 27:234–44
    [Google Scholar]
  39. 39. 
    Feske S, Wulff H, Skolnik EY 2015. Ion channels in innate and adaptive immunity. Annu. Rev. Immunol. 33:291–353
    [Google Scholar]
  40. 40. 
    Chen YJ, Nguyen HM, Maezawa I, Grossinger EM, Garing AL et al. 2016. The potassium channel KCa3.1 constitutes a pharmacological target for neuroinflammation associated with ischemia/reperfusion stroke. J. Cereb. Blood Flow. Metab. 36:2146–61
    [Google Scholar]
  41. 41. 
    Nguyen HM, Grossinger EM, Horiuchi M, Davis KW, Jin LW et al. 2017. Differential Kv1.3, KCa3.1, and Kir2.1 expression in “classically” and “alternatively” activated microglia. Glia 65:106–21
    [Google Scholar]
  42. 42. 
    King B, Rizwan AP, Asmara H, Heath NC, Engbers JD et al. 2015. IKCa channels are a critical determinant of the slow AHP in CA1 pyramidal neurons. Cell Rep 11:175–82
    [Google Scholar]
  43. 43. 
    Sahu G, Asmara H, Zhang FX, Zamponi GW, Turner RW 2017. Activity-dependent facilitation of CaV1.3 calcium channels promotes KCa3.1 activation in hippocampal neurons. J. Neurosci. 37:11255–70
    [Google Scholar]
  44. 44. 
    Wang K, Mateos-Aparicio P, Honigsperger C, Raghuram V, Wu WW et al. 2016. IK1 channels do not contribute to the slow afterhyperpolarization in pyramidal neurons. eLife 5:e11206
    [Google Scholar]
  45. 45. 
    Di L, Srivastava S, Zhdanova O, Ding Y, Li Z et al. 2010. Inhibition of the K+ channel KCa3.1 ameliorates T cell–mediated colitis. PNAS 107:1541–46
    [Google Scholar]
  46. 46. 
    Raychaudhuri SK, Wulff H, Raychaudhuri SP 2016. KCa3.1−/− mice do not develop CIA: regulatory role for KCa3.1 in autoimmune arthritis. J. Cell. Physiol. 231:2313–14
    [Google Scholar]
  47. 47. 
    Si H, Heyken WT, Wolfle SE, Tysiac M, Schubert R et al. 2006. Impaired endothelium-derived hyperpolarizing factor–mediated dilations and increased blood pressure in mice deficient of the intermediate-conductance Ca2+-activated K+ channel. Circ. Res. 99:537–44
    [Google Scholar]
  48. 48. 
    Grgic I, Kaistha BP, Paschen S, Kaistha A, Busch C et al. 2009. Disruption of the Gardos channel (KCa3.1) in mice causes subtle erythrocyte macrocytosis and progressive splenomegaly. Pflüg. Arch. 458:291–302
    [Google Scholar]
  49. 49. 
    Heitzmann D, Warth R. 2008. Physiology and pathophysiology of potassium channels in gastrointestinal epithelia. Physiol. Rev. 88:1119–82
    [Google Scholar]
  50. 50. 
    Kohler R, Wulff H, Eichler I, Kneifel M, Neumann D et al. 2003. Blockade of the intermediate-conductance calcium-activated potassium channel as a new therapeutic strategy for restenosis. Circulation 108:1119–25
    [Google Scholar]
  51. 51. 
    Tharp DL, Wamhoff BR, Wulff H, Raman G, Cheong A, Bowles DK 2008. Local delivery of the KCa3.1 blocker, TRAM-34, prevents acute angioplasty-induced coronary smooth muscle phenotypic modulation and limits stenosis. Arterioscler. Thromb. Vasc. Biol. 28:1084–89
    [Google Scholar]
  52. 52. 
    D'Alessandro G, Catalano M, Sciaccaluga M, Chece G, Cipriani R et al. 2013. KCa3.1 channels are involved in the infiltrative behavior of glioblastoma in vivo. . Cell Death Dis 4:e773
    [Google Scholar]
  53. 53. 
    Turner KL, Honasoge A, Robert SM, McFerrin MM, Sontheimer H 2014. A proinvasive role for the Ca2+-activated K+ channel KCa3.1 in malignant glioma. Glia 62:971–81
    [Google Scholar]
  54. 54. 
    Steudel FA, Mohr CJ, Stegen B, Nguyen HY, Barnert A et al. 2017. SK4 channels modulate Ca2+ signalling and cell cycle progression in murine breast cancer. Mol. Oncol. 11:1172–88
    [Google Scholar]
  55. 55. 
    Lallet-Daher H, Roudbaraki M, Bavencoffe A, Mariot P, Gackiere F et al. 2009. Intermediate-conductance Ca2+-activated K+ channels (IKCa1) regulate human prostate cancer cell proliferation through a close control of calcium entry. Oncogene 28:1792–806
    [Google Scholar]
  56. 56. 
    Lee CH, MacKinnon R. 2018. Activation mechanism of a human SK-calmodulin channel complex elucidated by cryo-EM structures. Science 360:508–13
    [Google Scholar]
  57. 57. 
    Schumacher MA, Rivard AF, Bachinger HP, Adelman JP 2001. Structure of the gating domain of a Ca2+-activated K+ channel complexed with Ca2+/calmodulin. Nature 410:1120–24
    [Google Scholar]
  58. 58. 
    Halling DB, Kenrick SA, Riggs AF, Aldrich RW 2014. Calcium-dependent stoichiometries of the KCa2.2 (SK) intracellular domain/calmodulin complex in solution. J. Gen. Physiol. 143:231–52
    [Google Scholar]
  59. 59. 
    Zhang M, Pascal JM, Schumann M, Armen RS, Zhang JF 2012. Identification of the functional binding pocket for compounds targeting small-conductance Ca2+-activated potassium channels. Nat. Commun. 3:1021
    [Google Scholar]
  60. 60. 
    Zhang M, Pascal JM, Zhang JF 2013. Unstructured to structured transition of an intrinsically disordered protein peptide in coupling Ca2+-sensing and SK channel activation. PNAS 110:4828–33
    [Google Scholar]
  61. 61. 
    Zhang M, Meng XY, Cui M, Pascal JM, Logothetis DE, Zhang JF 2014. Selective phosphorylation modulates the PIP2 sensitivity of the CaM-SK channel complex. Nat. Chem. Biol. 10:753–59
    [Google Scholar]
  62. 62. 
    Cho LT, Alexandrou AJ, Torella R, Knafels J, Hobbs J et al. 2018. An intracellular allosteric modulator binding pocket in SK2 ion channels is shared by multiple chemotypes. Structure 26:533–44.e3
    [Google Scholar]
  63. 63. 
    Wang RY, Song Y, Barad BA, Cheng Y, Fraser JS, DiMaio F 2016. Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta. eLife 5:e17219
    [Google Scholar]
  64. 64. 
    Hugues M, Romey G, Duval D, Vincent JP, Lazdunski M 1982. Apamin as a selective blocker of the calcium-dependent potassium channel in neuroblastoma cells: voltage-clamp and biochemical characterization of the toxin receptor. PNAS 79:1308–12
    [Google Scholar]
  65. 65. 
    Pedarzani P, Stocker M. 2008. Molecular and cellular basis of small- and intermediate-conductance, calcium-activated potassium channel function in the brain. Cell. Mol. Life Sci. 65:3196–217
    [Google Scholar]
  66. 66. 
    Wulff H, Zhorov BS. 2008. K+ channel modulators for the treatment of neurological disorders and autoimmune diseases. Chem. Rev. 108:1744–73
    [Google Scholar]
  67. 67. 
    Wulff H, Kolski-Andreaco A, Sankaranarayanan A, Sabatier JM, Shakkottai V 2007. Modulators of small- and intermediate-conductance calcium-activated potassium channels and their therapeutic indications. Curr. Med. Chem. 14:1437–57
    [Google Scholar]
  68. 68. 
    Mourre C, Fournier C, Soumireu-Mourat B 1997. Apamin, a blocker of the calcium-activated potassium channel, induces neurodegeneration of Purkinje cells exclusively. Brain Res 778:405–8
    [Google Scholar]
  69. 69. 
    Lamy C, Goodchild SJ, Weatherall KL, Jane DE, Liegeois JF et al. 2010. Allosteric block of KCa2 channels by apamin. J. Biol. Chem. 285:27067–77
    [Google Scholar]
  70. 70. 
    Nolting A, Ferraro T, D'Hoedt D, Stocker M 2006. An amino acid outside the pore region influences apamin sensitivity in small conductance Ca2+-activated K+ channels. J. Biol. Chem. 82:3478–86
    [Google Scholar]
  71. 71. 
    Castle NA, Strong PN. 1986. Identification of two toxins from scorpion (Leiurus quinquestriatus) venom which block distinct classes of calcium-activated potassium channel. FEBS Lett 209:117–21
    [Google Scholar]
  72. 72. 
    Auguste P, Hugues M, Grave B, Gesquiere JC, Maes P et al. 1990. Leiurotoxin I (scyllatoxin), a peptide ligand for Ca2+-activated K+ channels: chemical synthesis, radiolabeling, and receptor characterization. J. Biol. Chem. 265:4753–59
    [Google Scholar]
  73. 73. 
    Pedarzani P, D'Hoedt D, Doorty KB, Wadsworth JD, Joseph JS et al. 2002. Tamapin, a venom peptide from the Indian red scorpion (Mesobuthus tamulus) that targets small conductance Ca2+-activated K+ channels and afterhyperpolarization currents in central neurons. J. Biol. Chem. 277:46101–9
    [Google Scholar]
  74. 74. 
    Shakkottai VG, Regaya I, Wulff H, Fajloun Z, Tomita H et al. 2001. Design and characterization of a highly selective peptide inhibitor of the small conductance calcium-activated K+ channel, SkCa2. J. Biol. Chem. 276:43145–51
    [Google Scholar]
  75. 75. 
    Kasumu AW, Hougaard C, Rode F, Jacobsen TA, Sabatier JM et al. 2012. Selective positive modulator of calcium-activated potassium channels exerts beneficial effects in a mouse model of spinocerebellar ataxia type 2. Chem. Biol. 19:1340–53
    [Google Scholar]
  76. 76. 
    Rauer H, Lanigan MD, Pennington MW, Aiyar J, Ghanshani S et al. 2000. Structure-guided transformation of charybdotoxin yields an analog that selectively targets Ca2+-activated over voltage-gated K+ channels. J. Biol. Chem. 275:1201–8
    [Google Scholar]
  77. 77. 
    Castle NA, Lodon DO, Creech C, Fajloun Z, Stocker JW, Sabatier J-M 2003. Maurotoxin - a potent inhibitor of the intermediate conductance Ca2+-activated potassium channel. Mol. Pharmacol. 63:409–18
    [Google Scholar]
  78. 78. 
    Ishii TM, Maylie J, Adelman JP 1997. Determinants of apamin and d-tubocurarine block in SK potassium channels. J. Biol. Chem. 272:23195–200
    [Google Scholar]
  79. 79. 
    Castle NA, Haylett DG, Morgan JM, Jenkinson DH 1993. Dequalinium: a potent inhibitor of apamin-sensitive K+ channels in hepatocytes and of nicotinic responses in skeletal muscle. Eur. J. Pharmacol. 236:201–7
    [Google Scholar]
  80. 80. 
    Galanakis D, Davis CA, Del Rey Herrero B, Ganellin CR, Dunn PM, Jenkinson DH 1995. Synthesis and structure-activity relationships of dequalinium analogues as K+ channel blockers. Investigations on the role of the charged heterocycle. J. Med. Chem. 38:595–606
    [Google Scholar]
  81. 81. 
    Galanakis D, Ganellin CR, Malik S, Dunn PM 1996. Synthesis and pharmacological testing of dequalinium analogues as blockers of the apamin-sensitive Ca2+-activated K+ channel: variation of the length of the alkylene chain. J. Med. Chem. 39:3592–95
    [Google Scholar]
  82. 82. 
    Campos Rosa J, Galanakis D, Piergentili A, Bhandari K, Ganellin CR et al. 2000. Synthesis, molecular modeling, and pharmacological testing of bis-quinolinium cyclophanes: potent, non-peptidic blockers of the apamin-sensitive Ca2+-activated K+ channel. J. Med. Chem. 43:420–31
    [Google Scholar]
  83. 83. 
    Chen JQ, Galanakis D, Ganellin CR, Dunn PM, Jenkinson DH 2000. bis-Quinolinium cyclophanes: 8,14-diaza-1,7(1, 4)-diquinolinacyclotetradecaphane (UCL 1848), a highly potent and selective, nonpeptidic blocker of the apamin-sensitive Ca2+-activated K+ channel. J. Med. Chem. 43:3478–81
    [Google Scholar]
  84. 84. 
    Johnson SW, Seutin V. 1997. Bicuculline methiodide potentiates NMDA-dependent burst firing in rat dopamine neurons by blocking apamin-sensitive Ca2+-activated K+ currents. Neurosci. Lett. 231:13–16
    [Google Scholar]
  85. 85. 
    Gentles RG, Grant-Young K, Hu S, Huang Y, Poss MA et al. 2008. Initial SAR studies on apamin-displacing 2-aminothiazole blockers of calcium-activated small conductance potassium channels. Bioorg. Med. Chem. Lett. 18:5316–19
    [Google Scholar]
  86. 86. 
    Simo-Vicens R, Bomholtz SH, Sørensen US, Bentzen BH 2018. 2,6-bis(2-benzimidazolyl)pyridine (BBP) is a potent and selective inhibitor of small conductance calcium-activated potassium (SK) channels. Front. Pharmacol. 9:1409
    [Google Scholar]
  87. 87. 
    Skibsbye L, Poulet C, Diness JG, Bentzen BH, Yuan L et al. 2014. Small-conductance calcium-activated potassium (SK) channels contribute to action potential repolarization in human atria. Cardiovas. Res. 103:156–67
    [Google Scholar]
  88. 88. 
    Kirchhoff JE, Diness JG, Abildgaard L, Sheykhzade M, Grunnet M, Jespersen T 2016. Antiarrhythmic effect of the Ca2+-activated K+ (SK) channel inhibitor ICA combined with either amiodarone or dofetilide in an isolated heart model of atrial fibrillation. Pflüg. Arch. 468:1853–63
    [Google Scholar]
  89. 89. 
    Gluais P, Edwards G, Weston AH, Falck JR, Vanhoutte PM, Feletou M 2005. Role of SKCa and IKCa in endothelium-dependent hyperpolarizations of the guinea-pig isolated carotid artery. Br. J. Pharmacol. 144:477–85
    [Google Scholar]
  90. 90. 
    Berkowitz LR, Orringer EP. 1981. Effect of cetiedil, an in vitro antisickling agent, on erythrocyte membrane cation permeability. J. Clin. Investig. 68:1215–20
    [Google Scholar]
  91. 91. 
    Roxburgh CJ, Ganellin CR, Shiner MA, Benton DC, Dunn PM et al. 1996. The synthesis and some pharmacological actions of the enantiomers of the K+-channel blocker cetiedil. J. Pharm. Pharmacol. 48:851–57
    [Google Scholar]
  92. 92. 
    Ellory JC, Nash GB, Stone PC, Culliford SJ, Horwitz E, Stuart J 1992. Mode of action and comparative efficacy of pharmacological agents that inhibit calcium-dependent dehydration of sickle cells. Br. J. Pharmacol. 106:972–77
    [Google Scholar]
  93. 93. 
    Ellory JC, Culliford SJ, Smith PA, Wolowyk MW, Knaus EE 1994. Specific inhibition of Ca-activated K channels in red cells by selected dihydropyridine derivatives. Br. J. Pharmacol. 111:903–5
    [Google Scholar]
  94. 94. 
    Alvarez J, Montero M, Garcia-Sancho J 1992. High affinity inhibition of Ca2+-dependent K+ channels by cytochrome P-450 inhibitors. J. Biol. Chem. 267:11789–93
    [Google Scholar]
  95. 95. 
    Urbahns K, Horvath E, Stasch JP, Mauler F 2003. 4-Phenyl-4H-pyrans as IKCa channel blockers. Bioorg. Med. Chem. Lett. 13:2637–39
    [Google Scholar]
  96. 96. 
    Urbahns K, Goldmann S, Kruger J, Horvath E, Schuhmacher J et al. 2005. IKCa-channel blockers. Part 2: discovery of cyclohexadienes. Bioorg. Med. Chem. Lett. 15:401–4
    [Google Scholar]
  97. 97. 
    Mauler F, Hinz V, Horvath E, Schuhmacher J, Hofmann HA et al. 2004. Selective intermediate-/small-conductance calcium-activated potassium channel (KCNN4) blockers are potent and effective therapeutics in experimental brain oedema and traumatic brain injury caused by acute subdural haematoma. Eur. J. Neurosci. 20:1761–68
    [Google Scholar]
  98. 98. 
    De Franceschi L, Saadane N, Trudel M, Alper SL, Brugnara C, Beuzard Y 1994. Treatment with oral clotrimazole blocks Ca2+-activated K+ transport and reverses erythrocyte dehydration in transgenic SAD mice. A model for therapy of sickle cell disease. J. Clin. Investig. 93:1670–76
    [Google Scholar]
  99. 99. 
    Brugnara C, Armsby CC, Sakamoto M, Rifai N, Alper SL, Platt O 1995. Oral administration of clotrimazole and blockade of human erythrocyte Ca++-activated K+ channel: the imidazole ring is not required for inhibitory activity. J. Pharmacol. Exp. Ther. 273:266–72
    [Google Scholar]
  100. 100. 
    Wulff H, Miller MJ, Haensel W, Grissmer S, Cahalan MD, Chandy KG 2000. Design of a potent and selective inhibitor of the intermediate-conductance Ca2+-activated K+ channel, IKCa1: a potential immunosuppressant. PNAS 97:8151–56
    [Google Scholar]
  101. 101. 
    Girodet PO, Ozier A, Carvalho G, Ilina O, Ousova O et al. 2013. Ca2+-activated K+ channel-3.1 blocker TRAM-34 attenuates airway remodeling and eosinophilia in a murine asthma model. Am. J. Respir. Cell. Mol. Biol. 48:212–19
    [Google Scholar]
  102. 102. 
    Chen YJ, Lam J, Gregory CR, Schrepfer S, Wulff H 2013. The Ca2+-activated K+ channel KCa3.1 as a potential new target for the prevention of allograft vasculopathy. PLOS ONE 8:e81006
    [Google Scholar]
  103. 103. 
    Grgic I, Kiss E, Kaistha BP, Busch C, Kloss M et al. 2009. Renal fibrosis is attenuated by targeted disruption of KCa3.1 potassium channels. PNAS 106:14518–23
    [Google Scholar]
  104. 104. 
    Huang C, Shen S, Ma Q, Chen J, Gill A et al. 2013. Blockade of KCa3.1 ameliorates renal fibrosis through the TGF-β1/Smad pathway in diabetic mice. Diabetes 62:2923–34
    [Google Scholar]
  105. 105. 
    Ju CH, Wang XP, Gao CY, Zhang SX, Ma XH, Liu C 2015. Blockade of KCa3.1 attenuates left ventricular remodeling after experimental myocardial infarction. Cell. Physiol. Biochem. 36:1305–15
    [Google Scholar]
  106. 106. 
    Ataga KI, Reid M, Ballas SK, Yasin Z, Bigelow C et al. 2011. Improvements in haemolysis and indicators of erythrocyte survival do not correlate with acute vaso-occlusive crises in patients with sickle cell disease: a phase III randomized, placebo-controlled, double-blind study of the Gardos channel blocker senicapoc (ICA-17043). Br. J. Haematol. 153:92–104
    [Google Scholar]
  107. 107. 
    Van Der Velden J, Sum G, Barker D, Koumoundouros E, Barcham G et al. 2013. KCa3.1 channel-blockade attenuates airway pathophysiology in a sheep model of chronic asthma. PLOS ONE 8:e66886
    [Google Scholar]
  108. 108. 
    Wulff H, Castle NA. 2010. Therapeutic potential of KCa3.1 blockers: recent advances and promising trends. Expert. Rev. Clin. Pharmacol. 3:385–96
    [Google Scholar]
  109. 109. 
    Rivera A, Vandorpe DH, Shmukler BE, Gallagher DR, Fikry CC et al. 2017. Erythrocytes from hereditary xerocytosis patients heterozygous for KCNN4 V282M exhibit increased spontaneous Gardos channel-like activity inhibited by senicapoc. Am. J. Hematol. 92:E108–10
    [Google Scholar]
  110. 110. 
    Jin LW, Di Lucente J, Nguyen HM, Singh V, Singh L et al. 2019. Repurposing the KCa3.1 inhibitor senicapoc for Alzheimer's disease. Ann. Clin. Transl. Neurol. 6:72338
    [Google Scholar]
  111. 111. 
    Jørgensen S, Dyhring T, Brown DT, Strøbæk D, Christophersen P, Demnitz J 2013. A high-throughput screening campaign for detection of Ca2+-activated K+ channel activators and inhibitors using a fluorometric imaging plate reader–based Tl+-influx assay. Assay Drug Dev. Technol. 11:163–72
    [Google Scholar]
  112. 112. 
    Strøbæk D, Brown DT, Jenkins DP, Chen YJ, Coleman N et al. 2013. NS6180, a new KCa 3.1 channel inhibitor prevents T-cell activation and inflammation in a rat model of inflammatory bowel disease. Br. J. Pharmacol. 168:432–44
    [Google Scholar]
  113. 113. 
    Kang H, Kerloc'h A, Rotival M, Xu X, Zhang Q et al. 2014. Kcnn4 is a regulator of macrophage multinucleation in bone homeostasis and inflammatory disease. Cell Rep 8:1210–24
    [Google Scholar]
  114. 114. 
    Wulff H, Gutman GA, Cahalan MD, Chandy KG 2001. Delineation of the clotrimazole/TRAM-34 binding site on the intermediate conductance calcium-activated potassium channel IKCa1. J. Biol. Chem. 276:32040–45
    [Google Scholar]
  115. 115. 
    Nguyen HM, Singh V, Pressly B, Jenkins DP, Wulff H, Yarov-Yarovoy V 2017. Structural insights into the atomistic mechanisms of action of small molecule inhibitors targeting the KCa3.1 channel pore. Mol. Pharmacol. 91:392–402
    [Google Scholar]
  116. 116. 
    Zhou Y, Morais-Cabral JH, Kaufman A, MacKinnon R 2001. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Å resolution. Nature 414:43–48
    [Google Scholar]
  117. 117. 
    Strøbæk D, Hougaard C, Johansen TH, Sørensen US, Nielsen EO et al. 2006. Inhibitory gating modulation of small conductance Ca2+-activated K+ channels by the synthetic compound (R)-N-(benzimidazol-2-yl)-1,2,3,4-tetrahydro-1-naphtylamine (NS8593) reduces afterhyperpolarizing current in hippocampal CA1 neurons. Mol. Pharmacol. 70:1771–82
    [Google Scholar]
  118. 118. 
    Sørensen US, Strøbæk D, Christophersen P, Hougaard C, Jensen ML et al. 2008. Synthesis and structure-activity relationship studies of 2-(N-substituted)-aminobenzimidazoles as potent negative gating modulators of small conductance Ca2+-activated K+ channels. J. Med. Chem. 51:7625–34
    [Google Scholar]
  119. 119. 
    Sørensen U, Mete A. 2019. Benzimidazole derivatives useful as potassium channel inhibitors WO Patent 2019038315
  120. 120. 
    Jenkins DP, Strøbæk D, Hougaard C, Jensen ML, Hummel R et al. 2011. Negative gating modulation by (R)-N-(benzimidazol-2-yl)-1,2,3,4-tetrahydro-1-naphthylamine (NS8593) depends on residues in the inner pore vestibule: pharmacological evidence of deep-pore gating of KCa2 channels. Mol. Pharmacol. 79:899–909
    [Google Scholar]
  121. 121. 
    Bruening-Wright A, Schumacher MA, Adelman JP, Maylie J 2002. Localization of the activation gate for small conductance Ca2+-activated K+ channels. J. Neurosci. 22:6499–506
    [Google Scholar]
  122. 122. 
    Simo-Vicens R, Kirchhoff JE, Dolce B, Abildgaard L, Speerschneider T et al. 2017. A new negative allosteric modulator, AP14145, for the study of small conductance calcium-activated potassium (KCa2) channels. Br. J. Pharmacol. 174:4396–408
    [Google Scholar]
  123. 123. 
    Gentles RG, Hu S, Huang Y, Grant-Young K, Poss MA et al. 2008. Preliminary SAR studies on non-apamin-displacing 4-(aminomethylaryl)pyrrazolopyrimidine KCa channel blockers. Bioorg. Med. Chem Lett. 18:5694–97
    [Google Scholar]
  124. 124. 
    Hougaard C, Hammami S, Eriksen BL, Sorensen US, Jensen ML et al. 2012. Evidence for a common pharmacological interaction site on KCa2 channels providing both selective activation and selective inhibition of the human KCa2.1 subtype. Mol. Pharmacol. 81:210–19
    [Google Scholar]
  125. 125. 
    Olivan-Viguera A, Valero MS, Coleman N, Brown BM, Laria C et al. 2015. A novel pan-negative-gating modulator of KCa2/3 channels, fluoro-di-benzoate, RA-2, inhibits endothelium-derived hyperpolarization-type relaxation in coronary artery and produces bradycardia in vivo. Mol. Pharmacol. 87:338–48
    [Google Scholar]
  126. 126. 
    Diness JG, Sørensen US, Nissen JD, Al-Shahib B, Jespersen T et al. 2010. Inhibition of small-conductance Ca2+-activated K+ channels terminates and protects against atrial fibrillation. Circ. Arrhythm. Electrophysiol. 3:380–90
    [Google Scholar]
  127. 127. 
    Diness JG, Skibsbye L, Jespersen T, Bartels ED, Sørensen US et al. 2011. Effects on atrial fibrillation in aged hypertensive rats by Ca2+-activated K+ channel inhibition. Hypertension 57:1129–35
    [Google Scholar]
  128. 128. 
    Diness JG, Skibsbye L, Simo-Vicens R, Santos JL, Lundegaard P et al. 2017. Termination of vernakalant-resistant atrial fibrillation by inhibition of small-conductance Ca2+-activated K+ channels in pigs. Circ. Arrhythm. Electrophysiol. 10:e005125
    [Google Scholar]
  129. 129. 
    Brown BM, Shim H, Wulff H 2017. Are there superagonists for calcium-activated potassium channels?. Channels 11:504–6
    [Google Scholar]
  130. 130. 
    Devor DC, Singh AK, Frizzell RA, Bridges RJ 1996. Modulation of Cl secretion by benzimidazolones. I. Direct activation of a Ca2+-dependent K+ channel. Am. J. Physiol. 271:L775–84
    [Google Scholar]
  131. 131. 
    Singh S, Syme CA, Singh AK, Devor DC, Bridges RJ 2001. Benzimidazolone activators of chloride secretion: potential therapeutics for cystic fibrosis and chronic obstructive pulmonary disease. J. Pharmacol. Exp. Ther. 296:600–11
    [Google Scholar]
  132. 132. 
    Cao Y, Dreixler JC, Roizen JD, Roberts MT, Houamed KM 2001. Modulation of recombinant small-conductance Ca2+-activated K+ channels by the muscle relaxant chlorzoxazone and structurally related compounds. J. Pharmacol. Exp. Ther. 296:683–89
    [Google Scholar]
  133. 133. 
    Strøbæk D, Teuber L, Jørgensen TD, Ahring PK, Kjaer K et al. 2004. Activation of human IK and SK Ca2+-activated K+ channels by NS309 (6,7-dichloro-1H-indole-2,3-dione 3-oxime). Biochim. Biophys. Acta 1665:1–5
    [Google Scholar]
  134. 134. 
    Sankaranarayanan A, Raman G, Busch C, Schultz T, Zimin PI et al. 2009. Naphtho[1,2-d]thiazol-2-ylamine (SKA-31), a new activator of KCa2 and KCa3.1 potassium channels, potentiates the endothelium-derived hyperpolarizing factor response and lowers blood pressure. Mol. Pharmacol. 75:281–95
    [Google Scholar]
  135. 135. 
    Coleman N, Brown BM, Olivan-Viguera A, Singh V, Olmstead MM et al. 2014. New positive Ca2+-activated K+ channel gating modulators with selectivity for KCa3.1. Mol. Pharmacol. 86:342–57
    [Google Scholar]
  136. 136. 
    Hougaard C, Eriksen BL, Jorgensen S, Johansen TH, Dyhring T et al. 2007. Selective positive modulation of the SK3 and SK2 subtypes of small conductance Ca2+-activated K+ channels. Br. J. Pharmacol. 151:655–65
    [Google Scholar]
  137. 137. 
    Shakkottai VG, Chou CH, Oddo S, Sailer CA, Knaus HG et al. 2004. Enhanced neuronal excitability in the absence of neurodegeneration induces cerebellar ataxia. J. Clin. Investig. 113:582–90
    [Google Scholar]
  138. 138. 
    Pedarzani P, Mosbacher J, Rivard A, Cingolani LA, Oliver D et al. 2001. Control of electrical activity in central neurons by modulating the gating of small conductance Ca2+-activated K+ channels. J. Biol. Chem. 276:9762–69
    [Google Scholar]
  139. 139. 
    Brown BM, Shim H, Zhang M, Yarov-Yarovoy V, Wulff H 2017. Structural determinants for the selectivity of the positive KCa3.1 gating modulator 5-methylnaphtho[2,1-d]oxazol-2-amine (SKA-121). Mol. Pharmacol. 92:469–80
    [Google Scholar]
  140. 140. 
    Shim H, Brown BM, Singh L, Singh V, Fettinger JC et al. 2019. The trials and tribulations of structure assisted design of KCa channel activators. Front. Pharmacol 10:972
    [Google Scholar]
  141. 141. 
    Maezawa I, Jenkins DP, Jin BE, Wulff H 2012. Microglial KCa3.1 channels as a potential therapeutic target for Alzheimer's disease. Int. J. Alzheimers Dis. 2012:868972
    [Google Scholar]
  142. 142. 
    Dale E, Staal RG, Eder C, Moller T 2016. KCa3.1—a microglial target ready for drug repurposing?. Glia 64:1733–41
    [Google Scholar]
  143. 143. 
    Staal RG, Khayrullina T, Zhang H, Davis S, Fallon SM et al. 2017. Inhibition of the potassium channel KCa3.1 by senicapoc reverses tactile allodynia in rats with peripheral nerve injury. Eur. J. Pharmacol. 795:1–7
    [Google Scholar]
  144. 144. 
    Organ L, Bacci B, Koumoundouros E, Kimpton WG, Samuel CS et al. 2017. Inhibition of the KCa3.1 channel alleviates established pulmonary fibrosis in a large animal model. Am. J. Respir. Cell. Mol. Biol. 56:539–50
    [Google Scholar]
  145. 145. 
    D'Alessandro G, Grimaldi A, Chece G, Porzia A, Esposito V et al. 2016. KCa3.1 channel inhibition sensitizes malignant gliomas to temozolomide treatment. Oncotarget 7:30781–96
    [Google Scholar]
  146. 146. 
    Radtke J, Schmidt K, Wulff H, Kohler R, de Wit C 2013. Activation of KCa3.1 by SKA-31 induces arteriolar dilation and lowers blood pressure in normo- and hypertensive connexin40-deficient mice. Br. J. Pharmacol. 170:293–303
    [Google Scholar]
  147. 147. 
    Damkjaer M, Nielsen G, Bodendiek S, Staehr M, Gramsbergen JB et al. 2012. Pharmacological activation of KCa3.1/KCa2.3 channels produces endothelial hyperpolarization and lowers blood pressure in conscious dogs. Br. J. Pharmacol. 165:223–34
    [Google Scholar]
  148. 148. 
    Mishra RC, Mitchell JR, Gibbons-Kroeker C, Wulff H, Belenkie I et al. 2015. A pharmacologic activator of endothelial KCa channels increases systemic conductance and reduces arterial pressure in an anesthetized pig model. Vascul. Pharmacol. 79:24–31
    [Google Scholar]
  149. 149. 
    Hopf FW, Bowers MS, Chang SJ, Chen BT, Martin M et al. Reduced nucleus accumbens SK channel activity enhances alcohol seeking during abstinence. Neuron 65:682–94
    [Google Scholar]
  150. 150. 
    Cannady R, McGonigal JT, Newsom RJ, Woodward JJ, Mulholland PJ, Gass JT 2017. Prefrontal cortex KCa2 channels regulate mGlu5-dependent plasticity and extinction of alcohol-seeking behavior. J. Neurosci. 37:4359–69
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010919-023420
Loading
/content/journals/10.1146/annurev-pharmtox-010919-023420
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error