1932

Abstract

Here, I recount some adventures that I and my colleagues have had over some 60 years since 1957 studying the effects of drugs and neurotransmitters on neuronal excitability and ion channel function, largely, but not exclusively, using sympathetic neurons as test objects. Studies include effects of centrally active drugs on sympathetic transmission; neuronal action and neuroglial uptake of GABA in the ganglia and brain; the action of muscarinic agonists on sympathetic neurons; the action of bradykinin on neuroblastoma-derived cells; and the identification of M-current as a target for muscarinic action, including experiments to determine its distribution, molecular composition, neurotransmitter sensitivity, and intracellular regulation by phospholipids and their hydrolysis products. Techniques used include electrophysiological recording (extracellular, intracellular microelectrode, whole-cell, and single-channel patch-clamp), autoradiography, messenger RNA and complementary DNA expression, antibody injection, antisense knockdown, and membrane-targeted lipidated peptides. I finish with some recollections about my scientific career, funding, and changes in laboratory life and pharmacology research over the past 60 years.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010919-023755
2020-01-06
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/60/1/annurev-pharmtox-010919-023755.html?itemId=/content/journals/10.1146/annurev-pharmtox-010919-023755&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Brownlee G, Quilliam JP. 1953. Practical Pharmacology London: Pharmacol. Dep., Kings College London
  2. 2. 
    Brown DA, Prichard BNC, Quilliam JP 1959. Some pharmacological properties of the α-toxin of Staphylococcuspyogenes. Br. J. Pharmacol. Chemother 14:59–67
    [Google Scholar]
  3. 3. 
    Feldberg W, Kellaway CH. 1937. The liberation of histamine by staphylococcal toxin and mercuric chloride. Aust. J. Exp. Biol. Med. Sci. 16:249–59
    [Google Scholar]
  4. 4. 
    Brown DA. 1965. The release of histamine by the α-toxin of Staphylococcuspyogenes. Br. J. Pharmacol. Chemother 25:771–80
    [Google Scholar]
  5. 5. 
    Brown DA, Quilliam JP. 1965. Some effects of staphylococcal α-toxin on isolated mammalian smooth muscle preparations. Br. J. Pharmacol. Chemother. 25:781–89
    [Google Scholar]
  6. 6. 
    Gouaux E. 1998. α-Hemolysin from Staphylococcusaureus: an archetype of β-barrel, channel-forming toxins. J. Struct. Biol. 121:110–22
    [Google Scholar]
  7. 7. 
    Feldberg W, Vartiainen. 1934. Further observations on the physiology and pharmacology of a sympathetic ganglion. J. Physiol. 83:103–28
    [Google Scholar]
  8. 8. 
    Brown DA, Quilliam JP. 1964. The effects of some centrally-acting drugs on ganglionic transmission in the cat. Br. J. Pharmacol. Chemother. 23:241–56
    [Google Scholar]
  9. 9. 
    Brown DA, Quilliam JP. 1964. Observations of the mode of action of some central depressant drugs on transmission through the cat superior cervical ganglion. Br. J. Pharmacol. Chemother. 23:257–72
    [Google Scholar]
  10. 10. 
    Adams PR. 1976. Drug blockade of open end-plate channels. J. Physiol. 260:531–52
    [Google Scholar]
  11. 11. 
    Brown DA. 1961. The effect of some central depressant drugs on synaptic transmission PhD Thesis, University of London
  12. 12. 
    Nicoll RA. 1975. Presynaptic action of barbiturates in the frog spinal cord. PNAS 72:1460–63
    [Google Scholar]
  13. 13. 
    De Groat WC. 1970. The actions of γ-aminobutyric acid and related amino acids on mammalian autonomic ganglia. J. Pharmacol. Exp. Ther. 172:384–96
    [Google Scholar]
  14. 14. 
    Bowery NG, Brown DA. 1974. Depolarizing actions of γ-aminobutyric acid and related compounds on rat superior cervical ganglia in vitro. Br. J. Pharmacol. 50:205–18
    [Google Scholar]
  15. 15. 
    Brown DA, Constanti A. 1978. Interaction of pentobarbitone and γ-aminobutyric acid on mammalian sympathetic ganglion cells. Br. J. Pharmacol. 63:217–24
    [Google Scholar]
  16. 16. 
    Brown DA. 1962. An eserine-like action of chloral hydrate. Br. J. Pharmacol. Chemother. 19:111–19
    [Google Scholar]
  17. 17. 
    Koelle GB. 1962. A new general concept of the neurohumoral functions of acetylcholine and acetylcholinesterase. J. Pharm. Pharmacol. 14:65–90
    [Google Scholar]
  18. 18. 
    Brown DA. 1966. Depolarization of normal and preganglionically denervated superior cervical ganglia by stimulant drugs. Br. J. Pharmacol. Chemother. 26:511–20
    [Google Scholar]
  19. 19. 
    Brown DA, Jones KB, Halliwell JV, Quilliam JP 1970. Evidence against a presynaptic action of acetylcholine during ganglionic transmission. Nature 226:958–59
    [Google Scholar]
  20. 20. 
    Brown DA. 1966. Effects of hexamethonium and hyoscine on the drug-induced depolarization of isolated superior cervical ganglia. Br. J. Pharmacol. Chemother. 26:521–37
    [Google Scholar]
  21. 21. 
    Brown DA, Forward A, Marsh S 1980. Antagonist discrimination between ganglionic and ileal muscarinic receptors. Br. J. Pharmacol. 71:362–64
    [Google Scholar]
  22. 22. 
    Waser PG. 1960. The cholinergic receptor. J. Pharm. Pharmacol. 12:577–94
    [Google Scholar]
  23. 23. 
    Brown DA, Stumpf WE, Roth LJ 1969. Location of radioactively labelled extracellular fluid indicators in nervous tissue by autoradiography. J. Cell Sci. 4:265–88
    [Google Scholar]
  24. 24. 
    Brown DA, Hoffmann PC, Roth LJ 1969. 3H-Nicotine in cat superior cervical and nodose ganglia after close-arterial injection in vivo. Br. J. Pharmacol 35:406–17
    [Google Scholar]
  25. 25. 
    Brown DA, Halliwell JV, Scholfield CN 1971. Uptake of nicotine and extracellular space markers by isolated rat ganglia in relation to receptor activation. Br. J. Pharmacol. 42:100–13
    [Google Scholar]
  26. 26. 
    Brown DA, Halliwell JV. 1972. Intracellular pH in rat isolated superior cervical ganglia in relation to nicotine-depolarization and nicotine-uptake. Br. J. Pharmacol. 45:349–59
    [Google Scholar]
  27. 27. 
    Brown DA, Scholfield CN. 1974. Changes of intracellular sodium and potassium ion concentrations in isolated rat superior cervical ganglia induced by depolarizing agents. J. Physiol. 242:307–19
    [Google Scholar]
  28. 28. 
    Brown DA, Scholfield CN. 1974. Movements of labelled sodium ions in isolated rat superior cervical ganglia. J. Physiol. 242:321–51
    [Google Scholar]
  29. 29. 
    Brown DA, Brownstein MJ, Scholfield CN 1972. Origin of the after-hyperpolarization that follows removal of depolarizing agents from the isolated superior cervical ganglion of the rat. Br. J. Pharmacol. 44:651–71
    [Google Scholar]
  30. 30. 
    Iversen LL, Neal MJ. 1968. The uptake of [3H]GABA by slices of rat cerebral cortex. J. Neurochem. 15:1141–49
    [Google Scholar]
  31. 31. 
    Hökfelt T, Ljungdahl A. 1970. Cellular localization of labeled γ-aminobutyric acid (3H_GABA) in rat cerebellar cortex: an autoradiographic study. Brain Res 22:391–96
    [Google Scholar]
  32. 32. 
    Bowery NG, Brown DA. 1971. Observations on (3H)γ-aminobutyric acid accumulation and efflux in isolated sympathetic ganglia. J. Physiol. 218:Suppl.32P–33P
    [Google Scholar]
  33. 33. 
    Bowery NG, Brown DA. 1972. γ-Aminobutyric acid uptake by sympathetic ganglia. Nat. New Biol. 238:89–91
    [Google Scholar]
  34. 34. 
    Young JA, Brown DA, Kelly JS, Schon F 1973. Autoradiographic localization of sites of [3H]γ-aminobutyric acid accumulation in peripheral autonomic ganglia. Brain Res 63:479–86
    [Google Scholar]
  35. 35. 
    Bowery NG, Brown DA, White RD, Yamini G 1979. [3H]γ-aminobutyric acid uptake into neuroglial cells of rat superior cervical sympathetic ganglia. J. Physiol. 293:51–74
    [Google Scholar]
  36. 36. 
    Brown DA. 2018. Norman Bowery's discoveries about extrasynaptic and asynaptic GABA systems and their significance. Neuropharmacology 136:3–9
    [Google Scholar]
  37. 37. 
    Walsh JM, Bowery NG, Brown DA, Clark JB 1974. Metabolism of γ-aminobutyric acid (GABA) by peripheral nervous tissue. J. Neurochem. 22:1145–47
    [Google Scholar]
  38. 38. 
    Brown DA, Galvan M. 1977. Influence of neuroglial transport on the action of γ-aminobutyric acid on mammalian ganglion cells. Br. J. Pharmacol. 59:373–78
    [Google Scholar]
  39. 39. 
    De Groat WC. 1970. The actions of γ-aminobutyric acid and related amino acids on mammalian autonomic ganglia. J. Pharmacol. Exp. Ther. 172:384–96
    [Google Scholar]
  40. 40. 
    Adams PR, Brown DA. 1975. Actions of γ-aminobutyric acid on sympathetic ganglion cells. J. Physiol. 250:85–120
    [Google Scholar]
  41. 41. 
    Brown DA, Marsh S. 1978. Axonal GABA receptors in mammalian peripheral nerve trunks. Brain Res 156:187–91
    [Google Scholar]
  42. 42. 
    Bowery NG, Brown DA, Collins GG, Galvan M, Marsh S, Yamini G 1976. Indirect effects of amino-acids on sympathetic ganglion cells mediated through the release of γ-aminobutyric acid from glial cells. Br. J. Pharmacol. 57:73–91
    [Google Scholar]
  43. 43. 
    Yamamoto C, McIlwain H. 1966. Electrical activities from thin sections of the mammalian brain maintained in chemically-defined media in vitro. J. Neurochem. 13:1333–42
    [Google Scholar]
  44. 44. 
    Harvey JA, Scholfield CN, Brown DA 1974. Evoked surface-positive potentials in isolated mammalian olfactory cortex. Brain Res 76:235–45
    [Google Scholar]
  45. 45. 
    Scholfield CN. 1978. Electrical properties of neurones in the olfactory cortex slice in vitro. J. Physiol. 275:535–46
    [Google Scholar]
  46. 46. 
    Scholfield CN. 1978. A depolarizing inhibitory potential in neurones of the olfactory cortex in vitro. J. Physiol. 275:547–57
    [Google Scholar]
  47. 47. 
    Scholfield CN. 1978. A barbiturate induced intensification of the inhibitory potential in slices of guinea-pig olfactory cortex. J. Physiol. 275:559–66
    [Google Scholar]
  48. 48. 
    Brown DA, Galvan M. 1979. Responses of the guinea-pig isolated olfactory cortex slice to γ-aminobutyric acid recorded with extracellular electrodes. Br. J. Pharmacol. 65:347–53
    [Google Scholar]
  49. 49. 
    Brown DA, Scholfield CN. 1979. Depolarization of neurones in the isolated olfactory cortex of the guinea-pig by γ-aminobutyric acid. Br. J. Pharmacol. 65:339–45
    [Google Scholar]
  50. 50. 
    Brown DA, Collins GG, Galvan M 1980. Influence of cellular transport on the interaction of amino acids with γ-aminobutyric acid (GABA)-receptors in the isolated olfactory cortex of the guinea-pig. Br. J. Pharmacol. 68:251–62
    [Google Scholar]
  51. 51. 
    Brown DA, Scholfield CN. 1984. Inhibition of GABA uptake potentiates the conductance increase produced by GABA-mimetic compounds on single neurones in isolated olfactory cortex slices of the guinea-pig. Br. J. Pharmacol. 83:195–202
    [Google Scholar]
  52. 52. 
    Wilson WA, Goldner MM. 1975. Voltage clamping with a single microelectrode. J. Neurobiol. 6:411–22
    [Google Scholar]
  53. 53. 
    Halliwell JV, Adams PR. 1982. Voltage clamp analysis of muscarinic excitation in hippocampal neurones. Brain Res 250:71–92
    [Google Scholar]
  54. 54. 
    Constanti A, Galvan M. 1983. Fast inward-rectifying current accounts for anomalous rectification in olfactory cortex neurones. J. Physiol. 335:153–78
    [Google Scholar]
  55. 55. 
    Brown DA, Griffith WH. 1983. Calcium-activated outward current in voltage-clamped hippocampal neurones of the guinea-pig. J. Physiol. 337:287–301
    [Google Scholar]
  56. 56. 
    Brown DA, Constanti A. 1980. Intracellular observations on the effects of muscarinic agonists on rat sympathetic neurons. Br. J. Pharmacol. 70:593–608
    [Google Scholar]
  57. 57. 
    Brown DA. 1983. Slow cholinergic excitation—a mechanism for increasing neuronal excitability. Trends Neurosci 6:302–7
    [Google Scholar]
  58. 58. 
    Weight FF, Votava Z. 1970. Slow synaptic excitation in sympathetic ganglion cells: evidence for synaptic inactivation of potassium conductance. Science 170:735–38
    [Google Scholar]
  59. 59. 
    Brown DA, Adams PR. 1980. Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone. Nature 283:673–76
    [Google Scholar]
  60. 60. 
    Adams PR, Brown DA, Constanti A 1982. M-currents and other potassium currents in bullfrog sympathetic neurones. J. Physiol. 330:537–72
    [Google Scholar]
  61. 61. 
    Adams PR, Brown DA, Constanti A 1982. Pharmacological inhibition of the M-current. J. Physiol. 332:223–62
    [Google Scholar]
  62. 62. 
    Adams PR, Brown DA. 1982. Synaptic inhibition of the M-current: slow excitatory postsynaptic mechanism in bullfrog sympathetic neurones. J. Physiol. 332:263–72
    [Google Scholar]
  63. 63. 
    Brown DA. 1988. M currents. Ion Channels, Vol. 1 T Narahashi 55–99 New York: Plenum Press
    [Google Scholar]
  64. 64. 
    Constanti A, Brown DA. 1981. M-currents in voltage-clamped mammalian sympathetic neurones. Neurosci. Lett. 24:289–94
    [Google Scholar]
  65. 65. 
    Passmore GM, Selyanko AA, Mistry M, Al-Qatari M, Marsh SJ et al. 2003. KCNQ/M currents in sensory neurons: significance for pain therapy. J. Neurosci. 23:7227–36
    [Google Scholar]
  66. 66. 
    Gähwiler BH, Brown DA. 1985. Functional innervation of cultured hippocampal neurones by cholinergic afferents from co-cultured septal explants. Nature 313:577–79
    [Google Scholar]
  67. 67. 
    Constanti A, Sim JA. 1987. Muscarinic receptors mediating suppression of the M-current in guinea-pig olfactory cortex neurones may be of the M2-subtype. Br. J. Pharmacol. 90:3–5
    [Google Scholar]
  68. 68. 
    Halliwell JV. 1986. M-current in human neocortical neurones. Neurosci. Lett. 67:1–6
    [Google Scholar]
  69. 69. 
    Brown DA, Selyanko AA. 1985. Membrane currents underlying the slow excitatory post-synaptic potential in the rat sympathetic ganglion. J. Physiol. 365:335–64
    [Google Scholar]
  70. 70. 
    Sims SM, Singer JJ, Walsh JV Jr 1985. Cholinergic agonists suppress a potassium current in freshly dissociated smooth muscle cells of the toad. J. Physiol. 367:503–29
    [Google Scholar]
  71. 71. 
    Greenwood IA, Ohya S. 2009. New tricks for old dogs: KCNQ expression and role in smooth muscle. Br. J. Pharmacol. 156:1196–203
    [Google Scholar]
  72. 72. 
    Constanti A, Adams PR, Brown DA 1981. Why do barium ions imitate acetylcholine?. Brain Res 206:244–50
    [Google Scholar]
  73. 73. 
    Stansfeld CE, Marsh SJ, Gibb AJ, Brown DA 1993. Identification of M-channels in outside-out patches excised from sympathetic ganglion cells. Neuron 10:639–54
    [Google Scholar]
  74. 74. 
    Adams PR, Brown DA. 1980. Luteinizing hormone-releasing factor and muscarinic agonists act on the same voltage-sensitive K+-current in bullfrog sympathetic neurones. Br. J. Pharmacol. 68:353–55
    [Google Scholar]
  75. 75. 
    Adams PR, Brown DA, Jones SW 1983. Substance P inhibits the M-current in bullfrog sympathetic neurones. Br. J. Pharmacol. 79:330–33
    [Google Scholar]
  76. 76. 
    Brown DA, Constanti A, Marsh S 1980. Angiotensin mimics the action of muscarinic agonists on rat sympathetic neurones. Brain Res 193:614–19
    [Google Scholar]
  77. 77. 
    Jones S, Brown DA, Milligan G, Willer E, Buckley NJ, Caulfield MP 1995. Bradykinin excites rat sympathetic neurons by inhibition of M current through a mechanism involving B2 receptors and Gαq/11. Neuron 14:399–405
    [Google Scholar]
  78. 78. 
    Brown DA, Filippov AK, Barnard EA 2000. Inhibition of potassium and calcium currents in neurones by molecularly-defined P2Y receptors. J. Auton. Nerv. Syst. 81:31–36
    [Google Scholar]
  79. 79. 
    Boehm S. 1998. Selective inhibition of M-type potassium channels in rat sympathetic neurons by uridine nucleotide preferring receptors. Br. J. Pharmacol. 124:1261–69
    [Google Scholar]
  80. 80. 
    Gähwiler BH, Brown DA. 1985. GABAB-receptor-activated K+ current in voltage-clamped CA3 pyramidal cells in hippocampal cultures. PNAS 82:1558–62
    [Google Scholar]
  81. 81. 
    Knöpfel T, Vranesic I, Gähwiler BH, Brown DA 1990. Muscarinic and β-adrenergic depression of the slow Ca2+-activated potassium conductance in hippocampal CA3 pyramidal cells is not mediated by a reduction of depolarization-induced cytosolic Ca2+ transients. PNAS 87:4083–87
    [Google Scholar]
  82. 82. 
    Luini A, Brown DA. 1990. Effects of corticotrophin releasing factor, muscarine and somatostatin on rubidium and potassium efflux from mouse AtT-20 pituitary cells. Eur. J. Neurosci. 2:126–31
    [Google Scholar]
  83. 83. 
    Higashida H, Brown DA. 1986. Two polyphosphoinositide metabolites control two K+ currents in a neuronal cell. Nature 323:333–35
    [Google Scholar]
  84. 84. 
    Brown DA, Higashida H. 1988. Voltage- and calcium-activated potassium currents in mouse neuroblastoma × rat glioma hybrid cells. J. Physiol. 397:149–65
    [Google Scholar]
  85. 85. 
    Robbins J, Caulfield MP, Higashida H, Brown DA 1991. Genotypic m3-muscarinic receptors preferentially inhibit M-currents in DNA-transfected NG108-15 neuroblastoma × glioma hybrid cells. Eur. J. Neurosci. 3:820–24
    [Google Scholar]
  86. 86. 
    Higashida H, Brown DA. 1988. Ca2+-dependent K+ channels in neuroblastoma hybrid cells activated by intracellular inositol trisphosphate and extracellular bradykinin. FEBS Lett 238:395–400
    [Google Scholar]
  87. 87. 
    Brown DA, Higashida H. 1988. Membrane current responses of NG108-15 mouse neuroblastoma × rat glioma hybrid cells to bradykinin. J. Physiol. 397:167–84
    [Google Scholar]
  88. 88. 
    Brown DA, Higashida H. 1988. Inositol 1,4,5-trisphosphate and diacylglycerol mimic bradykinin effects on mouse neuroblastoma × rat glioma hybrid cells. J. Physiol. 397:185–207
    [Google Scholar]
  89. 89. 
    Higashida H, Hashii M, Fukuda K, Caulfield MP, Numa S, Brown DA 1990. Selective coupling of different muscarinic acetylcholine receptors to neuronal calcium currents in DNA-transfected cells. Proc. Biol. Sci. 242:68–74
    [Google Scholar]
  90. 90. 
    McFadzean I, Mullaney I, Brown DA, Milligan G 1989. Antibodies to the GTP binding protein, Go, antagonize noradrenaline-induced calcium current inhibition in NG108-15 hybrid cells. Neuron 3:177–82
    [Google Scholar]
  91. 91. 
    Filippov AK, Selyanko AA, Robbins J, Brown DA 1994. Activation of nucleotide receptors inhibits M-type K current [IK(M)] in neuroblastoma × glioma hybrid cells. Pflugers Arch 429:223–30
    [Google Scholar]
  92. 92. 
    Filippov AK, Brown DA. 1996. Activation of nucleotide receptors inhibits high-threshold calcium currents in NG108-15 neuronal hybrid cells. Eur. J. Neurosci. 8:1149–55
    [Google Scholar]
  93. 93. 
    Filippov AK, Webb TE, Barnard EA, Brown DA 1998. P2Y2 nucleotide receptors expressed heterologously in sympathetic neurons inhibit both N-type Ca2+ and M-type K+ currents. J. Neurosci. 18:5170–79
    [Google Scholar]
  94. 94. 
    Yokoyama S, Imoto K, Kawamura T, Higashida H, Iwabe N et al. 1989. Potassium channels from NG108-15 neuroblastoma-glioma hybrid cells. Primary structure and functional expression from cDNAs. FEBS Lett 259:37–42
    [Google Scholar]
  95. 95. 
    Stansfeld CE, Roper J, Ludwig J, Weseloh RM, Marsh SJ et al. 1996. Elevation of intracellular calcium by muscarinic receptor activation induces a block of voltage-activated rat ether-à-go-go channels in a stably-transfected cell line. PNAS 93:9910–14
    [Google Scholar]
  96. 96. 
    Jentsch TJ. 2000. Neuronal KCNQ potassium channels: physiology and role in disease. Nat. Rev. Neurosci. 1:21–30
    [Google Scholar]
  97. 97. 
    Wang HS, Pan Z, Shi W, Brown BS, Wymore RS et al. 1998. KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science 282:1890–93
    [Google Scholar]
  98. 98. 
    Selyanko AA, Hadley JK, Wood IC, Abogadie FC, Jentsch TJ, Brown DA 2000. Inhibition of KCNQ1–4 potassium channels expressed in mammalian cells via M1 muscarinic acetylcholine receptors. J. Physiol. 522:349–55
    [Google Scholar]
  99. 99. 
    Selyanko AA, Hadley JK, Brown DA 2001. Properties of single M-type KCNQ2/KCNQ3 potassium channels expressed in mammalian cells. J. Physiol. 534:15–24
    [Google Scholar]
  100. 100. 
    Selyanko AA, Brown DA. 1993. Effects of membrane potential and muscarine on potassium M-channel kinetics in rat sympathetic neurones. J. Physiol. 472:711–24
    [Google Scholar]
  101. 101. 
    Hadley JK, Noda M, Selyanko AA, Wood IC, Abogadie FC, Brown DA 2000. Differential tetraethylammonium sensitivity of KCNQ1–4 potassium channels. Br. J. Pharmacol. 129:413–15
    [Google Scholar]
  102. 102. 
    Hadley JK, Passmore GM, Tatulian L, Al-Qatari M, Ye F et al. 2003. Stoichiometry of expressed KCNQ2/KCNQ3 channels and subunit composition of native ganglionic M-channels deduced from block by tetraethylammonium (TEA). J. Neurosci. 23:5012–19
    [Google Scholar]
  103. 103. 
    Shah MM, Mistry M, Marsh SJ, Brown DA, Delmas P 2002. Molecular correlates of the M-current in cultured rat hippocampal neurons. J. Physiol. 544:29–37
    [Google Scholar]
  104. 104. 
    Selyanko AA, Delmas P, Hadley JK, Tatulian L, Wood IC et al. 2002. Dominant-negative subunits reveal potassium channel families that contribute to M-like potassium currents. J. Neurosci. 22:RC212
    [Google Scholar]
  105. 105. 
    Selyanko AA, Hadley JK, Wood IC, Abogadie FC, Delmas P et al. 1999. Two types of K+ channel subunit, Erg1 and KCNQ2/3, contribute to the M-like current in a mammalian neuronal cell. J. Neurosci. 19:7742–56
    [Google Scholar]
  106. 106. 
    Robbins J, Passmore GM, Abogadie FC, Reilly JM, Brown DA 2013. Effects of KCNQ2 gene truncation on M-type Kv7 potassium currents. PLOS ONE 8:e71809
    [Google Scholar]
  107. 107. 
    Selyanko AA, Stansfeld CE, Brown DA 1992. Closure of potassium M-channels by muscarinic acetylcholine-receptor stimulants requires a diffusible messenger. Proc. R. Soc. B 250:119–25
    [Google Scholar]
  108. 108. 
    Marrion NV. 1993. Selective reduction of one mode of M-channel gating by muscarine in sympathetic neurons. Neuron 11:77–84
    [Google Scholar]
  109. 109. 
    Marrion NV, Smart TG, Marsh SJ, Brown DA 1989. Muscarinic suppression of the M-current in the rat sympathetic ganglion is mediated by receptors of the M1-subtype. Br. J. Pharmacol. 98:557–73
    [Google Scholar]
  110. 110. 
    Delmas P, Brown DA. 2005. Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat. Rev. Neurosci. 6:850–62
    [Google Scholar]
  111. 111. 
    Larrabee MG, Leicht WS. 1965. Metabolism of phosphatidyl inositol and other lipids in active neurones of sympathetic ganglia and other peripheral nervous tissues. The site of the inositide effect. J. Neurochem. 12:1–13
    [Google Scholar]
  112. 112. 
    Del Rio E, Bevilacqua JA, Marsh SJ, Halley P, Caulfield MP 1999. Muscarinic M1 receptors activate phosphoinositide turnover and Ca2+ mobilization in rat sympathetic neurones, but this signalling pathway does not mediate M-current inhibition. J. Physiol. 520:101–11
    [Google Scholar]
  113. 113. 
    Winks JS, Hughes S, Filippov AK, Tatulian L, Abogadie FC et al. 2005. Relationship between membrane phosphatidylinositol-4,5-bisphosphate and receptor-mediated inhibition of native neuronal M channels. J. Neurosci. 25:3400–13
    [Google Scholar]
  114. 114. 
    Caulfield MP, Jones S, Vallis Y, Buckley NJ, Kim GD et al. 1994. Muscarinic M-current inhibition via Gαq/11 and α-adrenoceptor inhibition of Ca2+ current via Gαo in rat sympathetic neurones. J. Physiol. 477:415–22
    [Google Scholar]
  115. 115. 
    Haley JE, Abogadie FC, Delmas P, Dayrell M, Vallis Y et al. 1998. The αsubunit of Gq contributes to muscarinic inhibition of the M-type potassium current in sympathetic neurons. J. Neurosci. 18:4521–31
    [Google Scholar]
  116. 116. 
    Robbins J, Marsh SJ, Brown DA 2006. Probing the regulation of M(Kv7) channels in intact neurons with membrane-targeted peptides. J. Neurosci. 26:7950–61
    [Google Scholar]
  117. 117. 
    Delmas P, Abogadie FC, Dayrell M, Haley JE, Milligan G et al. 1998. G-proteins and G-protein subunits mediating cholinergic inhibition of N-type calcium currents in sympathetic neurons. Eur. J. Neurosci. 10:1654–66
    [Google Scholar]
  118. 118. 
    Haley JE, Delmas P, Offermanns S, Abogadie FC, Simon MI et al. 2000. Muscarinic inhibition of calcium current and M current in Gαq-deficient mice. J. Neurosci. 20:3973–79
    [Google Scholar]
  119. 119. 
    Haley JE, Abogadie FC, Fernandez-Fernandez JM, Dayrell M, Vallis Y et al. 2002. Bradykinin, but not muscarinic, inhibition of M-current in rat sympathetic ganglion neurons involved phospholipase C-β4. J. Neurosci. 20:RC105
    [Google Scholar]
  120. 120. 
    Selyanko AA, Brown DA. 1996. Intracellular calcium directly inhibits potassium M channels in excised membrane patches from rat sympathetic neurons. Neuron 16:151–62
    [Google Scholar]
  121. 121. 
    Gamper N, Shapiro MS. 2003. Calmodulin mediates Ca2+-dependent modulation of M-type K+ channels. J. Gen. Physiol. 122:17–31
    [Google Scholar]
  122. 122. 
    Cruzblanca H, Koh DS, Hille B 1998. Bradykinin inhibits M current via phospholipase C and Ca2+ release from IP3-sensitive Ca2+ stores in rat sympathetic neurons. PNAS 95:7151–56
    [Google Scholar]
  123. 123. 
    Delmas P, Wanaverbecq N, Abogadie FC, Mistry M, Brown DA 2002. Signaling microdomains define the specificity of receptor-mediated InsP3 pathways in neurons. Neuron 34:209–20
    [Google Scholar]
  124. 124. 
    Hughes S, Marsh SJ, Tinker A, Brown DA 2007. PIP2-dependent inhibition of M-type (Kv7.2/7.3) potassium channels: direct on-line assessment of PIP2 depletion by Gq-coupled receptors in single living neurons. Pflugers Arch 455:115–24
    [Google Scholar]
  125. 125. 
    Hoshi N, Langeberg LK, Scott JD 2005. Distinct enzyme combinations in AKAP signalling complexes permit functional diversity. Nat. Cell Biol. 7:1066–73
    [Google Scholar]
  126. 126. 
    Hoshi N, Zhang JS, Omaki M, Takeuchi T, Yokoyama S et al. 2003. AKAP150 signaling complex promotes suppression of the M-current by muscarinic agonists. Nat. Neurosci. 6:564–71
    [Google Scholar]
  127. 127. 
    Kosenko A, Kang S, Smith IM, Greene DL, Langeberg LK et al. 2012. Coordinated signal integration at the M-type potassium channel upon muscarinic stimulation. EMBO J 31:3147–56
    [Google Scholar]
  128. 128. 
    Huang CL, Feng S, Hilgemann DW 1998. Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gβγ. Nature 391:803–6
    [Google Scholar]
  129. 129. 
    Suh BC, Hille B. 2002. Recovery from muscarinic modulation of M current channels requires phosphatidylinositol 4,5-bisphosphate synthesis. Neuron 35:507–20
    [Google Scholar]
  130. 130. 
    Zhang H, Craciun LC, Mirshahi T, Rohacs T, Lopes CM et al. 2004. PIP2 activates KCNQ channels, and its hydrolysis underlies receptor-mediated inhibition of M currents. Neuron 37:963–75
    [Google Scholar]
  131. 131. 
    Hille B, Dickson E, Kruse M, Falkenburger B 2014. Dynamic metabolic control of an ion channel. Prog. Mol. Biol. Transl. Sci. 123:219–47
    [Google Scholar]
  132. 132. 
    Kruse M, Vivas O, Traynor-Kaplan A, Hille B 2016. Dynamics of phosphoinositide-dependent signaling in sympathetic neurons. J. Neurosci. 36:1386–400
    [Google Scholar]
  133. 133. 
    Telezhkin V, Brown DA, Gibb AJ 2012. Distinct subunit contributions to the activation of M-type potassium channels by PI(4,5)P2. J. Gen. Physiol. 140:41–53
    [Google Scholar]
  134. 134. 
    Li Y, Gamper N, Hilgemann DW, Shapiro MS 2005. Regulation of Kv7 (KCNQ) K+ channel open probability by phosphatidylinositol 4,5-bisphosphate. J. Neurosci. 25:9825–35
    [Google Scholar]
  135. 135. 
    Houamed KM, Bilbe G, Smart TG, Constanti A, Brown DA et al. 1984. Expression of functional GABA, glycine and glutamate receptors in Xenopus oocytes injected with rat brain mRNA. Nature 310:318–21
    [Google Scholar]
  136. 136. 
    Brown DA, Docherty RJ, Halliwell JV 1984. The action of cholinomimetic substances on impulse conduction in the habenulointerpeduncular pathway of the rat in vitro. J. Physiol. 353:101–9
    [Google Scholar]
  137. 137. 
    Marsh SJ, Stansfeld CE, Brown DA, Davey R, McCarthy D 1987. The mechanism of action of capsaicin on sensory C-type neurons and their axons in vitro. Neuroscience 23:275–89
    [Google Scholar]
  138. 138. 
    Marsh SJ, Trouslard J, Leaney JL, Brown DA 1995. Synergistic regulation of a neuronal chloride current by intracellular calcium and muscarinic receptor activation: a role for protein kinase C. Neuron 15:729–37
    [Google Scholar]
  139. 139. 
    Filippov AK, Couve A, Pangalos MN, Walsh FS, Brown DA, Moss SJ 2000. Heteromeric assembly of GABABR1 and GABABR2 receptor subunits inhibits Ca2+ current in sympathetic neurons. J. Biol. Chem. 20:2867–74
    [Google Scholar]
  140. 140. 
    Pan Z, Selyanko AA, Hadley JK, Brown DA, Dixon JE, McKinnon D 2001. Alternative splicing of KCNQ2 potassium channel transcripts contributes to the functional diversity of M-currents. J. Physiol. 531:347–58
    [Google Scholar]
  141. 141. 
    Fernandez-Fernandez JM, Abogadie FC, Milligan G, Delmas P, Brown DA 2001. Multiple pertussis toxin–sensitive G proteins can couple receptors to GIRK channels in rat sympathetic neurones when heterologously-expressed, but only native Gi proteins do so in situ. Eur. J. Neurosci. 14:283–92
    [Google Scholar]
  142. 142. 
    Tatulian L, Delmas P, Abogadie FC, Brown DA 2001. Activation of expressed KCNQ potassium currents and native neuronal M-type currents by the anti-convulsant drug retigabine. J. Neurosci. 21:5535–45
    [Google Scholar]
  143. 143. 
    Delmas P, Nomura H, Li X, Lakkis M, Luo Y et al. 2002. Constitutive activation of G-proteins by polycystin-1 is antagonized by polycystin-2. J. Biol. Chem. 277:11276–83
    [Google Scholar]
  144. 144. 
    Wanaverbecq N, Marsh SJ, Al-Qatari M, Brown DA 2003. The plasma membrane calcium ATPase as a major mechanism for intracellular calcium regulation in neurons from the rat superior cervical ganglion. J. Physiol. 550:83–101
    [Google Scholar]
  145. 145. 
    Allen TG, Abogadie FC, Brown DA 2006. Simultaneous release of glutamate and acetylcholine from single magnocellular “cholinergic” basal forebrain neurons. J. Neurosci. 26:1588–95
    [Google Scholar]
  146. 146. 
    Shah MM, Migliore M, Valencia I, Cooper EC, Brown DA 2008. Functional significance of axonal Kv7 channels in hippocampal pyramidal neurons. PNAS 105:7869–74
    [Google Scholar]
  147. 147. 
    Passmore GM, Reilly JM, Thakur M, Keasberry VN, Marsh SJ et al. 2012. Functional significance of M-type potassium channels in nociceptive cutaneous sensory endings. Front. Mol. Neurosci. 5:63
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010919-023755
Loading
/content/journals/10.1146/annurev-pharmtox-010919-023755
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error