1932

Abstract

Retinoic acid–related orphan receptor γt (RORγt) functions as a ligand-dependent transcription factor that regulates multiple proinflammatory genes and plays a critical role in several inflammatory and autoimmune diseases. Various endogenous and synthetic RORγ (inverse) agonists have been identified that regulate RORγ transcriptional activity, including many cholesterol intermediates and oxysterols. Changes in cholesterol biosynthesis and metabolism can therefore have a significant impact on the generation of oxysterol RORγ ligands and, consequently, can control RORγt activity and inflammation. These observations contribute to a growing literature that connects cholesterol metabolism to the regulation of immune responses and autoimmune disease. Loss of RORγ function in knockout mice and in mice treated with RORγ inverse agonists results in reduced production of proinflammatory cytokines, such as IL-17A/F, and increased resistance to autoimmune disease in several experimental rodent models. Thus, RORγt inverse agonists might provide an attractive therapeutic approach to treat a variety of autoimmune diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010919-023711
2020-01-06
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/60/1/annurev-pharmtox-010919-023711.html?itemId=/content/journals/10.1146/annurev-pharmtox-010919-023711&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Hirose T, Fujimoto W, Tamaai T, Kim KH, Matsuura H, Jetten AM 1994. TAK1: molecular cloning and characterization of a new member of the nuclear receptor superfamily. Mol. Endocrinol. 8:1667–80
    [Google Scholar]
  2. 2. 
    Hirose T, Smith RJ, Jetten AM 1994. ROR-γ: the third member of ROR/RZR orphan receptor subfamily that is highly expressed in skeletal muscle. Biochem. Biophys. Res. Commun. 205:1976–83
    [Google Scholar]
  3. 3. 
    Jetten AM. 2009. Retinoid-related orphan receptors (RORs): critical roles in development, immunity, circadian rhythm, and cellular metabolism. Nucl. Recept. Signal. 7:e003
    [Google Scholar]
  4. 4. 
    Giguère V, Tini M, Flock G, Ong E, Evans RM, Otulakowski G 1994. Isoform-specific amino-terminal domains dictate DNA-binding properties of RORα, a novel family of orphan hormone nuclear receptors. Genes Dev 8:538–53
    [Google Scholar]
  5. 5. 
    Carlberg C, Hooft van Huijsduijnen R, Staple JK, DeLamarter JF, Becker-Andre M 1994. RZRs, a new family of retinoid-related orphan receptors that function as both monomers and homodimers. Mol. Endocrinol. 8:757–70
    [Google Scholar]
  6. 6. 
    Cook DN, Kang HS, Jetten AM 2015. Retinoic acid-related orphan receptors (RORs): regulatory functions in immunity, development, circadian rhythm, and metabolism. Nucl. Receptor Res. 2:101185
    [Google Scholar]
  7. 7. 
    Medvedev A, Chistokhina A, Hirose T, Jetten AM 1997. Genomic structure and chromosomal mapping of the nuclear orphan receptor RORγ (RORC) gene. Genomics 46:93–102
    [Google Scholar]
  8. 8. 
    Jetten AM, Takeda Y, Slominski A, Kang HS 2018. Retinoic acid-related orphan receptor γ (RORγ): connecting sterol metabolism to regulation of the immune system and autoimmune disease. Curr. Opion. Toxicol. 8:66–80
    [Google Scholar]
  9. 9. 
    Rutz S, Eidenschenk C, Kiefer JR, Ouyang W 2016. Post-translational regulation of RORγt—a therapeutic target for the modulation of interleukin-17-mediated responses in autoimmune diseases. Cytokine Growth Factor Rev 30:1–17
    [Google Scholar]
  10. 10. 
    He YW, Deftos ML, Ojala EW, Bevan MJ 1998. RORγt, a novel isoform of an orphan receptor, negatively regulates Fas ligand expression and IL-2 production in T cells. Immunity 9:797–806
    [Google Scholar]
  11. 11. 
    Kang HS, Angers M, Beak JY, Wu X, Gimble JM et al. 2007. Gene expression profiling reveals a regulatory role for RORα and RORγ in phase I and phase II metabolism. Physiol. Genom. 31:281–94
    [Google Scholar]
  12. 12. 
    Schmidt SF, Madsen JG, Frafjord KO, Poulsen L, Salo S et al. 2016. Integrative genomics outlines a biphasic glucose response and a ChREBP-RORγ axis regulating proliferation in β cells. Cell Rep 16:2359–72
    [Google Scholar]
  13. 13. 
    Takeda Y, Kang HS, Freudenberg J, DeGraff LM, Jothi R, Jetten AM 2014. Retinoic acid-related orphan receptor γ (RORγ): a novel participant in the diurnal regulation of hepatic gluconeogenesis and insulin sensitivity. PLOS Genet 10:e1004331
    [Google Scholar]
  14. 14. 
    Takeda Y, Kang HS, Lih FB, Jiang H, Blaner WS, Jetten AM 2014. Retinoid acid-related orphan receptor γ, RORγ, participates in diurnal transcriptional regulation of lipid metabolic genes. Nucleic Acids Res 42:10448–59
    [Google Scholar]
  15. 15. 
    Takeda Y, Jothi R, Birault V, Jetten AM 2012. RORγ directly regulates the circadian expression of clock genes and downstream targets in vivo. Nucleic Acids Res 40:8518–35
    [Google Scholar]
  16. 16. 
    Takeda Y, Kang HS, Angers M, Jetten AM 2011. Retinoic acid-related orphan receptor γ directly regulates neuronal PAS domain protein 2 transcription in vivo. Nucleic Acids Res 39:4769–82
    [Google Scholar]
  17. 17. 
    Montaldo E, Juelke K, Romagnani C 2015. Group 3 innate lymphoid cells (ILC3s): origin, differentiation, and plasticity in humans and mice. Eur. J. Immunol. 45:2171–82
    [Google Scholar]
  18. 18. 
    Eberl G, Littman DR. 2003. The role of the nuclear hormone receptor RORγt in the development of lymph nodes and Peyer's patches. Immunol. Rev. 195:81–90
    [Google Scholar]
  19. 19. 
    Eberl G, Marmon S, Sunshine MJ, Rennert PD, Choi Y, Littman DR 2004. An essential function for the nuclear receptor RORγt in the generation of fetal lymphoid tissue inducer cells. Nat. Immunol. 5:64–73
    [Google Scholar]
  20. 20. 
    Ivanov II, Zhou L, Littman DR 2007. Transcriptional regulation of Th17 cell differentiation. Semin. Immunol. 19:409–17
    [Google Scholar]
  21. 21. 
    Kurebayashi S, Ueda E, Sakaue M, Patel DD, Medvedev A et al. 2000. Retinoid-related orphan receptor γ (RORγ) is essential for lymphoid organogenesis and controls apoptosis during thymopoiesis. PNAS 97:10132–37
    [Google Scholar]
  22. 22. 
    Sun Z, Unutmaz D, Zou YR, Sunshine MJ, Pierani A et al. 2000. Requirement for RORγ in thymocyte survival and lymphoid organ development. Science 288:2369–73
    [Google Scholar]
  23. 23. 
    Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A et al. 2006. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126:1121–33
    [Google Scholar]
  24. 24. 
    Scoville SD, Freud AG, Galigiuri MA 2019. Cellular pathways in the development of human and murine innate lymphoid cells. Curr. Opin. Immunol. 56:100–6
    [Google Scholar]
  25. 25. 
    Yang XO, Pappu BP, Nurieva R, Akimzhanov A, Kang HS et al. 2008. T helper 17 lineage differentiation is programmed by orphan nuclear receptors RORα and RORγ. Immunity 28:29–39
    [Google Scholar]
  26. 26. 
    Bettelli E, Carrier Y, Gao W, Korn T, Strom TB et al. 2006. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–38
    [Google Scholar]
  27. 27. 
    Mangan PR, Harrington LE, O'Quinn DB, Helms WS, Bullard DC et al. 2006. Transforming growth factor-β induces development of the TH17 lineage. Nature 441:231–34
    [Google Scholar]
  28. 28. 
    Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B 2006. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24:179–89
    [Google Scholar]
  29. 29. 
    Manel N, Unutmaz D, Littman DR 2008. The differentiation of human TH-17 cells requires transforming growth factor-β and induction of the nuclear receptor RORγt. Nat. Immunol. 9:641–49
    [Google Scholar]
  30. 30. 
    Ghoreschi K, Laurence A, Yang XP, Tato CM, McGeachy MJ et al. 2010. Generation of pathogenic TH17 cells in the absence of TGF-β signalling. Nature 467:967–71
    [Google Scholar]
  31. 31. 
    Yang XO, Panopoulos AD, Nurieva R, Chang SH, Wang D et al. 2007. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J. Biol. Chem. 282:9358–63
    [Google Scholar]
  32. 32. 
    Basu R, Whitley SK, Bhaumik S, Zindl CL, Schoeb TR et al. 2015. IL-1 signaling modulates activation of STAT transcription factors to antagonize retinoic acid signaling and control the TH17 cell–iTreg cell balance. Nat. Immunol. 16:286–95
    [Google Scholar]
  33. 33. 
    Zhang F, Meng G, Strober W 2008. Interactions among the transcription factors Runx1, RORγt and Foxp3 regulate the differentiation of interleukin 17-producing T cells. Nat. Immunol. 9:1297–306
    [Google Scholar]
  34. 34. 
    Zhang S, Takaku M, Zou L, Gu AD, Chou WC et al. 2017. Reversing SKI-SMAD4-mediated suppression is essential for TH17 cell differentiation. Nature 551:105–9
    [Google Scholar]
  35. 35. 
    Xiao S, Yosef N, Yang J, Wang Y, Zhou L et al. 2014. Small-molecule RORγt antagonists inhibit T helper 17 cell transcriptional network by divergent mechanisms. Immunity 40:477–89
    [Google Scholar]
  36. 36. 
    Schraml BU, Hildner K, Ise W, Lee WL, Smith WA et al. 2009. The AP-1 transcription factor Batf controls TH17 differentiation. Nature 460:405–9
    [Google Scholar]
  37. 37. 
    Brustle A, Heink S, Huber M, Rosenplanter C, Stadelmann C et al. 2007. The development of inflammatory TH-17 cells requires interferon-regulatory factor 4. Nat. Immunol. 8:958–66
    [Google Scholar]
  38. 38. 
    Ciofani M, Madar A, Galan C, Sellars M, Mace K et al. 2012. A validated regulatory network for Th17 cell specification. Cell 151:289–303
    [Google Scholar]
  39. 39. 
    Yosef N, Shalek AK, Gaublomme JT, Jin H, Lee Y et al. 2013. Dynamic regulatory network controlling TH17 cell differentiation. Nature 496:461–68
    [Google Scholar]
  40. 40. 
    Zhou L, Lopes JE, Chong MM, Ivanov II, Min R et al. 2008. TGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORγt function. Nature 453:236–40
    [Google Scholar]
  41. 41. 
    Yang XO, Nurieva R, Martinez GJ, Kang HS, Chung Y et al. 2008. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity 29:44–56
    [Google Scholar]
  42. 42. 
    Ichiyama K, Yoshida H, Wakabayashi Y, Chinen T, Saeki K et al. 2008. Foxp3 inhibits RORγt-mediated IL-17A mRNA transcription through direct interaction with RORγt. J. Biol. Chem. 283:17003–8
    [Google Scholar]
  43. 43. 
    Diefenbach A, Colonna M, Koyasu S 2014. Development, differentiation, and diversity of innate lymphoid cells. Immunity 41:354–65
    [Google Scholar]
  44. 44. 
    Sawa S, Cherrier M, Lochner M, Satoh-Takayama N, Fehling HJ et al. 2010. Lineage relationship analysis of RORγt+ innate lymphoid cells. Science 330:665–69
    [Google Scholar]
  45. 45. 
    Aparicio-Domingo P, Cupedo T. 2011. Rorγt+ innate lymphoid cells in intestinal homeostasis and immunity. J. Innate Immun. 3:577–84
    [Google Scholar]
  46. 46. 
    Serafini N, Klein Wolterink RG, Satoh-Takayama N, Xu W, Vosshenrich CA et al. 2014. Gata3 drives development of RORγt+ group 3 innate lymphoid cells. J. Exp. Med. 211:199–208
    [Google Scholar]
  47. 47. 
    Ebihara T, Song C, Ryu SH, Plougastel-Douglas B, Yang L et al. 2015. Runx3 specifies lineage commitment of innate lymphoid cells. Nat. Immunol. 16:1124–33
    [Google Scholar]
  48. 48. 
    Geremia A, Arancibia-Carcamo CV, Fleming MP, Rust N, Singh B et al. 2011. IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J. Exp. Med. 208:1127–33
    [Google Scholar]
  49. 49. 
    Bernink JH, Krabbendam L, Germar K, de Jong E, Gronke K et al. 2015. Interleukin-12 and -23 control plasticity of CD127+ group 1 and group 3 innate lymphoid cells in the intestinal lamina propria. Immunity 43:146–60
    [Google Scholar]
  50. 50. 
    Klose CSN, Kiss EA, Schwierzeck V, Ebert K, Hoyler T et al. 2013. A T-bet gradient controls the fate and function of CCR6RORγt+ innate lymphoid cells. Nature 494:261–65
    [Google Scholar]
  51. 51. 
    Tanriver Y, Diefenbach A. 2014. Transcription factors controlling development and function of innate lymphoid cells. Int. Immunol. 26:119–28
    [Google Scholar]
  52. 52. 
    Mebius RE, Rennert P, Weissman IL 1997. Developing lymph nodes collect CD4+CD3 LTβ+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity 7:493–504
    [Google Scholar]
  53. 53. 
    McKenzie ANJ, Spits H, Eberl G 2014. Innate lymphoid cells in inflammation and immunity. Immunity 41:366–74
    [Google Scholar]
  54. 54. 
    van de Pavert SA, Ferreira M, Domingues RG, Ribeiro H, Molenaar R et al. 2014. Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity. Nature 508:123–27
    [Google Scholar]
  55. 55. 
    Sutton CE, Lalor SJ, Sweeney CM, Brereton CF, Lavelle EC, Mills KH 2009. Interleukin-1 and IL-23 induce innate IL-17 production from γδ T cells, amplifying Th17 responses and autoimmunity. Immunity 31:331–41
    [Google Scholar]
  56. 56. 
    Paul S, Shilpi Lai G 2015. Role of gamma-delta (γδ) T cells in autoimmunity. J. Leukoc. Biol. 97:259–71
    [Google Scholar]
  57. 57. 
    Johansen C, Usher PA, Kjellerup RB, Lundsgaard D, Iversen L, Kragballe K 2009. Characterization of the interleukin-17 isoforms and receptors in lesional psoriatic skin. Br. J. Dermatol. 160:319–24
    [Google Scholar]
  58. 58. 
    Cua DJ, Tato CM. 2010. Innate IL-17-producing cells: the sentinels of the immune system. Nat. Rev. Immunol. 10:479–89
    [Google Scholar]
  59. 59. 
    Ermisch M, Firla B, Steinhilber D 2011. Protein kinase A activates and phosphorylates RORα4 in vitro and takes part in RORα activation by CaMK-IV. Biochem. Biophys. Res. Commun. 408:442–46
    [Google Scholar]
  60. 60. 
    Hwang EJ, Lee JM, Jeong J, Park JH, Yang Y et al. 2009. SUMOylation of RORα potentiates transcriptional activation function. Biochem. Biophys. Res. Commun. 378:513–17
    [Google Scholar]
  61. 61. 
    Lim HW, Kang SG, Ryu JK, Schilling B, Fei M et al. 2015. SIRT1 deacetylates RORγt and enhances Th17 cell generation. J. Exp. Med. 212:607–17
    [Google Scholar]
  62. 62. 
    Kathania M, Khare P, Zeng M, Cantarel B, Zhang H et al. 2016. Itch inhibits IL-17-mediated colon inflammation and tumorigenesis by ROR-γt ubiquitination. Nat. Immunol. 17:997–1004
    [Google Scholar]
  63. 63. 
    He Z, Ma J, Wang R, Zhang J, Huang Z et al. 2017. A two-amino-acid substitution in the transcription factor RORγt disrupts its function in TH17 differentiation but not in thymocyte development. Nat. Immunol. 18:1128–38
    [Google Scholar]
  64. 64. 
    Yang J, Xu P, Han L, Guo Z, Wang X et al. 2015. Cutting edge: ubiquitin-specific protease 4 promotes Th17 cell function under inflammation by deubiquitinating and stabilizing RORγt. J. Immunol. 194:4094–97
    [Google Scholar]
  65. 65. 
    Wang X, Yang J, Han L, Zhao K, Wu Q et al. 2015. TRAF5-mediated lys-63-linked polyubiquitination plays an essential role in positive regulation of RORγt in promoting IL-17A expression. J. Biol. Chem. 290:29086–94
    [Google Scholar]
  66. 66. 
    Rutz S, Kayagaki N, Phung QT, Eidenschenk C, Noubade R et al. 2015. Deubiquitinase DUBA is a post-translational brake on interleukin-17 production in T cells. Nature 518:417–21
    [Google Scholar]
  67. 67. 
    Han L, Yang J, Wang X, Wu Q, Yin S et al. 2014. The E3 deubiquitinase USP17 is a positive regulator of retinoic acid-related orphan nuclear receptor γt (RORγt) in Th17 cells. J. Biol. Chem. 289:25546–55
    [Google Scholar]
  68. 68. 
    He Z, Wang F, Ma J, Sen S, Zhang J et al. 2016. Ubiquitination of RORγt at lysine 446 limits Th17 differentiation by controlling coactivator recruitment. J. Immunol. 197:1148–58
    [Google Scholar]
  69. 69. 
    Limagne E, Thibaudin M, Euvrard R, Berger H, Chalons P et al. 2017. Sirtuin-1 activation controls tumor growth by impeding Th17 differentiation via STAT3 deacetylation. Cell Rep 19:746–59
    [Google Scholar]
  70. 70. 
    He Z, Zhang J, Huang Z, Du Q, Li N et al. 2018. Sumoylation of RORγt regulates TH17 differentiation and thymocyte development. Nat. Commun. 9:4870
    [Google Scholar]
  71. 71. 
    Singh AK, Khare P, Obaid A, Conlon KP, Basrur V et al. 2018. SUMOylation of ROR-γt inhibits IL-17 expression and inflammation via HDAC2. Nat. Commun. 9:4515
    [Google Scholar]
  72. 72. 
    Sen S, Wang F, Zhang J, He Z, Ma J et al. 2018. SRC1 promotes Th17 differentiation by overriding Foxp3 suppression to stimulate RORγt activity in a PKC-θ-dependent manner. PNAS 115:E458–67
    [Google Scholar]
  73. 73. 
    Kallen J, Schlaeppi JM, Bitsch F, Delhon I, Fournier B 2004. Crystal structure of the human RORα ligand binding domain in complex with cholesterol sulfate at 2.2 Å. J. Biol. Chem. 279:14033–38
    [Google Scholar]
  74. 74. 
    Kallen JA, Schlaeppi JM, Bitsch F, Geisse S, Geiser M et al. 2002. X-ray structure of the hRORα LBD at 1.63 Å: structural and functional data that cholesterol or a cholesterol derivative is the natural ligand of RORα. Structure 10:1697–707
    [Google Scholar]
  75. 75. 
    Jin L, Martynowski D, Zheng S, Wada T, Xie W, Li Y 2010. Structural basis for hydroxycholesterols as natural ligands of orphan nuclear receptor RORγ. Mol. Endocrinol. 24:923–29
    [Google Scholar]
  76. 76. 
    Soroosh P, Wu J, Xue X, Song J, Sutton SW et al. 2014. Oxysterols are agonist ligands of RORγt and drive Th17 cell differentiation. PNAS 111:12163–68
    [Google Scholar]
  77. 77. 
    Wang Y, Kumar N, Crumbley C, Griffin PR, Burris TP 2010. A second class of nuclear receptors for oxysterols: regulation of RORα and RORγ activity by 24S-hydroxycholesterol (cerebrosterol). Biochim. Biophys. Acta 1801:917–23
    [Google Scholar]
  78. 78. 
    Wang Y, Kumar N, Solt LA, Richardson TI, Helvering LM et al. 2010. Modulation of retinoic acid receptor-related orphan receptor α and γ activity by 7-oxygenated sterol ligands. J. Biol. Chem. 285:5013–25
    [Google Scholar]
  79. 79. 
    Hu X, Wang Y, Hao L-Y, Liu X, Lesch CA et al. 2015. Sterol metabolism controls TH17 differentiation by generating endogenous RORγ agonists. Nat. Chem. Biol. 11:141–47
    [Google Scholar]
  80. 80. 
    Santori FR, Huang P, van de Pavert SA, Douglass EF Jr., Leaver DJ et al. 2015. Identification of natural RORγ ligands that regulate the development of lymphoid cells. Cell Metab 21:286–97
    [Google Scholar]
  81. 81. 
    Santori FR. 2015. Nuclear hormone receptors put immunity on sterols. Eur. J. Immunol. 45:2730–41
    [Google Scholar]
  82. 82. 
    Slominski AT, Kim TK, Hobrath JV, Oak ASW, Tang EKY et al. 2017. Endogenously produced nonclassical vitamin D hydroxy-metabolites act as “biased” agonists on VDR and inverse agonists on RORα and RORγ. J. Steroid Biochem. Mol. Biol. 173:42–56
    [Google Scholar]
  83. 83. 
    Slominski AT, Kim TK, Hobrath JV, Janjetovic Z, Oak ASW et al. 2017. Characterization of a new pathway that activates lumisterol in vivo to biologically active hydroxylumisterols. Sci. Rep. 7:11434
    [Google Scholar]
  84. 84. 
    Varshney P, Narasimhan A, Mittal S, Malik G, Sardana K, Saini N 2016. Transcriptome profiling unveils the role of cholesterol in IL-17A signaling in psoriasis. Sci. Rep. 6:19295
    [Google Scholar]
  85. 85. 
    Zhang X, Jin J, Peng X, Ramgolam VS, Markovic-Plese S 2008. Simvastatin inhibits IL-17 secretion by targeting multiple IL-17-regulatory cytokines and by inhibiting the expression of IL-17 transcription factor RORC in CD4+ lymphocytes. J. Immunol. 180:6988–96
    [Google Scholar]
  86. 86. 
    Kojima H, Muromoto R, Takahashi M, Takeuchi S, Takeda Y et al. 2012. Inhibitory effects of azole-type fungicides on interleukin-17 gene expression via retinoic acid receptor-related orphan receptors α and γ. Toxicol. Appl. Pharmacol. 259:338–45
    [Google Scholar]
  87. 87. 
    Urlep Z, Lorbek G, Perse M, Jeruc J, Juvan P et al. 2017. Disrupting hepatocyte Cyp51 from cholesterol synthesis leads to progressive liver injury in the developing mouse and decreases RORC signalling. Sci. Rep. 7:40775
    [Google Scholar]
  88. 88. 
    Wang C, Yosef N, Gaublomme J, Wu C, Lee Y et al. 2015. CD5L/AIM regulates lipid biosynthesis and restrains Th17 cell pathogenicity. Cell 163:1413–27
    [Google Scholar]
  89. 89. 
    Shimano H, Sato R. 2017. SREBP-regulated lipid metabolism: convergent physiology—divergent pathophysiology. Nat. Rev. Endocrinol. 13:710–30
    [Google Scholar]
  90. 90. 
    Postigo J, Genre F, Iglesias M, Fernandez-Rey M, Buelta L et al. 2011. Exacerbation of type II collagen-induced arthritis in apolipoprotein E-deficient mice in association with the expansion of Th1 and Th17 cells. Arthritis Rheum 63:971–80
    [Google Scholar]
  91. 91. 
    Huh JR, Leung MW, Huang P, Ryan DA, Krout MR et al. 2011. Digoxin and its derivatives suppress TH17 cell differentiation by antagonizing RORγt activity. Nature 472:486–90
    [Google Scholar]
  92. 92. 
    Karas K, Salkowska A, Sobalska-Kwapis M, Walczak-Drzewiecka A, Strapagiel D et al. 2018. Digoxin, an overlooked agonist of RORγ/RORγt. Front. Pharmacol. 9:1460
    [Google Scholar]
  93. 93. 
    Kumar N, Solt LA, Conkright JJ, Wang Y, Istrate MA et al. 2010. The benzenesulfoamide T0901317 [N-(2,2,2-trifluoroethyl)-N-[4-[2,2,2-trifluoro-1-hydroxy-1-(trifluoromethyl)ethyl]phenyl]-benzenesulfonamide] is a novel retinoic acid receptor-related orphan receptor-α/γ inverse agonist. Mol. Pharmacol. 77:228–36
    [Google Scholar]
  94. 94. 
    Solt LA, Burris TP. 2012. Action of RORs and their ligands in (patho)physiology. Trends Endocrinol. Metab. 23:619–27
    [Google Scholar]
  95. 95. 
    Xu T, Wang X, Zhong B, Nurieva RI, Ding S, Dong C 2011. Ursolic acid suppresses interleukin-17 (IL-17) production by selectively antagonizing the function of RORγt protein. J. Biol. Chem. 286:22707–10
    [Google Scholar]
  96. 96. 
    Kallen J, Izaac A, Be C, Arista L, Orain D et al. 2017. Structural states of RORγt: X-ray elucidation of molecular mechanisms and binding interactions for natural and synthetic compounds. Chem. Med. Chem. 12:1014–21
    [Google Scholar]
  97. 97. 
    Fauber BP, Rene O, Burton B, Everett C, Gobbi A et al. 2014. Identification of tertiary sulfonamides as RORc inverse agonists. Bioorg. Med. Chem. Lett. 24:2182–87
    [Google Scholar]
  98. 98. 
    Fauber BP, Rene O, Deng Y, DeVoss J, Eidenschenk C et al. 2015. Discovery of 1-{4-[3-fluoro-4-((3S,6R)-3-methyl-1,1-dioxo-6-phenyl-[1,2]thiazinan-2-ylmethyl)-phenyl]-piperazin-1-yl}-ethanone (GNE-3500): a potent, selective, and orally bioavailable retinoic acid receptor-related orphan receptor C (RORc or RORγ) inverse agonist. J. Med. Chem. 58:5308–22
    [Google Scholar]
  99. 99. 
    Barbay JK, Cummings MD, Abad M, Castro G, Kreutter KD et al. 2017. 6-substituted quinolines as RORγt inverse agonists. Bioorg. Med. Chem. Lett. 27:5277–83
    [Google Scholar]
  100. 100. 
    Chao J, Enyedy I, Van Vloten K, Marcotte D, Guertin K et al. 2015. Discovery of biaryl carboxylamides as potent RORγ inverse agonists. Bioorg. Med. Chem. Lett. 25:2991–97
    [Google Scholar]
  101. 101. 
    Fukase Y, Sato A, Tomata Y, Ochida A, Kono M et al. 2018. Identification of novel quinazolinedione derivatives as RORγt inverse agonist. Bioorg. Med. Chem. 26:721–36
    [Google Scholar]
  102. 102. 
    Gege C, Cummings MD, Albers M, Kinzel O, Kleymann G et al. 2018. Identification and biological evaluation of thiazole-based inverse agonists of RORγt. Identification of novel quinazolinedione derivatives as RORγt inverse agonist. Bioorg. Med. Chem. Lett. 28:1446–55
    [Google Scholar]
  103. 103. 
    Hintermann S, Guntermann C, Mattes H, Carcache DA, Wagner J et al. 2016. Synthesis and biological evaluation of new triazolo- and imidazolopyridine RORγt inverse agonists. Chem. Med. Chem. 11:2640–48
    [Google Scholar]
  104. 104. 
    Huang Y, Yu M, Sun N, Tang T, Yu F et al. 2018. Discovery of carbazole carboxamides as novel RORγt inverse agonists. Eur. J. Med. Chem. 148:465–76
    [Google Scholar]
  105. 105. 
    Kono M, Oda T, Tawada M, Imada T, Banno Y et al. 2018. Discovery of orally efficacious RORγt inverse agonists. Part 2: design, synthesis, and biological evaluation of novel tetrahydroisoquinoline derivatives. Bioorg. Med. Chem. 26:470–82
    [Google Scholar]
  106. 106. 
    Narjes F, Xue Y, von Berg S, Malmberg J, Llinas A et al. 2018. Potent and orally bioavailable inverse agonists of RORγt resulting from structure-based design. J. Med. Chem. 61:7796–813
    [Google Scholar]
  107. 107. 
    Ouvry G, Bouix-Peter C, Ciesielski F, Chantalat L, Christin O et al. 2016. Discovery of phenoxyindazoles and phenylthioindazoles as RORγ inverse agonists. Bioorg. Med. Chem. Lett. 26:5802–8
    [Google Scholar]
  108. 108. 
    Shirai J, Tomata Y, Kono M, Ochida A, Fukase Y et al. 2018. Discovery of orally efficacious RORγt inverse agonists. Part 1: identification of novel phenylglycinamides as lead scaffolds. Bioorg. Med. Chem. 26:483–500
    [Google Scholar]
  109. 109. 
    van Niel MB, Fauber BP, Cartwright M, Gaines S, Killen JC et al. 2014. A reversed sulfonamide series of selective RORc inverse agonists. Bioorg. Med. Chem. Lett. 24:5769–76
    [Google Scholar]
  110. 110. 
    Wang T, Banerjee D, Bohnert T, Chao J, Enyedy I et al. 2015. Discovery of novel pyrazole-containing benzamides as potent RORγ inverse agonists. Bioorg. Med. Chem. Lett. 25:2985–90
    [Google Scholar]
  111. 111. 
    Wang Y, Cai W, Tang T, Liu Q, Yang T et al. 2018. From RORγt agonist to two types of RORγt inverse agonists. ACS Med. Chem. Lett. 9:120–24
    [Google Scholar]
  112. 112. 
    Wu XS, Wang R, Xing YL, Xue XQ, Zhang Y et al. 2016. Discovery and structural optimization of 4-(4-(benzyloxy)phenyl)-3,4-dihydropyrimidin-2(1H)-ones as RORc inverse agonists. Acta Pharmacol. Sin. 37:1516–24
    [Google Scholar]
  113. 113. 
    Yang T, Liu Q, Cheng Y, Cai W, Ma Y et al. 2014. Discovery of tertiary amine and indole derivatives as potent RORγt inverse agonists. ACS Med. Chem. Lett. 5:65–68
    [Google Scholar]
  114. 114. 
    Cyr P, Bronner SM, Crawford JJ 2016. Recent progress on nuclear receptor RORγ modulators. Bioorg. Med. Chem. Lett. 26:4387–93
    [Google Scholar]
  115. 115. 
    Fauber BP, Magnuson S. 2014. Modulators of the nuclear receptor retinoic acid receptor-related orphan receptor-γ (RORγ or RORc). J. Med. Chem. 57:5871–92
    [Google Scholar]
  116. 116. 
    Huh JR, Littman DR. 2012. Small molecule inhibitors of RORγt: targeting Th17 cells and other applications. Eur. J. Immunol. 42:2232–37
    [Google Scholar]
  117. 117. 
    Zhang Y, Luo XY, Wu DH, Xu Y 2015. ROR nuclear receptors: structures, related diseases, and drug discovery. Acta Pharmacol. Sin. 36:71–87
    [Google Scholar]
  118. 118. 
    Li X, Anderson M, Collin D, Muegge I, Wan J et al. 2017. Structural studies unravel the active conformation of apo RORγt nuclear receptor and a common inverse agonism of two diverse classes of RORγt inhibitors. J. Biol. Chem. 292:11618–30
    [Google Scholar]
  119. 119. 
    Fujita-Sato S, Ito S, Isobe T, Ohyama T, Wakabayashi K et al. 2011. Structural basis of digoxin that antagonizes RORγt receptor activity and suppresses Th17 cell differentiation and interleukin (IL)-17 production. J. Biol. Chem. 286:31409–17
    [Google Scholar]
  120. 120. 
    Scheepstra M, Leysen S, van Almen GC, Miller JR, Piesvaux J et al. 2015. Identification of an allosteric binding site for RORγt inhibition. Nat. Commun. 6:8833
    [Google Scholar]
  121. 121. 
    Rene O, Fauber BP, de Leon Boenig GL, Burton B, Eidenschenk C et al. 2015. Minor structural change to tertiary sulfonamide RORc ligands led to opposite mechanisms of action. ACS Med. Chem. Lett. 6:276–81
    [Google Scholar]
  122. 122. 
    Kumar N, Lyda B, Chang MR, Lauer JL, Solt LA et al. 2012. Identification of SR2211: a potent synthetic RORγ-selective modulator. ACS Chem. Biol. 7:672–77
    [Google Scholar]
  123. 123. 
    Guntermann C, Piaia A, Hamel ML, Theil D, Rubic-Schneider T et al. 2017. Retinoic-acid-orphan-receptor-C inhibition suppresses Th17 cells and induces thymic aberrations. JCI Insight 2:e91127
    [Google Scholar]
  124. 124. 
    Smith SH, Peredo CE, Takeda Y, Bui T, Neil J et al. 2016. Development of a topical treatment for psoriasis targeting RORγ: from bench to skin. PLOS ONE 11:e0147979
    [Google Scholar]
  125. 125. 
    Skepner J, Ramesh R, Trocha M, Schmidt D, Baloglu E et al. 2014. Pharmacologic inhibition of RORγt regulates Th17 signature gene expression and suppresses cutaneous inflammation in vivo. J. Immunol. 192:2564–75
    [Google Scholar]
  126. 126. 
    Takaishi M, Ishizaki M, Suzuki K, Isobe T, Shimozato T, Sano S 2017. Oral administration of a novel RORγt antagonist attenuates psoriasis-like skin lesion of two independent mouse models through neutralization of IL-17. J. Dermatol. Sci. 85:12–19
    [Google Scholar]
  127. 127. 
    Guendisch U, Weiss J, Ecoeur F, Riker JC, Kaupmann K et al. 2017. Pharmacological inhibition of RORγt suppresses the Th17 pathway and alleviates arthritis in vivo. PLOS ONE 12:e0188391
    [Google Scholar]
  128. 128. 
    Xue X, Soroosh P, De Leon-Tabaldo A, Luna-Roman R, Sablad M et al. 2016. Pharmacologic modulation of RORγt translates to efficacy in preclinical and translational models of psoriasis and inflammatory arthritis. Sci. Rep. 6:37977
    [Google Scholar]
  129. 129. 
    Banerjee D, Zhao L, Wu L, Palanichamy A, Ergun A et al. 2016. Small-molecule mediated inhibition of RORγ-dependent gene expression and autoimmune disease pathology in vivo. Immunology 147:399–413
    [Google Scholar]
  130. 130. 
    Sanati G, Aryan Z, Barbadi M, Rezaei N 2015. Innate lymphoid cells are pivotal actors in allergic, inflammatory and autoimmune diseases. Expert Rev. Clin. Immunol. 11:885–95
    [Google Scholar]
  131. 131. 
    Mease PJ. 2015. Inhibition of interleukin-17, interleukin-23 and the TH17 cell pathway in the treatment of psoriatic arthritis and psoriasis. Curr. Opin. Rheumatol. 27:127–33
    [Google Scholar]
  132. 132. 
    Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B et al. 2003. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421:744–48
    [Google Scholar]
  133. 133. 
    Awasthi A, Kuchroo VK. 2009. Th17 cells: from precursors to players in inflammation and infection. Int. Immunol. 21:489–98
    [Google Scholar]
  134. 134. 
    Tilley SL, Jaradat M, Stapleton C, Dixon D, Hua X et al. 2007. Retinoid-related orphan receptor γ controls immunoglobulin production and Th1/Th2 cytokine balance in the adaptive immune response to allergen. J. Immunol. 178:3208–18
    [Google Scholar]
  135. 135. 
    Kojetin DJ, Burris TP. 2014. REV-ERB and ROR nuclear receptors as drug targets. Nat. Rev. Drug Discov. 13:197–216
    [Google Scholar]
  136. 136. 
    Bronner SM, Zbieg JR, Crawford JJ 2017. RORγ antagonists and inverse agonists: a patent review. Expert Opin. Ther. Pat. 27:101–12
    [Google Scholar]
  137. 137. 
    Solt LA, Kumar N, Nuhant P, Wang Y, Lauer JL et al. 2011. Suppression of TH17 differentiation and autoimmunity by a synthetic ROR ligand. Nature 472:491–94
    [Google Scholar]
  138. 138. 
    Lee J, Choi J, Lee W, Ko K, Kim S 2015. Dehydrodiconiferyl alcohol (DHCA) modulates the differentiation of Th17 and Th1 cells and suppresses experimental autoimmune encephalomyelitis. Mol. Immunol. 68:434–44
    [Google Scholar]
  139. 139. 
    Kang EG, Wu S, Gupta A, von Mackensen YL, Siemetzki H et al. 2018. A phase I randomized controlled trial to evaluate safety and clinical effect of topically applied GSK2981278 ointment in a psoriasis plaque test. Br. J. Dermatol. 178:1427–29
    [Google Scholar]
  140. 140. 
    Pantelyushin S, Haak S, Ingold B, Kulig P, Heppner FL et al. 2012. Rorγt+ innate lymphocytes and γδ T cells initiate psoriasiform plaque formation in mice. J. Clin. Investig. 122:2252–56
    [Google Scholar]
  141. 141. 
    Gege C. 2016. Retinoid-related orphan receptor γ t (RORγt) inhibitors from Vitae Pharmaceuticals (WO2015116904) and structure proposal for their Phase I candidate VTP-43742. Expert Opin. Ther. Pat. 26:737–44
    [Google Scholar]
  142. 142. 
    Gege C. 2017. RORγt inhibitors as potential back-ups for the phase II candidate VTP-43742 from Vitae Pharmaceuticals: patent evaluation of WO2016061160 and US20160122345. Expert Opin. Ther. Pat. 27:1–8
    [Google Scholar]
  143. 143. 
    Chang MR, Lyda B, Kamenecka TM, Griffin PR 2014. Pharmacologic repression of retinoic acid receptor-related orphan nuclear receptor γ is therapeutic in the collagen-induced arthritis experimental model. Arthritis Rheumatol 66:579–88
    [Google Scholar]
  144. 144. 
    de Wit J, Al-Mossawi MH, Huhn MH, Arancibia-Carcamo CV, Doig K et al. 2016. RORγt inhibitors suppress TH17 responses in inflammatory arthritis and inflammatory bowel disease. J. Allergy Clin. Immunol. 137:960–63
    [Google Scholar]
  145. 145. 
    Hueber W, Sands BE, Lewitzky S, Vandemeulebroecke M, Reinisch W et al. 2012. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn's disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut 61:1693–700
    [Google Scholar]
  146. 146. 
    Withers DR, Hepworth MR, Wang X, Mackley EC, Halford EE et al. 2016. Transient inhibition of ROR-γt therapeutically limits intestinal inflammation by reducing TH17 cells and preserving group 3 innate lymphoid cells. Nat. Med. 22:319–23
    [Google Scholar]
  147. 147. 
    Bassolas-Molina H, Raymond E, Labadia M, Wahle J, Ferrer-Picon E et al. 2018. An RORγt oral inhibitor modulates IL-17 responses in peripheral blood and intestinal mucosa of Crohn's disease patients. Front. Immunol. 9:2307
    [Google Scholar]
  148. 148. 
    Ueda E, Kurebayashi S, Sakaue M, Backlund M, Koller B, Jetten AM 2002. High incidence of T-cell lymphomas in mice deficient in the retinoid-related orphan receptor RORγ. Cancer Res 62:901–9
    [Google Scholar]
  149. 149. 
    Liljevald M, Rehnberg M, Soderberg M, Ramnegard M, Borjesson J et al. 2016. Retinoid-related orphan receptor γ (RORγ) adult induced knockout mice develop lymphoblastic lymphoma. Autoimmun. Rev. 15:1062–70
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010919-023711
Loading
/content/journals/10.1146/annurev-pharmtox-010919-023711
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error