1932

Abstract

Immune checkpoint inhibitors (ICIs) attenuate mechanisms of self-tolerance in the immune system, enabling T cell responses to cancerous tissues and revolutionizing care for cancer patients. However, by loweringbarriers against self-reactivity, ICIs often result in varying degrees of autoimmunity. Cardiovascular complications, particularly myocarditis but also arrhythmias, pericarditis, and vasculitis, have emerged as significant complications associated with ICIs. In this review, we examine the clinical aspects and basic science principles that underlie ICI-associated myocarditis and other cardiovascular toxicities. In addition, we discuss current therapeutic approaches. We believe a better mechanistic understanding of ICI-associated toxicities can lead to improved patient outcomes by reducing treatment-related morbidity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010919-023451
2021-01-06
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/61/1/annurev-pharmtox-010919-023451.html?itemId=/content/journals/10.1146/annurev-pharmtox-010919-023451&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Mahmood SS, Fradley MG, Cohen JV, Nohria A, Reynolds KL et al. 2018. Myocarditis in patients treated with immune checkpoint inhibitors. J. Am. Coll. Cardiol. 71:161755–64
    [Google Scholar]
  2. 2. 
    Salem J, Manouchehri A, Moey M, Lebrun-Vignes B, Bastarache L et al. 2018. Cardiovascular toxicities associated with immune checkpoint inhibitors: an observational, retrospective, pharmacovigilance study. Lancet Oncol 19:1579–89
    [Google Scholar]
  3. 3. 
    Johnson DB, Balko JM, Compton ML, Chalkias S, Gorham J et al. 2016. Fulminant myocarditis with combination immune checkpoint blockade. N. Engl. J. Med. 375:181749–55
    [Google Scholar]
  4. 4. 
    Touat M, Maisonobe T, Knauss S, Salem OBH, Hervier B et al. 2018. Immune checkpoint inhibitor-related myositis and myocarditis in patients with cancer. Neurology 91:10e985–94
    [Google Scholar]
  5. 5. 
    Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA et al. 2010. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363:8711–23
    [Google Scholar]
  6. 6. 
    Robert C, Thomas L, Bondarenko I, O'Day S, Weber J et al. 2011. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med. 364:262517–26
    [Google Scholar]
  7. 7. 
    Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL et al. 2015. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373:123–34
    [Google Scholar]
  8. 8. 
    Robert C, Schachter J, Long GV, Arance A, Grob JJ et al. 2015. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med. 372:262521–32
    [Google Scholar]
  9. 9. 
    US Food Drug Admin. 2019. Yervoy (ipilimumab) Drug. Inf., US Food Drug Admin Silver Spring, MD: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=125377
  10. 10. 
    US Food Drug Admin. 2019. Opdivo (nivolumab) Drug. Inf., US Food Drug Admin Silver Spring, MD: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=125554
  11. 11. 
    US Food Drug Admin. 2020. KEYTRUDA® (pembrolizumab) injection, for intravenous use Prescrib. Inf., US Food Drug Admin Silver Spring, MD: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/125514s067lbl.pdf
  12. 12. 
    US Food Drug Admin. 2019. TECENTRIQ®(atezolizumab) injection, for intravenous use Prescrib. Inf., US Food Drug Admin Silver Spring, MD: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761034s021lbl.pdf
  13. 13. 
    US Food Drug Admin. 2019. IMFINZI® (durvalumab) injection, for intravenous use Prescrib. Inf., US Food Drug Admin Silver Spring, MD: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761069s013lbl.pdf
  14. 14. 
    US Food Drug Admin. 2019. BAVENCIO® (avelumab) injection, for intravenous use Prescrib. Inf., US Food Drug Admin. Silver Spring, MD: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761049s006lbl.pdf
  15. 15. 
    US Food Drug Admin. 2018. Libtayo (cemiplimab-rwlc) Drug. Inf., US Food Drug Admin. Silver Spring, MD: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=761097
  16. 16. 
    Wolchok JD, Gonzalez R, Rutkowski P, Grob J, Cowey CL et al. 2017. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 377:141345–56
    [Google Scholar]
  17. 17. 
    Martins F, Sofiya L, Sykiotis GP, Lamine F, Maillard M et al. 2019. Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat. Rev. Clin. Oncol. 16:9563–80
    [Google Scholar]
  18. 18. 
    Moslehi JJ, Salem JE, Sosman JA, Lebrun-Vignes B, Johnson DB 2018. Increased reporting of fatal immune checkpoint inhibitor-associated myocarditis. Lancet 391:10124933
    [Google Scholar]
  19. 19. 
    Wang DY, Salem JE, Cohen JV, Chandra S, Menzer C et al. 2018. Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Oncol 4:121721–28
    [Google Scholar]
  20. 20. 
    Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM et al. 2009. Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 27:223584–90
    [Google Scholar]
  21. 21. 
    Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S et al. 2007. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. 356:2125–34
    [Google Scholar]
  22. 22. 
    Ferrara N, Adamis AP. 2016. Ten years of anti-vascular endothelial growth factor therapy. Nat. Rev. Drug Discov. 15:6385–403
    [Google Scholar]
  23. 23. 
    Motzer RJ, Penkov K, Haanen J, Rini B, Albiges L et al. 2019. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 380:121103–15
    [Google Scholar]
  24. 24. 
    Li W, Croce K, Steensma DP, McDermott DF, Ben-Yehuda O, Moslehi J 2015. Vascular and metabolic implications of novel targeted cancer therapies: focus on kinase inhibitors. J. Am. Coll. Cardiol. 66:101160–78
    [Google Scholar]
  25. 25. 
    Touyz RM, Herrmann J. 2018. Cardiotoxicity with vascular endothelial growth factor inhibitor therapy. NPJ Precis. Oncol. 2:113
    [Google Scholar]
  26. 26. 
    Waliany S, Sainani KL, Park LS, Zhang CA, Srinivas S, Witteles RM 2019. Increase in blood pressure associated with tyrosine kinase inhibitors targeting vascular endothelial growth factor. JACC CardioOncol 1:124–36
    [Google Scholar]
  27. 27. 
    Schmid P, Rugo HS, Adams S, Schneeweiss A, Barrios CH et al. 2020. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 21:144–59
    [Google Scholar]
  28. 28. 
    Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH et al. 2018. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N. Engl. J. Med. 379:2108–21
    [Google Scholar]
  29. 29. 
    Moslehi JJ. 2016. Cardiovascular toxic effects of targeted cancer therapies. N. Engl. J. Med. 375:151457–67
    [Google Scholar]
  30. 30. 
    Salem JE, Manouchehri A, Moey M, Lebrun-Vignes B, Bastarache L et al. 2018. Cardiovascular toxicities associated with immune checkpoint inhibitors: an observational, retrospective, pharmacovigilance study. Lancet Oncol 19:121579–89
    [Google Scholar]
  31. 31. 
    Escudier M, Cautela J, Malissen N, Ancedy Y, Orabona M et al. 2017. Clinical features, management, and outcomes of immune checkpoint inhibitor-related cardiotoxicity. Circulation 136:212085–87
    [Google Scholar]
  32. 32. 
    Anquetil C, Salem JE, Lebrun-Vignes B, Johnson DB, Mammen AL et al. 2018. Immune checkpoint inhibitor-associated myositis: expanding the spectrum of cardiac complications of the immunotherapy revolution. Circulation 138:7743–45
    [Google Scholar]
  33. 33. 
    Reuben A, Petaccia de Macedo M, McQuade J, Joon A, Ren Z et al. 2017. Comparative immunologic characterization of autoimmune giant cell myocarditis with ipilimumab. Oncoimmunology 6:12e1361097
    [Google Scholar]
  34. 34. 
    Watanabe R, Zhang H, Berry G, Goronzy JJ, Weyand CM 2017. Immune checkpoint dysfunction in large and medium vessel vasculitis. Am. J. Physiol. Heart Circ. Physiol. 312:5H1052–59
    [Google Scholar]
  35. 35. 
    Hu JR, Florido R, Lipson EJ, Naidoo J, Ardehali R et al. 2019. Cardiovascular toxicities associated with immune checkpoint inhibitors. Cardiovasc. Res. 115:5854–68
    [Google Scholar]
  36. 36. 
    Conforti F, Pala L, Bagnardi V, De Pas T, Martinetti M et al. 2018. Cancer immunotherapy efficacy and patients’ sex: a systematic review and meta-analysis. Lancet Oncol 19:6737–46
    [Google Scholar]
  37. 37. 
    Zamami Y, Niimura T, Okada N, Koyama T, Fukushima K et al. 2019. Factors associated with immune checkpoint inhibitor-related myocarditis. JAMA Oncol 5:111635–37
    [Google Scholar]
  38. 38. 
    Kyto V, Sipila J, Rautava P 2013. Gender differences in myocarditis: a nationwide study in Finland. Eur. Heart J. 34:Suppl. 13505
    [Google Scholar]
  39. 39. 
    Shah Z, Mohammed M, Vuddanda V, Ansari MW, Masoomi R, Gupta K 2019. National trends, gender, management, and outcomes of patients hospitalized for myocarditis. Am. J. Cardiol. 124:1131–36
    [Google Scholar]
  40. 40. 
    Toi Y, Sugawara S, Sugisaka J, Ono H, Kawashima Y et al. 2019. Profiling preexisting antibodies in patients treated with anti-PD-1 therapy for advanced non-small cell lung cancer. JAMA Oncol 5:3376–83
    [Google Scholar]
  41. 41. 
    Lyon AR, Yousaf N, Battisti NML, Moslehi J, Larkin J 2018. Immune checkpoint inhibitors and cardiovascular toxicity. Lancet Oncol 19:9e447–58
    [Google Scholar]
  42. 42. 
    Bonaca MP, Olenchock BA, Salem JE, Wiviott SD, Ederhy S et al. 2019. Myocarditis in the setting of cancer therapeutics: proposed case definitions for emerging clinical syndromes in cardio-oncology. Circulation 140:180–91
    [Google Scholar]
  43. 43. 
    Natl. Cancer Inst. 2010. Common terminology criteria for adverse events v4.0 Cancer Ther. Eval. Program, Natl. Cancer Inst Bethesda, MD: https://ctep.cancer.gov/protocolDevelopment/electronic_applications/ctc.htm#ctc_40
  44. 44. 
    Natl. Cancer Inst. 2017. Common terminology criteria for adverse events (CTCAE) v5.0 Cancer Ther. Eval. Program, Natl. Cancer Inst Bethesda, MD: https://ctep.cancer.gov/protocolDevelopment/electronic_applications/ctc.htm#ctc_40
  45. 45. 
    Groarke JD, Cheng S, Moslehi J 2013. Cancer-drug discovery and cardiovascular surveillance. N. Engl. J. Med. 369:191779–81
    [Google Scholar]
  46. 46. 
    Witteles RM, Telli M. 2012. Underestimating cardiac toxicity in cancer trials: lessons learned. ? J. Clin. Oncol. 30:161916–18
    [Google Scholar]
  47. 47. 
    Norwood TG, Westbrook BC, Johnson DB, Litovsky SH, Terry NL et al. 2017. Smoldering myocarditis following immune checkpoint blockade. J. Immunother. Cancer 5:14–9
    [Google Scholar]
  48. 48. 
    Tajmir-Riahi A, Bergmann T, Schmid M, Agaimy A, Schuler G, Heinzerling L 2018. Life-threatening autoimmune cardiomyopathy reproducibly induced in a patient by checkpoint inhibitor therapy. J. Immunother. 41:135–38
    [Google Scholar]
  49. 49. 
    Brahmer JR, Lacchetti C, Schneider BJ, Atkins MB, Brassil KJ et al. 2018. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology clinical practice guideline. J. Clin. Oncol. 36:171714–68
    [Google Scholar]
  50. 50. 
    Thompson JA, Schneider BJ, Brahmer J, Andrews S, Armand P et al. 2019. Management of immunotherapy-related toxicities, version 1.2019, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 17:3255–89
    [Google Scholar]
  51. 51. 
    Champion SN, Stone JR. 2020. Immune checkpoint inhibitor associated myocarditis occurs in both high-grade and low-grade forms. Mod. Pathol. 33:199–108
    [Google Scholar]
  52. 52. 
    Salem JE, Allenbach Y, Kerneis M 2019. Abatacept for severe immune checkpoint inhibitor-associated myocarditis. N. Engl. J. Med. 380:242377–79
    [Google Scholar]
  53. 53. 
    Sarocchi M, Grossi F, Arboscello E, Bellodi A, Genova C et al. 2018. Serial troponin for early detection of nivolumab cardiotoxicity in advanced non‐small cell lung cancer patients. Oncologist 23:8936–42
    [Google Scholar]
  54. 54. 
    Heinzerling L, Ott PA, Hodi FS, Husain AN, Tajmir-Riahi A et al. 2016. Cardiotoxicity associated with CTLA4 and PD1 blocking immunotherapy. J. Immunother. Cancer 4:150
    [Google Scholar]
  55. 55. 
    Yun S, Vincelette ND, Mansour I, Hariri D, Motamed S 2015. Late onset ipilimumab-induced pericarditis and pericardial effusion: a rare but life threatening complication. Case Rep. Oncol. Med. 2015:794842
    [Google Scholar]
  56. 56. 
    Saade A, Mansuet-Lupo A, Arrondeau J, Thibault C, Mirabel M et al. 2019. Pericardial effusion under nivolumab: case-reports and review of the literature. J. Immunother. Cancer 7:1266
    [Google Scholar]
  57. 57. 
    Imazio M, Bobbio M, Cecchi E, Demarie D, Demichelis B et al. 2005. Colchicine in addition to conventional therapy for acute pericarditis: results of the COlchicine for acute PEricarditis (COPE) trial. Circulation 112:132012–16
    [Google Scholar]
  58. 58. 
    Daxini A, Cronin K, Sreih AG 2018. Vasculitis associated with immune checkpoint inhibitors—a systematic review. Clin. Rheumatol. 37:92579–84
    [Google Scholar]
  59. 59. 
    Reddy N, Moudgil R, Lopez-Mattei JC, Karimzad K, Mouhayar EN et al. 2017. Progressive and reversible conduction disease with checkpoint inhibitors. Can. J. Cardiol. 33:101335.e13–15
    [Google Scholar]
  60. 60. 
    Behling J, Kaes J, Münzel T, Grabbe S, Loquai C 2017. New-onset third-degree atrioventricular block because of autoimmune-induced myositis under treatment with anti-programmed cell death-1 (nivolumab) for metastatic melanoma. Melanoma Res 27:2155–58
    [Google Scholar]
  61. 61. 
    Gibson R, Delaune J, Szady A, Markham M 2016. Suspected autoimmune myocarditis and cardiac conduction abnormalities with nivolumab therapy for non-small cell lung cancer. BMJ Case Rep 2016.bcr2016216228
    [Google Scholar]
  62. 62. 
    Ferreira M, Pichon E, Carmier D, Bouquet E, Pageot C et al. 2018. Coronary toxicities of anti-PD-1 and anti-PD-L1 immunotherapies: a case report and review of the literature and international registries. Target. Oncol. 13:4509–15
    [Google Scholar]
  63. 63. 
    Tomita Y, Sueta D, Kakiuchi Y, Saeki S, Saruwatari K et al. 2017. Acute coronary syndrome as a possible immune-related adverse event in a lung cancer patient achieving a complete response to anti-PD-1 immune checkpoint antibody. Ann. Oncol. 28:112893–95
    [Google Scholar]
  64. 64. 
    Cautela J, Rouby F, Salem J-E, Alexandre J, Scemama U et al. 2019. Acute coronary syndrome with immune checkpoint inhibitors: a proof-of-concept case and pharmacovigilance analysis of a life-threatening adverse event. Can. J. Cardiol. 36:4476–81
    [Google Scholar]
  65. 65. 
    Newman JL, Stone JR. 2019. Immune checkpoint inhibition alters the inflammatory cell composition of human coronary artery atherosclerosis. Cardiovasc. Pathol. 43:107148
    [Google Scholar]
  66. 66. 
    Lichtman AH. 2013. The heart of the matter: protection of the myocardium from T cells. J. Autoim-munity 45:90–6
    [Google Scholar]
  67. 67. 
    Legoux FP, Lim JB, Cauley AW, Dikiy S, Ertelt J et al. 2015. CD4+ T cell tolerance to tissue-restricted self antigens is mediated by antigen-specific regulatory T cells rather than deletion. Immunity 43:5896–908
    [Google Scholar]
  68. 68. 
    Davis MM, Brodin P. 2018. Rebooting human immunology. Annu. Rev. Immunol. 36:843–64
    [Google Scholar]
  69. 69. 
    Yu W, Jiang N, Ebert PJR, Kidd BA, Müller S et al. 2015. Clonal deletion prunes but does not eliminate self-specific αβ CD8+ T lymphocytes. Immunity 42:5929–41
    [Google Scholar]
  70. 70. 
    Van der Borght K, Scott CL, Nindl V, Bouché A, Martens L et al. 2017. Myocardial infarction primes autoreactive T cells through activation of dendritic cells. Cell Rep 18:123005–17
    [Google Scholar]
  71. 71. 
    Grabie N, Lichtman AH, Padera R 2019. T cell checkpoint regulators in the heart. Cardiovasc. Res. 115:5869–77
    [Google Scholar]
  72. 72. 
    Vdovenko D, Eriksson U. 2018. Regulatory role of CD4+ T cells in myocarditis. J. Immunol. Res. 2018:4396351
    [Google Scholar]
  73. 73. 
    Lv HJ, Havari E, Pinto S, Gottumukkala RVSRK, Cornivelli L et al. 2011. Impaired thymic tolerance to α-myosin directs autoimmunity to the heart in mice and humans. J. Clin. Investig. 121:41561–73
    [Google Scholar]
  74. 74. 
    Esensten JH, Helou YA, Chopra G, Weiss A, Bluestone JA 2016. CD28 costimulation: from mechanism to therapy. Immunity 44:5973–88
    [Google Scholar]
  75. 75. 
    Riella LV, Paterson AM, Sharpe AH, Chandraker A 2012. Role of the PD-1 pathway in the immune response. Am. J. Transplant. 12:102575–87
    [Google Scholar]
  76. 76. 
    Greene JAL, Leytze GM, Emswiler J, Peach R, Bajorath J et al. 1996. Covalent dimerization of CD28/CTLA-4 and oligomerization of CD80/CD86 regulate T cell costimulatory interactions. J. Biol. Chem. 271:4326762–71
    [Google Scholar]
  77. 77. 
    Linsley PS, Greene JL, Brady W, Bajorath J, Ledbetter JA, Peach R 1994. Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity 1:9793–801
    [Google Scholar]
  78. 78. 
    Harper K, Balzano C, Rouvier E, Mattéi MG, Luciani MF, Golstein P 1991. CTLA-4 and CD28 activated lymphocyte molecules are closely related in both mouse and human as to sequence, message expression, gene structure, and chromosomal location. J. Immunol. 147:31037–44
    [Google Scholar]
  79. 79. 
    Egen JG, Allison JP. 2002. Cytotoxic T lymphocyte antigen-4 accumulation in the immunological synapse is regulated by TCR signal strength. Immunity 16:123–35
    [Google Scholar]
  80. 80. 
    Araki M, Chung D, Liu S, Rainbow DB, Chamberlain G et al. 2009. Genetic evidence that the differential expression of the ligand-independent isoform of CTLA-4 is the molecular basis of the Idd5.1 type 1 diabetes region in nonobese diabetic mice. J. Immunol. 183:85146–57
    [Google Scholar]
  81. 81. 
    Walker LSK. 2015. CTLA-4 and autoimmunity: new twists in the tale. Trends Immunol 36:12760–62
    [Google Scholar]
  82. 82. 
    Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH 1995. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3:5541–47
    [Google Scholar]
  83. 83. 
    Klocke K, Sakaguchi S, Holmdahl R, Wing K 2016. Induction of autoimmune disease by deletion of CTLA-4 in mice in adulthood. PNAS 113:17E2383–92
    [Google Scholar]
  84. 84. 
    Keir ME, Butte MJ, Freeman GJ, Sharpe AH 2008. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 26:677–704
    [Google Scholar]
  85. 85. 
    Wang J, Okazaki IM, Yoshida T, Chikuma S, Kato Y et al. 2010. PD-1 deficiency results in the development of fatal myocarditis in MRL mice. Int. Immunol. 22:6443–52
    [Google Scholar]
  86. 86. 
    Tarrio ML, Grabie N, Bu D-X, Sharpe AH, Lichtman AH 2012. PD-1 protects against inflammation and myocyte damage in T cell-mediated myocarditis. J. Immunol. 188:104876–84
    [Google Scholar]
  87. 87. 
    Okazaki T, Okazaki I, Wang J, Sugiura D, Nakaki F et al. 2011. PD-1 and LAG-3 inhibitory co-receptors act synergistically to prevent autoimmunity in mice. J. Exp. Med. 208:2395–407
    [Google Scholar]
  88. 88. 
    Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M et al. 2001. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat. Immunol. 2:3261–68
    [Google Scholar]
  89. 89. 
    Ishida M, Iwai Y, Tanaka Y, Okazaki T, Freeman GJ et al. 2002. Differential expression of PD-L1 and PD-L2, ligands for an inhibitory receptor PD-1, in the cells of lymphohematopoietic tissues. Immunol. Lett. 84:157–62
    [Google Scholar]
  90. 90. 
    Leung CS, Yang KY, Li X, Chan VW, Ku M et al. 2018. Single-cell transcriptomics reveal that PD-1 mediates immune tolerance by regulating proliferation of regulatory T cells. Genome Med 10:171
    [Google Scholar]
  91. 91. 
    Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, Hashimoto-Tane A, Azuma M, Saito T 2012. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J. Exp. Med. 209:61201–17
    [Google Scholar]
  92. 92. 
    Anderson AC, Joller N, Kuchroo VK 2016. Lag-3, Tim-3, and TIGIT co-inhibitory receptors with specialized functions in immune regulation. Immunity 44:5989–1004
    [Google Scholar]
  93. 93. 
    Kumar P, Bhattacharya P, Prabhakar BS 2018. A comprehensive review on the role of co-signaling receptors and Treg homeostasis in autoimmunity and tumor immunity. J. Autoimmun. 95:77–99
    [Google Scholar]
  94. 94. 
    Chester C, Sanmamed MF, Wang J, Melero I 2018. Immunotherapy targeting 4-1BB: mechanistic rationale, clinical results, and future strategies. Blood 131:149–57
    [Google Scholar]
  95. 95. 
    Timmerman J, Herbaux C, Ribrag V, Zelenetz AD, Houot R et al. 2020. Urelumab alone or in combination with rituximab in patients with relapsed or refractory B‐cell lymphoma. Am. J. Hematol. 95:5510–20
    [Google Scholar]
  96. 96. 
    Segal NH, Logan TF, Hodi FS, McDermott D, Melero I et al. 2017. Results from an integrated safety analysis of urelumab, an agonist anti-CD137 monoclonal antibody. Clin. Cancer Res. 23:81929–36
    [Google Scholar]
  97. 97. 
    Frodermann V, Nahrendorf M. 2018. Macrophages and cardiovascular health. Physiol. Rev. 98:42523–69
    [Google Scholar]
  98. 98. 
    Monney L, Sabatos CA, Gaglia JL, Ryu A, Waldner H et al. 2002. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature 415:6871536–41
    [Google Scholar]
  99. 99. 
    Waterhouse P, Penninger JM, Timms E, Wakeham A, Lee KP et al. 1995. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270:5238985–88
    [Google Scholar]
  100. 100. 
    Xu F, Liu J, Liu D, Liu B, Wang M et al. 2014. LSECtin expressed on melanoma cells promotes tumor progression by inhibiting antitumor T-cell responses. Cancer Res 74:133418–28
    [Google Scholar]
  101. 101. 
    Love VA, Grabie N, Duramad P, Stavrakis G, Sharpe A, Lichtman A 2007. CTLA-4 ablation and interleukin-12-driven differentiation synergistically augment cardiac pathogenicity of cytotoxic T lymphocytes. Circ. Res. 101:3248–57
    [Google Scholar]
  102. 102. 
    Greenwald RJ, Boussiotis VA, Lorsbach RB, Abbas AK, Sharpe AH 2001. CTLA-4 regulates induction of anergy in vivo. Immunity 14:2145–55
    [Google Scholar]
  103. 103. 
    Ise W, Kohyama M, Nutsch KM, Lee HM, Suri A et al. 2010. CTLA-4 regulates pathogenicity of antigen-specific autoreactive T cells by cell-intrinsic and -extrinsic mechanisms. Nat. Immunol. 11:2129–35
    [Google Scholar]
  104. 104. 
    Nishimura H, Okazaki T, Tanaka Y, Nakatani K, Hara M et al. 2001. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291:5502319–22
    [Google Scholar]
  105. 105. 
    Okazaki T, Tanaka Y, Nishio R, Mitsuiye T, Mizoguchi A et al. 2003. Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice. Nat. Med. 9:121477–83
    [Google Scholar]
  106. 106. 
    Göser S, Andrassy M, Buss SJ, Leuschner F, Volz CH et al. 2006. Cardiac troponin I but not cardiac troponin T induces severe autoimmune inflammation in the myocardium. Circulation 114:161693–702
    [Google Scholar]
  107. 107. 
    Lucas JA, Menke J, Rabacal WA, Schoen FJ, Sharpe AH, Kelley VR 2008. Programmed death ligand 1 regulates a critical checkpoint for autoimmune myocarditis and pneumonitis in MRL mice. J. Immunol. 181:42513–21
    [Google Scholar]
  108. 108. 
    Rodig N, Ryan T, Allen JA, Pang H, Grabie N et al. 2003. Endothelial expression of PD-L1 and PD-L2 down-regulates CD8+ T cell activation and cytolysis. Eur. J. Immunol. 33:113117–26
    [Google Scholar]
  109. 109. 
    Woo SR, Turnis ME, Goldberg MV, Bankoti J, Selby M et al. 2012. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res 72:4917–27
    [Google Scholar]
  110. 110. 
    Workman CJ, Cauley LS, Kim I-J, Blackman MA, Woodland DL, Vignali DAA 2004. Lymphocyte activation gene-3 (CD223) regulates the size of the expanding T cell population following antigen activation in vivo. J. Immunol. 172:95450–55
    [Google Scholar]
  111. 111. 
    Gottumukkala RVSRK, Lv HJ, Cornivelli L, Wagers AJ, Kwong RY et al. 2012. Myocardial infarction triggers chronic cardiac autoimmunity in type 1 diabetes. Sci. Transl. Med. 4:138138ra80
    [Google Scholar]
  112. 112. 
    Cihakova D, Rose NR. 2008. Pathogenesis of myocarditis and dilated cardiomyopathy. Advances in Immunology, Vol. 99 FW Alt 95–114 Amsterdam: Elsevier
    [Google Scholar]
  113. 113. 
    Baban B, Liu JY, Qin X, Weintraub NL, Mozaffari MS 2015. Upregulation of programmed death-1 and its ligand in cardiac injury models: interaction with GADD153. PLOS ONE 10:4e0124059
    [Google Scholar]
  114. 114. 
    Grabie N, Gotsman I, DaCosta R, Pang H, Stavrakis G et al. 2007. Endothelial programmed death-1 ligand 1 (PD-L1) regulates CD8+ T-cell-mediated injury in the heart. Circulation 116:182062–71
    [Google Scholar]
  115. 115. 
    Latchman YE, Liang SC, Wu Y, Chernova T, Sobel RA et al. 2004. PD-L1-deficient mice show that PD-L1 on T cells, antigen-presenting cells, and host tissues negatively regulates T cells. PNAS 101:2910691–96
    [Google Scholar]
  116. 116. 
    Juchem KW, Sacirbegovic F, Zhang C, Sharpe AH, Russell K et al. 2018. PD-L1 prevents the development of autoimmune heart disease in graft-versus-host disease. J. Immunol. 200:2834–46
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010919-023451
Loading
/content/journals/10.1146/annurev-pharmtox-010919-023451
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error