1932

Abstract

Kv7 channels (Kv7.1–7.5) are voltage-gated K+ channels that can be modulated by five β-subunits (KCNE1–5). Kv7.1-KCNE1 channels produce the slow-delayed rectifying K+ current, , which is important during the repolarization phase of the cardiac action potential. Kv7.2–7.5 are predominantly neuronally expressed and constitute the muscarinic M-current and control the resting membrane potential in neurons. Kv7.1 produces drastically different currents as a result of modulation by KCNE subunits. This flexibility allows the Kv7.1 channel to have many roles depending on location and assembly partners. The pharmacological sensitivity of Kv7.1 channels differs from that of Kv7.2–7.5 and is largely dependent upon the number of β-subunits present in the channel complex. As a result, the development of pharmaceuticals targeting Kv7.1 is problematic. This review discusses the roles and the mechanisms by which different signaling pathways affect Kv7.1 and KCNE channels and could potentially provide different ways of targeting the channel.

Keyword(s): hormoneIKsKCNQ1Kv7.1M-current
Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010919-023645
2021-01-06
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/61/1/annurev-pharmtox-010919-023645.html?itemId=/content/journals/10.1146/annurev-pharmtox-010919-023645&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Hille B. 2001. Ion Channels of Excitable Membranes Sunderland, MA: Sinauer Associates Inc.
  2. 2. 
    Hebert SC, Andreoli TE. 1984. Control of NaCl transport in the thick ascending limb. Am. J. Physiol. 246:F745–56
    [Google Scholar]
  3. 3. 
    Lin CS, Boltz RC, Blake JT, Nguyen M, Talento A et al. 1993. Voltage-gated potassium channels regulate calcium-dependent pathways involved in human T lymphocyte activation. J. Exp. Med. 177:637–45
    [Google Scholar]
  4. 4. 
    Koo GC, Blake JT, Talento A, Nguyen M, Lin S et al. 1997. Blockade of the voltage-gated potassium channel Kv1.3 inhibits immune responses in vivo. J. Immunol. 158:5120–28
    [Google Scholar]
  5. 5. 
    Urrego D, Tomczak AP, Zahed F, Stuhmer W, Pardo LA 2014. Potassium channels in cell cycle and cell proliferation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369:20130094
    [Google Scholar]
  6. 6. 
    Jiang Y, Lee A, Chen J, Ruta V, Cadene M et al. 2003. X-ray structure of a voltage-dependent K+ channel. Nature 423:33–41
    [Google Scholar]
  7. 7. 
    Long SB, Campbell EB, MacKinnon R 2005. Voltage sensor of Kv1.2: structural basis of electromechanical coupling. Science 309:903–8
    [Google Scholar]
  8. 8. 
    Kuang Q, Purhonen P, Hebert H 2015. Structure of potassium channels. Cell. Mol. Life Sci. 72:3677–93
    [Google Scholar]
  9. 9. 
    Panaghie G, Abbott GW. 2007. The role of S4 charges in voltage-dependent and voltage-independent KCNQ1 potassium channel complexes. J. Gen. Physiol. 129:121–33
    [Google Scholar]
  10. 10. 
    Haitin Y, Attali B. 2008. The C-terminus of Kv7 channels: a multifunctional module. J. Physiol. 586:1803–10
    [Google Scholar]
  11. 11. 
    Schwake M, Jentsch TJ, Friedrich T 2003. A carboxy-terminal domain determines the subunit specificity of KCNQ K+ channel assembly. EMBO Rep 4:76–81
    [Google Scholar]
  12. 12. 
    Howard RJ, Clark KA, Holton JM, Minor DL 2007. Structural insight into KCNQ (Kv7) channel assembly and channelopathy. Neuron 53:663–75
    [Google Scholar]
  13. 13. 
    Zaydman MA, Cui J. 2014. PIP2 regulation of KCNQ channels: biophysical and molecular mechanisms for lipid modulation of voltage-dependent gating. Front. Physiol. 5:195
    [Google Scholar]
  14. 14. 
    Zaydman MA, Silva JR, Delaloye K, Li Y, Liang H et al. 2013. Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening. PNAS 110:13180–85
    [Google Scholar]
  15. 15. 
    Royal AA, Tinker A, Harmer SC 2017. Phosphatidylinositol-4,5-bisphosphate is required for KCNQ1/KCNE1 channel function but not anterograde trafficking. PLOS ONE 12:e0186293
    [Google Scholar]
  16. 16. 
    Li Y, Zaydman MA, Wu D, Shi J, Guan M et al. 2011. KCNE1 enhances phosphatidylinositol 4,5-bisphosphate PIP2 sensitivity of IKs to modulate channel activity. PNAS 108:9095–100
    [Google Scholar]
  17. 17. 
    Sun J, MacKinnon R. 2017. Cryo-EM structure of a KCNQ1/CaM complex reveals insights into congenital long QT syndrome. Cell 169:1042–50.e9
    [Google Scholar]
  18. 18. 
    Shamgar L, Ma L, Schmitt N, Haitin Y, Peretz A et al. 2006. Calmodulin is essential for cardiac IKS channel gating and assembly: impaired function in long-QT mutations. Circ. Res. 98:1055–63
    [Google Scholar]
  19. 19. 
    Lundquist AL, Turner CL, Ballester LY, George AL Jr 2006. Expression and transcriptional control of human KCNE genes. Genomics 87:119–28
    [Google Scholar]
  20. 20. 
    Robbins J. 2001. KCNQ potassium channels: physiology, pathophysiology, and pharmacology. Pharmacol. Ther. 90:1–19
    [Google Scholar]
  21. 21. 
    Bendahhou S, Marionneau C, Haurogne K, Larroque MM, Derand R et al. 2005. In vitro molecular interactions and distribution of KCNE family with KCNQ1 in the human heart. Cardiovasc. Res. 67:529–38
    [Google Scholar]
  22. 22. 
    Haick JM, Byron KL. 2016. Novel treatment strategies for smooth muscle disorders: targeting Kv7 potassium channels. Pharmacol. Ther. 165:14–25
    [Google Scholar]
  23. 23. 
    Jepps TA, Carr G, Lundegaard PR, Olesen SP, Greenwood IA 2015. Fundamental role for the KCNE4 ancillary subunit in Kv7.4 regulation of arterial tone. J. Physiol. 593:5325–40
    [Google Scholar]
  24. 24. 
    Plant LD, Xiong D, Dai H, Goldstein SA 2014. Individual IKs channels at the surface of mammalian cells contain two KCNE1 accessory subunits. PNAS 111:E1438–46
    [Google Scholar]
  25. 25. 
    Murray CI, Westhoff M, Eldstrom J, Thompson E, Emes R, Fedida D 2016. Unnatural amino acid photo-crosslinking of the IKs channel complex demonstrates a KCNE1:KCNQ1 stoichiometry of up to 4:4. eLife 5:e11815
    [Google Scholar]
  26. 26. 
    Wang K-W, Goldstein SAN. 1995. Subunit composition of minK potassium channels. Neuron 14:1303–9
    [Google Scholar]
  27. 27. 
    Chen H, Kim LA, Rajan S, Xu S, Goldstein SA 2003. Charybdotoxin binding in the IKs pore demonstrates two MinK subunits in each channel complex. Neuron 40:15–23
    [Google Scholar]
  28. 28. 
    Morin TJ, Kobertz WR. 2007. A derivatized scorpion toxin reveals the functional output of heteromeric KCNQ1–KCNE K+ channel complexes. ACS Chem. Biol. 2:469–73
    [Google Scholar]
  29. 29. 
    Kang C, Tian C, Sonnichsen FD, Smith JA, Meiler J et al. 2008. Structure of KCNE1 and implications for how it modulates the KCNQ1 potassium channel. Biochemistry 47:7999–8006
    [Google Scholar]
  30. 30. 
    Morin TJ, Kobertz WR. 2008. Counting membrane-embedded KCNE β-subunits in functioning K+ channel complexes. PNAS 105:1478–82
    [Google Scholar]
  31. 31. 
    Cui J, Kline RP, Pennefather P, Cohen IS 1994. Gating of IsK expressed in Xenopus oocytes depends on the amount of mRNA injected. J. Gen. Physiol. 104:87–105
    [Google Scholar]
  32. 32. 
    Wang W, Xia J, Kass RS 1998. MinK-KvLQT1 fusion proteins, evidence for multiple stoichiometries of the assembled IsK channel. J. Biol. Chem. 273:34069–74
    [Google Scholar]
  33. 33. 
    Morokuma J, Blackiston D, Adams DS, Seebohm G, Trimmer B, Levin M 2008. Modulation of potassium channel function confers a hyperproliferative invasive phenotype on embryonic stem cells. PNAS 105:16608–13
    [Google Scholar]
  34. 34. 
    Nakajo K, Ulbrich MH, Kubo Y, Isacoff EY 2010. Stoichiometry of the KCNQ1–KCNE1 ion channel complex. PNAS 107:18862–67
    [Google Scholar]
  35. 35. 
    Zheng R, Thompson K, Obeng-Gyimah E, Alessi D, Chen J et al. 2010. Analysis of the interactions between the C-terminal cytoplasmic domains of KCNQ1 and KCNE1 channel subunits. Biochem. J. 428:75–84
    [Google Scholar]
  36. 36. 
    Strutz-Seebohm N, Pusch M, Wolf S, Stoll R, Tapken D et al. 2011. Structural basis of slow activation gating in the cardiac IKs channel complex. Cell. Physiol. Biochem. 27:443–52
    [Google Scholar]
  37. 37. 
    Wang K, Terrenoire C, Sampson KJ, Iyer V, Osteen JD et al. 2011. Biophysical properties of slow potassium channels in human embryonic stem cell derived cardiomyocytes implicate subunit stoichiometry. J. Physiol. 589:6093–104
    [Google Scholar]
  38. 38. 
    Yu H, Lin Z, Mattmann ME, Zou B, Terrenoire C et al. 2013. Dynamic subunit stoichiometry confers a progressive continuum of pharmacological sensitivity by KCNQ potassium channels. PNAS 110:8732–37
    [Google Scholar]
  39. 39. 
    Sun J, MacKinnon R. 2020. Structural basis of human KCNQ1 modulation and gating. Cell 180:340–47.e9
    [Google Scholar]
  40. 40. 
    Sanguinetti MC, Curran ME, Zou A, Shen J, Spector PS et al. 1996. Coassembly of KVLQT1 and minK (IsK) proteins to form cardiac IKs potassium channel. Nature 384:80–83
    [Google Scholar]
  41. 41. 
    Wang J-J, Li Y. 2016. KCNQ potassium channels in sensory system and neural circuits. Acta Pharmacol. Sin. 37:25–33
    [Google Scholar]
  42. 42. 
    Barhanin J, Lesage F, Guillemare E, Fink M, Lazdunski M, Romey G 1996. KVLQT1 and IsK (minK) proteins associate to form the IKs cardiac potassium current. Nature 384:78–80
    [Google Scholar]
  43. 43. 
    Peroz D, Rodriguez N, Choveau F, Baró I, Mérot J, Loussouarn G 2008. Kv7.1 (KCNQ1) properties and channelopathies. J. Physiol. 586:1785–89
    [Google Scholar]
  44. 44. 
    Jentsch TJ. 2000. Neuronal KCNQ potassium channels: physiology and role in disease. Nat. Rev. Neurosci. 1:21–30
    [Google Scholar]
  45. 45. 
    Greenwood IA, Ohya S. 2009. New tricks for old dogs: KCNQ expression and role in smooth muscle. Br. J. Pharmacol. 156:1196–203
    [Google Scholar]
  46. 46. 
    Moss AJ, Schwartz PJ, Crampton RS, Tzivoni D, Locati EH et al. 1991. The long QT syndrome. Prospective longitudinal study of 328 families. Circulation 84:113644
    [Google Scholar]
  47. 47. 
    Chen Y-H, Xu S-J, Bendahhou SD, Wang X-L, Wang Y et al. 2003. KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science 299:251–54
    [Google Scholar]
  48. 48. 
    Bellocq C, van Ginneken ACG, Bezzina CR, Alders M, Escande D et al. 2004. Mutation in the KCNQ1 gene leading to the short QT-interval syndrome. Circulation 109:2394–97
    [Google Scholar]
  49. 49. 
    Yasuda K, Miyake K, Horikawa Y, Hara K, Osawa H et al. 2008. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat. Genet. 40:1092–97
    [Google Scholar]
  50. 50. 
    Unoki H, Takahashi A, Kawaguchi T, Hara K, Horikoshi M et al. 2008. SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat. Genet. 40:1098–102
    [Google Scholar]
  51. 51. 
    Rivas A, Francis HW. 2005. Inner ear abnormalities in a Kcnq1 (Kvlqt1) knockout mouse: a model of Jervell and Lange-Nielsen syndrome. Otol. Neurotol 26:415–24
    [Google Scholar]
  52. 52. 
    Murray A, Potet F, Bellocq C, Baró I, Reardon W et al. 2002. Mutation in KCNQ1 that has both recessive and dominant characteristics. J. Med. Genet. 39:681–85
    [Google Scholar]
  53. 53. 
    Faridi R, Tona R, Brofferio A, Hoa M, Olszewski R et al. 2018. Mutational and phenotypic spectra of KCNE1 deficiency in Jervell and Lange-Nielsen Syndrome and Romano-Ward Syndrome. Hum. Mutat. 40:2162–76
    [Google Scholar]
  54. 54. 
    Schulze-Bahr E, Wang Q, Wedekind H, Haverkamp W, Chen Q et al. 1997. KCNE1 mutations cause Jervell and Lange-Nielsen syndrome. Nat. Genet. 17:267–68
    [Google Scholar]
  55. 55. 
    Jervell A, Lange-Nielsen F. 1957. Congenital deaf-mutism, functional heart disease with prolongation of the Q-T interval and sudden death. Am. Heart J. 54:59–68
    [Google Scholar]
  56. 56. 
    Lee MP, Ravenel JD, Hu RJ, Lustig LR, Tomaselli G et al. 2000. Targeted disruption of the Kvlqt1 gene causes deafness and gastric hyperplasia in mice. J. Clin. Investig. 106:1447–55
    [Google Scholar]
  57. 57. 
    Goldman AM, Glasscock E, Yoo J, Chen TT, Klassen TL, Noebels JL 2009. Arrhythmia in heart and brain: KCNQ1 mutations link epilepsy and sudden unexplained death. Sci. Translational Med. 1:2ra6
    [Google Scholar]
  58. 58. 
    Tiron C, Campuzano O, Perez-Serra A, Mademont I, Coll M et al. 2015. Further evidence of the association between LQT syndrome and epilepsy in a family with KCNQ1 pathogenic variant. Seizure 25:65–67
    [Google Scholar]
  59. 59. 
    Lehman A, Thouta S, Mancini GMS, Naidu S, van Slegtenhorst M et al. 2017. Loss-of-function and gain-of-function mutations in KCNQ5 cause intellectual disability or epileptic encephalopathy. Am. J. Hum. Genet. 101:65–74
    [Google Scholar]
  60. 60. 
    Ciliberto MA, Weisenberg JL, Wong M 2012. Clinical utility, safety, and tolerability of ezogabine (retigabine) in the treatment of epilepsy. Drug Healthc. Patient Saf. 4:81–86
    [Google Scholar]
  61. 61. 
    Schenzer A, Friedrich T, Pusch M, Saftig P, Jentsch TJ et al. 2005. Molecular determinants of KCNQ (Kv7) K+ channel sensitivity to the anticonvulsant retigabine. J. Neurosci. 25:5051–60
    [Google Scholar]
  62. 62. 
    McCrossan ZA, Abbott GW. 2004. The MinK-related peptides. Neuropharmacology 47:787–821
    [Google Scholar]
  63. 63. 
    Wang Y, Eldstrom J, Fedida D 2020. The IKs ion channel activator mefenamic acid requires KCNE1 and modulates channel gating in a subunit-dependent manner. Mol. Pharmacol. 97:132–44
    [Google Scholar]
  64. 64. 
    Terrenoire C, Clancy CE, Cormier JW, Sampson KJ, Kass RS 2005. Autonomic control of cardiac action potentials. Circ. Res. 96:e25–34
    [Google Scholar]
  65. 65. 
    Stengl M, Volders PGA, Thomsen MB, Spätjens RLHMG, Sipido KR, Vos MA 2003. Accumulation of slowly activating delayed rectifier potassium current (IKs) in canine ventricular myocytes. J. Physiol. 551:777–86
    [Google Scholar]
  66. 66. 
    Silva J, Rudy Y. 2005. Subunit interaction determines IKs participation in cardiac repolarization and repolarization reserve. Circulation 112:1384–91
    [Google Scholar]
  67. 67. 
    Marx SO, Kurokawa J, Reiken S, Motoike H, D'Armiento J et al. 2002. Requirement of a macromolecular signaling complex for β adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science 295:496–99
    [Google Scholar]
  68. 68. 
    Cumbay MG, Watts VJ. 2004. Novel regulatory properties of human type 9 adenylate cyclase. J. Pharmacol. Exp. Ther. 310:108–15
    [Google Scholar]
  69. 69. 
    Terrenoire C, Houslay MD, Baillie GS, Kass RS 2009. The cardiac IKs potassium channel macromolecular complex includes the phosphodiesterase PDE4D3. J. Biol. Chem. 284:9140–46
    [Google Scholar]
  70. 70. 
    Lopes CM, Remon JI, Matavel A, Sui JL, Keselman I et al. 2007. Protein kinase A modulates PLC-dependent regulation and PIP2-sensitivity of K+ channels. Channels 1:124–34
    [Google Scholar]
  71. 71. 
    Lundby A, Andersen MN, Steffensen AB, Horn H, Kelstrup CD et al. 2013. In vivo phosphoproteomics analysis reveals the cardiac targets of β-adrenergic receptor signaling. Sci. Signal. 6:rs11
    [Google Scholar]
  72. 72. 
    Dilly KW, Kurokawa J, Terrenoire C, Reiken S, Lederer WJ et al. 2004. Overexpression of β2-adrenergic receptors cAMP-dependent protein kinase phosphorylates and modulates slow delayed rectifier potassium channels expressed in murine heart: evidence for receptor/channel co-localization. J. Biol. Chem. 279:40778–87
    [Google Scholar]
  73. 73. 
    Kurokawa J, Chen L, Kass RS 2003. Requirement of subunit expression for cAMP-mediated regulation of a heart potassium channel. PNAS 100:2122–27
    [Google Scholar]
  74. 74. 
    Thompson E, Eldstrom J, Westhoff M, McAfee D, Balse E, Fedida D 2017. cAMP-dependent regulation of IKs single-channel kinetics. J. Gen. Physiol. 149:781–98
    [Google Scholar]
  75. 75. 
    Jost N, Virág L, Bitay M, Takács J, Lengyel C et al. 2005. Restricting excessive cardiac action potential and QT prolongation. Circulation 112:1392–99
    [Google Scholar]
  76. 76. 
    Hund TJ, Rudy Y. 2004. Rate dependence and regulation of action potential and calcium transient in a canine cardiac ventricular cell model. Circulation 110:3168–74
    [Google Scholar]
  77. 77. 
    Wang Q, Curran ME, Splawski I, Burn TC, Millholland JM et al. 1996. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat. Genet. 12:17–23
    [Google Scholar]
  78. 78. 
    Splawski I, Tristani-Firouzi M, Lehmann MH, Sanguinetti MC, Keating MT 1997. Mutations in the hminK gene cause long QT syndrome and suppress IKs function. Nat. Genet. 17:338–40
    [Google Scholar]
  79. 79. 
    Kurokawa J, Bankston JR, Kaihara A, Chen L, Furukawa T, Kass RS 2009. KCNE variants reveal a critical role of the beta subunit carboxyl terminus in PKA-dependent regulation of the IKs potassium channel. Channels 3:16–24
    [Google Scholar]
  80. 80. 
    Chen L, Marquardt ML, Tester DJ, Sampson KJ, Ackerman MJ, Kass RS 2007. Mutation of an A-kinase-anchoring protein causes long-QT syndrome. PNAS 104:20990–95
    [Google Scholar]
  81. 81. 
    Schwartz PJ, Zaza A, Locati E, Moss AJ 1991. Stress and sudden death. The case of the long QT syndrome. Circulation 83: Suppl. 4 II71–80
    [Google Scholar]
  82. 82. 
    Chen S, Zhang L, Bryant RM, Vincent GM, Flippin M et al. 2003. KCNQ1 mutations in patients with a family history of lethal cardiac arrhythmias and sudden death. Clin. Genet. 63:273–82
    [Google Scholar]
  83. 83. 
    Patel C, Antzelevitch C. 2008. Pharmacological approach to the treatment of long and short QT syndromes. Pharmacol. Ther. 118:138–51
    [Google Scholar]
  84. 84. 
    Wu M, Obara Y, Ohshima S, Nagasawa Y, Ishii K 2017. Insulin treatment augments KCNQ1/KCNE1 currents but not KCNQ1 currents, which is associated with an increase in KCNE1 expression. Biochem. Biophys. Res. Commun. 493:409–15
    [Google Scholar]
  85. 85. 
    Wu M, Obara Y, Norota I, Nagasawa Y, Ishii K 2014. Insulin suppresses IKs (KCNQ1/KCNE1) currents, which require β-subunit KCNE1. Pflugers Arch 466:937–46
    [Google Scholar]
  86. 86. 
    Wilcox G. 2005. Insulin and insulin resistance. Clin. Biochem. Rev. 26:19–39
    [Google Scholar]
  87. 87. 
    Röder PV, Wu B, Liu Y, Han W 2016. Pancreatic regulation of glucose homeostasis. Exp. Mol. Med. 48:e219
    [Google Scholar]
  88. 88. 
    Atkinson MA, Eisenbarth GS, Michels AW 2014. Type 1 diabetes. Lancet 383:69–82
    [Google Scholar]
  89. 89. 
    Katsarou A, Gudbjornsdottir S, Rawshani A, Dabelea D, Bonifacio E et al. 2017. Type 1 diabetes mellitus. Nat. Rev. Dis. Primers 3:17016
    [Google Scholar]
  90. 90. 
    DeFronzo RA. 2004. Pathogenesis of type 2 diabetes mellitus. Med. Clin. North Am. 88:787–835
    [Google Scholar]
  91. 91. 
    Whitsel EA, Boyko EJ, Rautaharju PM, Raghunathan TE, Lin D et al. 2005. Electrocardiographic QT interval prolongation and risk of primary cardiac arrest in diabetic patients. Diabetes Care 28:2045–47
    [Google Scholar]
  92. 92. 
    Vasiliadis I, Kolovou G, Mavrogeni S, Nair DR, Mikhailidis DP 2014. Sudden cardiac death and diabetes mellitus. J. Diabetes Complicat. 28:573–79
    [Google Scholar]
  93. 93. 
    Suys BE, Huybrechts SJ, De Wolf D, Op De Beeck L, Matthys D et al. 2002. QTc interval prolongation and QTc dispersion in children and adolescents with type 1 diabetes. J. Pediatr. 141:59–63
    [Google Scholar]
  94. 94. 
    Veglio M, Giunti S, Stevens LK, Fuller JH, Perin PC 2002. Prevalence of Q-T interval dispersion in type 1 diabetes and its relation with cardiac ischemia: the EURODIAB IDDM Complications Study Group. Diabetes Care 25:702–7
    [Google Scholar]
  95. 95. 
    Lo SS, Sutton MS, Leslie RD 1993. Information on type 1 diabetes mellitus and QT interval from identical twins. Am. J. Cardiol. 72:305–9
    [Google Scholar]
  96. 96. 
    Kobayashi S, Nagao M, Asai A, Fukuda I, Oikawa S, Sugihara H 2018. Severity and multiplicity of microvascular complications are associated with QT interval prolongation in patients with type 2 diabetes. J. Diabetes Investig. 9:946–51
    [Google Scholar]
  97. 97. 
    Sweeney G, Klip A. 1998. Regulation of the Na+/K+-ATPase by insulin: why and how. ? Mol. Cell Biochem. 182:121–33
    [Google Scholar]
  98. 98. 
    LaManna VR, Ferrier GR. 1981. Electrophysiological effects of insulin on normal and depressed cardiac tissues. Am. J. Physiol. 240:H636–44
    [Google Scholar]
  99. 99. 
    van Noord C, Sturkenboom MC, Straus SM, Hofman A, Kors JA et al. 2010. Serum glucose and insulin are associated with QTc and RR intervals in nondiabetic elderly. Eur. J. Endocrinol. 162:241–48
    [Google Scholar]
  100. 100. 
    Lengyel C, Virag L, Biro T, Jost N, Magyar J et al. 2007. Diabetes mellitus attenuates the repolarization reserve in mammalian heart. Cardiovasc. Res. 73:512–20
    [Google Scholar]
  101. 101. 
    Boini KM, Graf D, Hennige AM, Koka S, Kempe DS et al. 2009. Enhanced insulin sensitivity of gene-targeted mice lacking functional KCNQ1. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296:R1695–701
    [Google Scholar]
  102. 102. 
    Yamagata K, Senokuchi T, Lu M, Takemoto M, Karim MF et al. 2011. Voltage-gated K+ channel KCNQ1 regulates insulin secretion in MIN6 β-cell line. Biochem. Biophys. Res. Commun. 407:620–25
    [Google Scholar]
  103. 103. 
    Rosengren AH, Braun M, Mahdi T, Andersson SA, Travers ME et al. 2012. Reduced insulin exocytosis in human pancreatic β-cells with gene variants linked to type 2 diabetes. Diabetes 61:1726–33
    [Google Scholar]
  104. 104. 
    Balakrishnan P, Vaidya D, Voruganti VS, Haack K, Kent JW et al. 2018. Genetic variants related to cardiometabolic traits are associated to B cell function, insulin resistance, and diabetes among American Indians: the Strong Heart Family Study. Front. Genet. 9:466
    [Google Scholar]
  105. 105. 
    Zhou Z, Sun B, Li X, Zhu C 2018. DNA methylation landscapes in the pathogenesis of type 2 diabetes mellitus. Nutr. Metab. 15:47
    [Google Scholar]
  106. 106. 
    Ishii K, Wu M, Obara Y 2014. Is PIP2 involved in the insulin effect. ? Channels 8:391–92
    [Google Scholar]
  107. 107. 
    Loussouarn G, Park KH, Bellocq C, Baro I, Charpentier F, Escande D 2003. Phosphatidylinositol-4,5-bisphosphate, PIP2, controls KCNQ1/KCNE1 voltage-gated potassium channels: a functional homology between voltage-gated and inward rectifier K+ channels. EMBO J 22:5412–21
    [Google Scholar]
  108. 108. 
    Ma W-G, Song H, Das SK, Paria BC, Dey SK 2003. Estrogen is a critical determinant that specifies the duration of the window of uterine receptivity for implantation. PNAS 100:2963–68
    [Google Scholar]
  109. 109. 
    Kuiper GG, Carlsson B, Grandien K, Enmark E, Haggblad J et al. 1997. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors α and β. Endocrinology 138:863–70
    [Google Scholar]
  110. 110. 
    Schroeder BC, Waldegger S, Fehr S, Bleich M, Warth R et al. 2000. A constitutively open potassium channel formed by KCNQ1 and KCNE3. Nature 403:196–99
    [Google Scholar]
  111. 111. 
    Preston P, Wartosch L, Günzel D, Fromm M, Kongsuphol P et al. 2010. Disruption of the K+ channel β-subunit KCNE3 reveals an important role in intestinal and tracheal Cl transport. J. Biol. Chem. 285:7165–75
    [Google Scholar]
  112. 112. 
    Kroncke BM, Van Horn WD, Smith J, Kang C, Welch RC et al. 2016. Structural basis for KCNE3 modulation of potassium recycling in epithelia. Sci. Adv. 2:e1501228
    [Google Scholar]
  113. 113. 
    O'Mahony F, Alzamora R, Chung HL, Thomas W, Harvey BJ 2009. Genomic priming of the antisecretory response to estrogen in rat distal colon throughout the estrous cycle. Mol. Endocrinol. 23:1885–99
    [Google Scholar]
  114. 114. 
    O'Mahony F, Alzamora R, Betts V, LaPaix F, Carter D et al. 2007. Female gender-specific inhibition of KCNQ1 channels and chloride secretion by 17β-estradiol in rat distal colonic crypts. J. Biol. Chem. 282:24563–73
    [Google Scholar]
  115. 115. 
    Alzamora R, O'Mahony F, Bustos V, Rapetti-Mauss R, Urbach V et al. 2011. Sexual dimorphism and oestrogen regulation of KCNE3 expression modulates the functional properties of KCNQ1 K+ channels. J. Physiol. 589:5091–107
    [Google Scholar]
  116. 116. 
    Abbott GW, Butler MH, Goldstein SA 2006. Phosphorylation and protonation of neighboring MiRP2 sites: function and pathophysiology of MiRP2-Kv3.4 potassium channels in periodic paralysis. FASEB J 20:293–301
    [Google Scholar]
  117. 117. 
    Rapetti-Mauss R, O'Mahony F, Sepulveda FV, Urbach V, Harvey BJ 2013. Oestrogen promotes KCNQ1 potassium channel endocytosis and postendocytic trafficking in colonic epithelium. J. Physiol. 591:2813–31
    [Google Scholar]
  118. 118. 
    Rapetti-Mauss R, Bustos V, Thomas W, McBryan J, Harvey H et al. 2017. Bidirectional KCNQ1:β-catenin interaction drives colorectal cancer cell differentiation. PNAS 114:4159–64
    [Google Scholar]
  119. 119. 
    Kreda SM, Davis CW, Rose MC 2012. CFTR, mucins, and mucus obstruction in cystic fibrosis. Cold Spring Harb. Perspect. Med. 2:a009589
    [Google Scholar]
  120. 120. 
    Chotirmall SH, Greene CM, Oglesby IK, Thomas W, O'Neill SJ et al. 2010. 17β-estradiol inhibits IL-8 in cystic fibrosis by up-regulating secretory leucoprotease inhibitor. Am. J. Respir. Crit. Care Med. 182:62–72
    [Google Scholar]
  121. 121. 
    Piccini M, Vitelli F, Seri M, Galietta LJ, Moran O et al. 1999. KCNE1-like gene is deleted in AMME contiguous gene syndrome: identification and characterization of the human and mouse homologs. Genomics 60:251–57
    [Google Scholar]
  122. 122. 
    Alzamora R, O'Mahony F, Harvey BJ 2011. Estrogen inhibits chloride secretion caused by cholera and Escherichia coli enterotoxins in female rat distal colon. Steroids 76:867–76
    [Google Scholar]
  123. 123. 
    Hall JM, Couse JF, Korach KS 2001. The multifaceted mechanisms of estradiol and estrogen receptor signaling. J. Biol. Chem. 276:36869–72
    [Google Scholar]
  124. 124. 
    Lee H-R, Kim T-H, Choi K-C 2012. Functions and physiological roles of two types of estrogen receptors, ERα and ERβ, identified by estrogen receptor knockout mouse. Lab. Anim. Res. 28:71–76
    [Google Scholar]
  125. 125. 
    Gustafsson JA. 1999. Estrogen receptor beta—a new dimension in estrogen mechanism of action. J. Endocrinol. 163:379–83
    [Google Scholar]
  126. 126. 
    Than BL, Goos JA, Sarver AL, O'Sullivan MG, Rod A et al. 2014. The role of KCNQ1 in mouse and human gastrointestinal cancers. Oncogene 33:3861–68
    [Google Scholar]
  127. 127. 
    Yang M, Brackenbury WJ. 2013. Membrane potential and cancer progression. Front. Physiol. 4:185
    [Google Scholar]
  128. 128. 
    Vierhapper H, Nowotny P, Maier H, Waldhausl W 2001. Production rates of dihydrotestosterone in healthy men and women and in men with male pattern baldness: determination by stable isotope/dilution and mass spectrometry. J. Clin. Endocrinol. Metab. 86:5762–64
    [Google Scholar]
  129. 129. 
    Wang Y, Chen F, Ye L, Zirkin B, Chen H 2017. Steroidogenesis in Leydig cells: effects of aging and environmental factors. Reproduction 154:R111–22
    [Google Scholar]
  130. 130. 
    Khaw KT, Dowsett M, Folkerd E, Bingham S, Wareham N et al. 2007. Endogenous testosterone and mortality due to all causes, cardiovascular disease, and cancer in men: European prospective investigation into cancer in Norfolk (EPIC-Norfolk) Prospective Population Study. Circulation 116:2694–701
    [Google Scholar]
  131. 131. 
    Lehmann MH, Timothy KW, Frankovich D, Fromm BS, Keating M et al. 1997. Age-gender influence on the rate-corrected QT interval and the QT-heart rate relation in families with genotypically characterized long QT syndrome. J. Am. Coll. Cardiol. 29:93–99
    [Google Scholar]
  132. 132. 
    Rautaharju PM, Zhou SH, Wong S, Calhoun HP, Berenson GS et al. 1992. Sex differences in the evolution of the electrocardiographic QT interval with age. Can. J. Cardiol. 8:690–95
    [Google Scholar]
  133. 133. 
    Makkar RR, Fromm BS, Steinman RT, Meissner MD, Lehmann MH 1993. Female gender as a risk factor for torsades de pointes associated with cardiovascular drugs. JAMA 270:2590–97
    [Google Scholar]
  134. 134. 
    Mosca L, Barrett-Connor E, Wenger NK 2011. Sex/gender differences in cardiovascular disease prevention: What a difference a decade makes. Circulation 124:2145–54
    [Google Scholar]
  135. 135. 
    Charbit B, Christin-Maitre S, Demolis JL, Soustre E, Young J, Funck-Brentano C 2009. Effects of testosterone on ventricular repolarization in hypogonadic men. Am. J. Cardiol. 103:887–90
    [Google Scholar]
  136. 136. 
    Bidoggia H, Maciel JP, Capalozza N, Mosca S, Blaksley EJ et al. 2000. Sex differences on the electrocardiographic pattern of cardiac repolarization: possible role of testosterone. Am. Heart J. 140:678–83
    [Google Scholar]
  137. 137. 
    Masuda K, Takanari H, Morishima M, Ma F, Wang Y et al. 2018. Testosterone-mediated upregulation of delayed rectifier potassium channel in cardiomyocytes causes abbreviation of QT intervals in rats. J. Physiol. Sci. 68:759–67
    [Google Scholar]
  138. 138. 
    Crump SM, Hu Z, Kant R, Levy DI, Goldstein SA, Abbott GW 2016. Kcne4 deletion sex- and age-specifically impairs cardiac repolarization in mice. FASEB J 30:360–69
    [Google Scholar]
  139. 139. 
    Vargas-Uricoechea H, Bonelo-Perdomo A, Sierra-Torres CH 2014. Effects of thyroid hormones on the heart. Clin. Investig. Arterioscler. 26:296–309
    [Google Scholar]
  140. 140. 
    Roepke TK, King EC, Reyna-Neyra A, Paroder M, Purtell K et al. 2009. Kcne2 deletion uncovers its crucial role in thyroid hormone biosynthesis. Nat. Med. 15:1186–94
    [Google Scholar]
  141. 141. 
    Roepke TK, Kontogeorgis A, Ovanez C, Xu X, Young JB et al. 2008. Targeted deletion of kcne2 impairs ventricular repolarization via disruption of IK,slow1 and Ito,f. FASEB J 22:3648–60
    [Google Scholar]
  142. 142. 
    Purtell K, Paroder-Belenitsky M, Reyna-Neyra A, Nicola JP, Koba W et al. 2012. The KCNQ1-KCNE2 K+ channel is required for adequate thyroid I uptake. FASEB J 26:3252–59
    [Google Scholar]
  143. 143. 
    Mansen A, Tiselius C, Sand P, Fauconnier J, Westerblad H et al. 2010. Thyroid hormone receptor α can control action potential duration in mouse ventricular myocytes through the KCNE1 ion channel subunit. Acta Physiol 198:133–42
    [Google Scholar]
  144. 144. 
    Weiss RE, Murata Y, Cua K, Hayashi Y, Seo H, Refetoff S 1998. Thyroid hormone action on liver, heart, and energy expenditure in thyroid hormone receptor β-deficient mice. Endocrinology 139:4945–52
    [Google Scholar]
  145. 145. 
    Johansson C, Gothe S, Forrest D, Vennstrom B, Thoren P 1999. Cardiovascular phenotype and temperature control in mice lacking thyroid hormone receptor-β or both α1 and β. Am. J. Physiol. 276:H2006–12
    [Google Scholar]
  146. 146. 
    Shulkes A, Baldwin GS. 1997. Biology of gut cholecystokinin and gastrin receptors. Clin. Exp. Pharmacol. Physiol. 24:209–16
    [Google Scholar]
  147. 147. 
    Hirst BH. 2002. K+ recycling and gastric acid secretion. J. Physiol. 540:1
    [Google Scholar]
  148. 148. 
    Grahammer F, Herling AW, Lang HJ, Schmitt-Graff A, Wittekindt OH et al. 2001. The cardiac K+ channel KCNQ1 is essential for gastric acid secretion. Gastroenterology 120:1363–71
    [Google Scholar]
  149. 149. 
    Roepke TK, Purtell K, King EC, La Perle KMD, Lerner DJ, Abbott GW 2010. Targeted deletion of Kcne2 causes gastritis cystica profunda and gastric neoplasia. PLOS ONE 5:e11451
    [Google Scholar]
  150. 150. 
    Rice KS, Dickson G, Lane M, Crawford J, Chung SK et al. 2011. Elevated serum gastrin levels in Jervell and Lange-Nielsen syndrome: a marker of severe KCNQ1 dysfunction. ? Heart Rhythm 8:551–54
    [Google Scholar]
  151. 151. 
    Torekov SS, Iepsen E, Christiansen M, Linneberg A, Pedersen O et al. 2014. KCNQ1 long QT syndrome patients have hyperinsulinemia and symptomatic hypoglycemia. Diabetes 63:1315–25
    [Google Scholar]
  152. 152. 
    Nakamura H, Kurokawa J, Bai CX, Asada K, Xu J et al. 2007. Progesterone regulates cardiac repolarization through a nongenomic pathway: an in vitro patch-clamp and computational modeling study. Circulation 116:2913–22
    [Google Scholar]
  153. 153. 
    Roepke TK, Anantharam A, Kirchhoff P, Busque SM, Young JB et al. 2006. The KCNE2 potassium channel ancillary subunit is essential for gastric acid secretion. J. Biol. Chem. 281:23740–47
    [Google Scholar]
  154. 154. 
    Miceli F, Cilio MR, Taglialatela M, Bezanilla F 2009. Gating currents from neuronal KV7.4 channels: general features and correlation with the ionic conductance. Channels 3:274–83
    [Google Scholar]
  155. 155. 
    Maljevic S, Wuttke TV, Lerche H 2008. Nervous system KV7 disorders: breakdown of a subthreshold brake. J. Physiol. 586:1791–801
    [Google Scholar]
  156. 156. 
    Kubisch C, Schroeder BC, Friedrich T, Lütjohann B, El-Amraoui A et al. 1999. KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell 96:437–46
    [Google Scholar]
  157. 157. 
    Casimiro MC, Knollmann BC, Yamoah EN, Nie L, Vary JC Jr. et al. 2004. Targeted point mutagenesis of mouse Kcnq1: phenotypic analysis of mice with point mutations that cause Romano-Ward syndrome in humans. Genomics 84:555–64
    [Google Scholar]
  158. 158. 
    Temple J, Frias P, Rottman J, Yang T, Wu Y et al. 2005. Atrial fibrillation in KCNE1-null mice. Circ. Res. 97:62–69
    [Google Scholar]
  159. 159. 
    Charpentier F, Merot J, Riochet D, Le Marec H, Escande D 1998. Adult KCNE1-knockout mice exhibit a mild cardiac cellular phenotype. Biochem. Biophys. Res. Commun. 251:806–10
    [Google Scholar]
  160. 160. 
    David JP, Lisewski U, Crump SM, Jepps TA, Bocksteins E et al. 2019. Deletion in mice of X-linked, Brugada syndrome– and atrial fibrillation–associated Kcne5 augments ventricular KV currents and predisposes to ventricular arrhythmia. FASEB J 33:2537–52
    [Google Scholar]
  161. 161. 
    Angelo K, Jespersen T, Grunnet M, Nielsen MS, Klaerke DA, Olesen SP 2002. KCNE5 induces time- and voltage-dependent modulation of the KCNQ1 current. Biophys. J. 83:1997–2006
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010919-023645
Loading
/content/journals/10.1146/annurev-pharmtox-010919-023645
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error