1932

Abstract

Glyphosate (GLYP) is a widely used pesticide; it is considered to be a safe herbicide for animals and humans because it targets 5-enolpyruvylshikimate-3-phosphate synthase. However, there has been increasing evidence that GLYP causes varying degrees of toxicity. Moreover, oxidative stress and metabolism are highly correlated with toxicity. This review provides a comprehensive introduction to the toxicity of GLYP and, for the first time, systematically summarizes the toxicity mechanism of GLYP from the perspective of oxidative stress, including GLYP-mediated oxidative damage, changes in antioxidant status, altered signaling pathways, and the regulation of oxidative stress by exogenous substances. In addition, the metabolism of GLYP is discussed, including metabolites,metabolic pathways, metabolic enzymes, and the toxicity of metabolites. This review provides new ideas for the toxicity mechanism of GLYP and proposes effective strategies for reducing its toxicity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-020821-111552
2022-01-06
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/62/1/annurev-pharmtox-020821-111552.html?itemId=/content/journals/10.1146/annurev-pharmtox-020821-111552&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Helander M, Saloniemi I, Saikkonen K. 2012. Glyphosate in northern ecosystems. Trends Plant Sci 17:569–74
    [Google Scholar]
  2. 2. 
    Zhong G, Wu Z, Liu N, Yin J. 2018. Phosphate alleviation of glyphosate-induced toxicity in Hydrocharis dubia (Bl.) Backer. Aquat. Toxicol. 201:91–98
    [Google Scholar]
  3. 3. 
    Jiyuan C, Zewei X, Lulu G, Xinda L 2016. Research progress of herbicide glyphosate. Agric. Eng. 6:53
    [Google Scholar]
  4. 4. 
    Mink PJ, Mandel JS, Sceurman BK, Lundin JI. 2012. Epidemiologic studies of glyphosate and cancer: a review. Regul. Toxicol. Pharmacol. 63:440–52
    [Google Scholar]
  5. 5. 
    Tang J, Hu P, Li Y, Win-Shwe T-T, Li C. 2017. Ion imbalance is involved in the mechanisms of liver oxidative damage in rats exposed to glyphosate. Front. Physiol. 8:1083
    [Google Scholar]
  6. 6. 
    Wei C, Song L, Yang W, Zhao Y 2016. Research on glyphosate pesticide residue in surface water in Guiyang. Environ. Sci. Technol. 3:23
    [Google Scholar]
  7. 7. 
    Conrad A, Schröter-Kermani C, Hoppe HW, Rüther M, Pieper S, Kolossa-Gehring M. 2016. Glyphosate in German adults—time trend (2001 to 2015) of human exposure to a widely used herbicide. Int. J. Hyg. Environ. Health 220:8–16
    [Google Scholar]
  8. 8. 
    Cai W, Yang X, Li X, Li H, Wang S 2020. Low-dose Roundup induces developmental toxicity in bovine preimplantation embryos in vitro. Environ. Sci. Pollut. Res. Int. 14:16451–599
    [Google Scholar]
  9. 9. 
    Gigante P, Berni M, Bussolati S, Grasselli F, Grolli S et al. 2018. Glyphosate affects swine ovarian and adipose stromal cell functions. Anim. Reprod. Sci. 195:185–96
    [Google Scholar]
  10. 10. 
    Cai W, Ji Y, Song X, Guo H, Han L et al. 2017. Effects of glyphosate exposure on sperm concentration in rodents: a systematic review and meta-analysis. Environ. Toxicol. Pharmacol. 55:148–55
    [Google Scholar]
  11. 11. 
    Lopes FM, Varela Junior AS, Corcini CD, da Silva AC, Guazzelli VG et al. 2014. Effect of glyphosate on the sperm quality of zebrafish Danio rerio. Aquat. Toxicol. 155:322–26
    [Google Scholar]
  12. 12. 
    Gallegos CE, Bartos M, Gumilar F, Raisman-Vozari R, Minetti A, Baier CJ 2020. Intranasal glyphosate-based herbicide administration alters the redox balance and the cholinergic system in the mouse brain. Neurotoxicology 77:205–15
    [Google Scholar]
  13. 13. 
    Bernal-Rey DL, Cantera CG, dos Santos Afonso M, Menéndez-Helman RJ 2020. Seasonal variations in the dose-response relationship of acetylcholinesterase activity in freshwater fish exposed to chlorpyrifos and glyphosate. Ecotoxicol. Environ. Saf. 187:109673
    [Google Scholar]
  14. 14. 
    Martínez MA, Rodríguez JL, Lopez-Torres B, Martínez M, Martínez-Larrañaga MR et al. 2020. Use of human neuroblastoma SH-SY5Y cells to evaluate glyphosate-induced effects on oxidative stress, neuronal development and cell death signaling pathways. Environ. Int. 135:105414
    [Google Scholar]
  15. 15. 
    Roy NM, Carneiro B, Ochs J 2016. Glyphosate induces neurotoxicity in zebrafish. Environ. Toxicol. Pharmacol. 42:45–54
    [Google Scholar]
  16. 16. 
    Martinez A, Al-Ahmad AJ. 2019. Effects of glyphosate and aminomethylphosphonic acid on an isogeneic model of the human blood-brain barrier. Toxicol. Lett. 304:39–49
    [Google Scholar]
  17. 17. 
    Hamdaoui L, Naifar M, Rahmouni F, Ayadi F, Rebai T 2019. Sub-chronic exposure to Kalach 360 SL–induced damage in rats’ liver and hematological system. Environ. Sci. Pollut. Res. Int. 26:36634–46
    [Google Scholar]
  18. 18. 
    Hamdaoui L, Naifar M, Mzid M, Ben Salem M, Chtourou A et al. 2016. Nephrotoxicity of Kalach 360 SL: biochemical and histopathological findings. Toxicol. Mech. Methods 26:685–91
    [Google Scholar]
  19. 19. 
    Dos Santos Teixeira JM, da Silva Lima V, de Moura FR, da Costa Marisco P, Sinhorin AP, Sinhorin VDG 2018. Acute toxicity and effects of Roundup Original® on pintado da Amazonia. Environ. Sci. Pollut. Res. Int. 25:25383–89
    [Google Scholar]
  20. 20. 
    Li MH, Ruan LY, Zhou JW, Fu YH, Jiang L et al. 2017. Metabolic profiling of goldfish (Carassius auratis) after long-term glyphosate-based herbicide exposure. Aquat. Toxicol. 188:159–69
    [Google Scholar]
  21. 21. 
    Davoren MJ, Schiestl RH. 2018. Glyphosate-based herbicides and cancer risk: a post-IARC decision review of potential mechanisms, policy and avenues of research. Carcinogenesis 39:1207–15
    [Google Scholar]
  22. 22. 
    Guyton KZ, Loomis D, Grosse Y, El Ghissassi F, Benbrahim-Tallaa L et al. 2015. Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate. Lancet Oncol 16:490–91
    [Google Scholar]
  23. 23. 
    Larsen K, Najle R, Lifschitz A, Virkel G 2012. Effects of sub-lethal exposure of rats to the herbicide glyphosate in drinking water: glutathione transferase enzyme activities, levels of reduced glutathione and lipid peroxidation in liver, kidneys and small intestine. Environ. Toxicol. Pharmacol. 34:811–18
    [Google Scholar]
  24. 24. 
    Woźniak E, Sicińska P, Michałowicz J, Woźniak K, Reszka E et al. 2018. The mechanism of DNA damage induced by Roundup 360 PLUS, glyphosate and AMPA in human peripheral blood mononuclear cells—genotoxic risk assessment. Food Chem. Toxicol. 120:510–22
    [Google Scholar]
  25. 25. 
    Gomes MP, Le Manac'h SG, Maccario S, Labrecque M, Lucotte M, Juneau P. 2016. Differential effects of glyphosate and aminomethylphosphonic acid (AMPA) on photosynthesis and chlorophyll metabolism in willow plants. Pestic. Biochem. Physiol. 130:65–70
    [Google Scholar]
  26. 26. 
    Milić M, Žunec S, Micek V, Kašuba V, Mikolić A et al. 2018. Oxidative stress, cholinesterase activity, and DNA damage in the liver, whole blood, and plasma of Wistar rats following a 28-day exposure to glyphosate. Arh. Hig. Rada Toksikol. 69:154–68
    [Google Scholar]
  27. 27. 
    de Moura FR, Brentegani KR, Gemelli A, Sinhorin AP, Sinhorin VDG. 2017. Oxidative stress in the hybrid fish jundiara (Leiarius marmoratus × Pseudoplatystoma reticulatum) exposed to Roundup Original®. Chemosphere 185:445–51
    [Google Scholar]
  28. 28. 
    Bhardwaj JK, Mittal M, Saraf P. 2019. Effective attenuation of glyphosate-induced oxidative stress and granulosa cell apoptosis by vitamins C and E in caprines. Mol. Reprod. Dev. 86:42–52
    [Google Scholar]
  29. 29. 
    Gomes MP, Le Manac'h SG, Maccario S, Labrecque M, Lucotte M, Juneau P. 2016. Differential effects of glyphosate and aminomethylphosphonic acid (AMPA) on photosynthesis and chlorophyll metabolism in willow plants. Pestic. Biochem. Physiol. 130:65–70
    [Google Scholar]
  30. 30. 
    Soares C, Pereira R, Spormann S, Fidalgo F 2019. Is soil contamination by a glyphosate commercial formulation truly harmless to non-target plants? Evaluation of oxidative damage and antioxidant responses in tomato. Environ. Pollut. 247:256–65
    [Google Scholar]
  31. 31. 
    Anadón A, Martínez-Larrañaga MR, Martínez MA, Castellano VJ, Martínez M et al. 2009. Toxicokinetics of glyphosate and its metabolite aminomethyl phosphonic acid in rats. Toxicol. Lett. 190:91–95
    [Google Scholar]
  32. 32. 
    Mesnage R, Antoniou MN. 2017. Facts and fallacies in the debate on glyphosate toxicity. Front. Public Health 5:316
    [Google Scholar]
  33. 33. 
    Richardson JR, Roy A, Shalat SL, von Stein RT, Hossain MM et al. 2014. Elevated serum pesticide levels and risk for Alzheimer disease. JAMA Neurol 71:284–90
    [Google Scholar]
  34. 34. 
    Gallegos CE, Baier CJ, Bartos M, Bras C, Domínguez S et al. 2018. Perinatal glyphosate-based herbicide exposure in rats alters brain antioxidant status, glutamate and acetylcholine metabolism and affects recognition memory. Neurotox. Res. 34:363–74
    [Google Scholar]
  35. 35. 
    Cattani D, de Liz Oliveira Cavalli VL, Heinz Rieg CE, Domingues JT, Dal-Cim T et al. 2014. Mechanisms underlying the neurotoxicity induced by glyphosate-based herbicide in immature rat hippocampus: involvement of glutamate excitotoxicity. Toxicology 320:34–45
    [Google Scholar]
  36. 36. 
    Martínez MA, Ares I, Rodríguez JL, Martínez M, Martínez-Larrañaga MR, Anadón A. 2018. Neurotransmitter changes in rat brain regions following glyphosate exposure. Environ. Res. 161:212–19
    [Google Scholar]
  37. 37. 
    Dai P, Hu P, Tang J, Li Y, Li C 2016. Effect of glyphosate on reproductive organs in male rat. Acta Histochem 118:519–26
    [Google Scholar]
  38. 38. 
    Avdatek F, Birdane YO, Türkmen R, Demirel HH 2018. Ameliorative effect of resveratrol on testicular oxidative stress, spermatological parameters and DNA damage in glyphosate-based herbicide-exposed rats. Andrologia 50:e13036
    [Google Scholar]
  39. 39. 
    Abarikwu SO, Akiri OF, Durojaiye MA, Adenike A. 2015. Combined effects of repeated administration of Bretmont Wipeout (glyphosate) and Ultrazin (atrazine) on testosterone, oxidative stress and sperm quality of Wistar rats. Toxicol. Mech. Methods 25:70–80
    [Google Scholar]
  40. 40. 
    Johansson HKL, Schwartz CL, Nielsen LN, Boberg J, Vinggaard AM et al. 2018. Exposure to a glyphosate-based herbicide formulation, but not glyphosate alone, has only minor effects on adult rat testis. Reprod. Toxicol. 82:25–31
    [Google Scholar]
  41. 41. 
    Ren X, Li R, Liu J, Huang K, Wu S et al. 2018. Effects of glyphosate on the ovarian function of pregnant mice, the secretion of hormones and the sex ratio of their fetuses. Environ. Pollut. 243:833–41
    [Google Scholar]
  42. 42. 
    De Almeida LL, Teixeira AAC, Soares AF, da Cunha FM, da Silva Júnior VA et al. 2017. Effects of melatonin in rats in the initial third stage of pregnancy exposed to sub-lethal doses of herbicides. Acta Histochem 119:220–27
    [Google Scholar]
  43. 43. 
    Mesnage R, Defarge N, De Vendômois JS, Seralini GE. 2015. Potential toxic effects of glyphosate and its commercial formulations below regulatory limits. Food Chem. Toxicol. 84:133–53
    [Google Scholar]
  44. 44. 
    El-Shenawy NS. 2009. Oxidative stress responses of rats exposed to Roundup and its active ingredient glyphosate. Environ. Toxicol. Pharmacol. 28:379–85
    [Google Scholar]
  45. 45. 
    Soudani N, Chaâbane M, Ghorbel I, Elwej A, Boudawara T, Zeghal N. 2019. Glyphosate disrupts redox status and up-regulates metallothionein I and II genes expression in the liver of adult rats. Alleviation by quercetin. Gen. Physiol. Biophys. 38:123–34
    [Google Scholar]
  46. 46. 
    Fu H, Qiu S, Yao X, Gao F, Tan P et al. 2020. Toxicity of glyphosate in feed for weanling piglets and the mechanism of glyphosate detoxification by the liver nuclear receptor CAR/PXR pathway. J. Hazard. Mater. 387:121707
    [Google Scholar]
  47. 47. 
    Murussi CR, Costa MD, Leitemperger JW, Guerra L, Rodrigues CC et al. 2016. Exposure to different glyphosate formulations on the oxidative and histological status of Rhamdia quelen. Fish Physiol 42:445–55
    [Google Scholar]
  48. 48. 
    Ma J, Zhu J, Wang W, Ruan P, Rajeshkumar S, Li X 2019. Biochemical and molecular impacts of glyphosate-based herbicide on the gills of common carp. Environ. Pollut. 252:1288–300
    [Google Scholar]
  49. 49. 
    Eur. Food Saf. Auth. (EFSA) 2015. EFSA explains the carcinogenicity assessment of glyphosate. EFSA J 13:4302
    [Google Scholar]
  50. 50. 
    Williams GM, Kroes R, Munro IC. 2000. Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans. Regul. Toxicol. Pharmacol. 31:117–65
    [Google Scholar]
  51. 51. 
    De Roos AJ, Blair A, Rusiecki JA, Hoppin JA, Svec M et al. 2005. Cancer incidence among glyphosate-exposed pesticide applicators in the agricultural health study. Environ. Health Perspect. 113:49–54
    [Google Scholar]
  52. 52. 
    Landgren O, Kyle RA, Hoppin JA, Beane Freeman LE, Cerhan JR et al. 2009. Pesticide exposure and risk of monoclonal gammopathy of undetermined significance in the agricultural health study. Blood 113:6386–91
    [Google Scholar]
  53. 53. 
    Eriksson M, Hardell L, Carlberg M, Åkerman M. 2008. Pesticide exposure as risk factor for non-Hodgkin lymphoma including histopathological subgroup analysis. Int. J. Cancer 123:1657–63
    [Google Scholar]
  54. 54. 
    Lindberg T, de Ávila RI, Zeller KS, Levander F, Eriksson D et al. 2020. An integrated transcriptomic- and proteomic-based approach to evaluate the human skin sensitization potential of glyphosate and its commercial agrochemical formulations. J. Proteom. 217:103647
    [Google Scholar]
  55. 55. 
    De Brito Rodrigues L, Costa GG, Thá EL, da Silva LR, de Oliveira R et al. 2019. Impact of the glyphosate-based commercial herbicide, its components and its metabolite AMPA on non-target aquatic organisms. Mutat. Res. 842:94–101
    [Google Scholar]
  56. 56. 
    Hao Y, Zhang Y, Cheng J, Xu W, Xu Z et al. 2020. Adjuvant contributes Roundup's unexpected effects on A549 cells. Environ. Res. 184:109306
    [Google Scholar]
  57. 57. 
    Solomon KR, Anadón A, Brain RA, Cerdeira AL, Crossan AN et al. 2007. Comparative hazard assessment of the substances used for production and control of coca and poppy in Colombia. ACS Symp. Ser. 966:87–99
    [Google Scholar]
  58. 58. 
    Solomon KR, Anadón A, Carrasquilla G, Cerdeira AL, Marshall EJP, Sanin LH 2007. Coca and poppy eradication in Colombia: environmental and human health assessment of aerially applied glyphosate. Rev. Environ. Contam. Toxicol. 190:43–125
    [Google Scholar]
  59. 59. 
    Gao H, Chen J, Ding F, Chou X, Zhang X et al. 2019. Activation of the N-methyl-d-aspartate receptor is involved in glyphosate-induced renal proximal tubule cell apoptosis. J. Appl. Toxicol. 39:1096–107
    [Google Scholar]
  60. 60. 
    De Melo MS, Nazari EM, Müller YMR, Gismondi E. 2020. Modulation of antioxidant gene expressions by Roundup® exposure in the decapod Macrobrachium potiuna. Ecotoxicol. Environ. Saf. 190:110086
    [Google Scholar]
  61. 61. 
    Santos WS, Gonzalez P, Cormier B, Mazzella N, Bonnaud B et al. 2019. A glyphosate-based herbicide induces sub-lethal effects in early life stages and liver cell line of rainbow trout, Oncorhynchus mykiss. Aquat. Toxicol. 216:105291
    [Google Scholar]
  62. 62. 
    Mladinic M, Berend S, Vrdoljak AL, Kopjar N, Radic B, Zeljezic D 2009. Evaluation of genome damage and its relation to oxidative stress induced by glyphosate in human lymphocytes in vitro. Environ. Mol. Mutagen. 50:800–7
    [Google Scholar]
  63. 63. 
    Dal Santo G, Grotto A, Boligon AA, Da Costa B, Rambo CL et al. 2018. Protective effect of Uncaria tomentosa extract against oxidative stress and genotoxicity induced by glyphosate-Roundup® using zebrafish (Danio rerio) as a model. Environ. Sci. Pollut. Res. Int. 25:11703–15
    [Google Scholar]
  64. 64. 
    Ge W, Yan S, Wang J, Zhu L, Chen A, Wang J 2015. Oxidative stress and DNA damage induced by imidacloprid in zebrafish (Danio rerio). J. Agric. Food Chem. 63:1856–62
    [Google Scholar]
  65. 65. 
    Hong Y, Yang X, Huang Y, Yan G, Cheng Y 2018. Assessment of the oxidative and genotoxic effects of the glyphosate-based herbicide roundup on the freshwater shrimp, Macrobrachium nipponensis. Chemosphere 210:896–906
    [Google Scholar]
  66. 66. 
    Zhang JW, Xu DQ, Feng XZ 2019. The toxic effects and possible mechanisms of glyphosate on mouse oocytes. Chemosphere 237:124435
    [Google Scholar]
  67. 67. 
    Hao Y, Chen H, Xu W, Gao J, Yang Y et al. 2019. Roundup confers cytotoxicity through DNA damage and mitochondria-associated apoptosis induction. Environ. Pollut. 252:917–23
    [Google Scholar]
  68. 68. 
    Sinhorin VD, Sinhorin AP, Teixeira JM, Mileski KM, Hansen PC et al. 2014. Effects of the acute exposition to glyphosate-based herbicide on oxidative stress parameters and antioxidant responses in a hybrid Amazon fish surubim (Pseudoplatystoma sp). Ecotoxicol. Environ. Saf. 106:181–87
    [Google Scholar]
  69. 69. 
    Malenčić D, Kiprovski B, Popović M, Prvulović D, Miladinović J, Djordjević V 2010. Changes in antioxidant systems in soybean as affected by Sclerotinia sclerotiorum (Lib.) de Bary. Plant Physiol. Biochem. 48:903–8
    [Google Scholar]
  70. 70. 
    Velasques RR, Sandrini JZ, da Rosa CE. 2016. Roundup® in zebrafish: effects on oxidative status and gene expression. Zebrafish 13:432–41
    [Google Scholar]
  71. 71. 
    Bali YA, Kaikai NE, Ba-M'hamed S, Bennis M. 2019. Learning and memory impairments associated to acetylcholinesterase inhibition and oxidative stress following glyphosate based-herbicide exposure in mice. Toxicology 415:18–25
    [Google Scholar]
  72. 72. 
    Tang Q, Tang J, Ren X, Li C 2020. Glyphosate exposure induces inflammatory responses in the small intestine and alters gut microbial composition in rats. Environ. Pollut. 261:114129
    [Google Scholar]
  73. 73. 
    Qiu S, Fu H, Zhou R, Yang Z, Bai G, Shi B 2020. Toxic effects of glyphosate on intestinal morphology, antioxidant capacity and barrier function in weaned piglets. Ecotoxicol. Environ. Saf. 187:109846
    [Google Scholar]
  74. 74. 
    Pala A. 2019. The effect of a glyphosate-based herbicide on acetylcholinesterase (AChE) activity, oxidative stress, and antioxidant status in freshwater amphipod: Gammarus pulex (Crustacean). Environ. Sci. Pollut. Res. Int. 26:36869–77
    [Google Scholar]
  75. 75. 
    Luo L, Wang F, Zhang Y, Zeng M, Zhong C, Xiao F. 2017. In vitro cytotoxicity assessment of roundup (glyphosate) in L-02 hepatocytes. J. Environ. Sci. Health B 52:410–17
    [Google Scholar]
  76. 76. 
    Spormann S, Soares C, Fidalgo F. 2019. Salicylic acid alleviates glyphosate-induced oxidative stress in Hordeum vulgare L. J. Environ. Manag. 241:226–34
    [Google Scholar]
  77. 77. 
    Yang Y, Gao J, Zhang Y, Xu W, Hao Y et al. 2018. Natural pyrethrins induce autophagy of HepG2 cells through the activation of AMPK/mTOR pathway. Environ. Pollut. 241:1091–97
    [Google Scholar]
  78. 78. 
    Sakai M, Fukumoto M, Ikai K, Ono Minagi H, Inagaki S et al. 2019. Role of the mTOR signalling pathway in salivary gland development. FEBS J 286:3701–17
    [Google Scholar]
  79. 79. 
    Hao Y, Xu W, Gao J, Zhang Y, Yang Y, Tao L 2019. Roundup-induced AMPK/mTOR-mediated autophagy in human A549 cells. J. Agric. Food Chem. 67:11364–72
    [Google Scholar]
  80. 80. 
    Neto da Silva K, Garbin Cappellaro L, Ueda CN, Rodrigues L, Pertile Remor A et al. 2020. Glyphosate-based herbicide impairs energy metabolism and increases autophagy in C6 astroglioma cell line. J. Toxicol. Environ. Health A 83:153–67
    [Google Scholar]
  81. 81. 
    Elmore S. 2007. Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35:495–516
    [Google Scholar]
  82. 82. 
    Kwiatkowska M, Michałowicz J, Jarosiewicz P, Pingot D, Sicińska P et al. 2020. Evaluation of apoptotic potential of glyphosate metabolites and impurities in human peripheral blood mononuclear cells (in vitro study). Food Chem. Toxicol. 135:110888
    [Google Scholar]
  83. 83. 
    Kielak E, Sempruch C, Mioduszewska H, Klocek J, Leszczyński B 2011. Phytotoxicity of Roundup Ultra 360 SL in aquatic ecosystems: biochemical evaluation with duckweed (Lemna minor L.) as a model plant. Pestic. Biochem. Physiol. 99:237–43
    [Google Scholar]
  84. 84. 
    Zobiole LHS, Kremer RJ, de Oliveira RS Jr., Constantin J. 2012. Glyphosate effects on photosynthesis, nutrient accumulation, and nodulation in glyphosate-resistant soybean. J. Plant. Nutr. Soil Sci. 175:319–30
    [Google Scholar]
  85. 85. 
    Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN. 2006. Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol 141:357–66
    [Google Scholar]
  86. 86. 
    Gomes MP, Juneau P. 2016. Oxidative stress in duckweed (Lemna minor L.) induced by glyphosate: Is the mitochondrial electron transport chain a target of this herbicide?. Environ. Pollut. 218:402–9
    [Google Scholar]
  87. 87. 
    Burchfield SL, Bailey DC, Todt CE, Denney RD, Negga R, Fitsanakis VA 2019. Acute exposure to a glyphosate-containing herbicide formulation inhibits Complex II and increases hydrogen peroxide in the model organism Caenorhabditis elegans. Environ. Toxicol. Pharmacol. 66:36–42
    [Google Scholar]
  88. 88. 
    Makena MR, Rao R. 2020. Subtype specific targeting of calcium signaling in breast cancer. Cell Calcium 85:102109
    [Google Scholar]
  89. 89. 
    Ciarcia R, d'Angelo D, Pacilio C, Pagnini D, Galdiero M et al. 2010. Dysregulated calcium homeostasis and oxidative stress in chronic myeloid leukemia (CML) cells. J. Cell. Physiol. 224:443–53
    [Google Scholar]
  90. 90. 
    George J, Shukla Y 2013. Emptying of intracellular calcium pool and oxidative stress imbalance are associated with the glyphosate-induced proliferation in human skin keratinocytes HaCaT cells. ISRN Dermatol 2013 825180
    [Google Scholar]
  91. 91. 
    Cattani D, Cesconetto PA, Tavares MK, Parisotto EB, De Oliveira PA et al. 2017. Developmental exposure to glyphosate-based herbicide and depressive-like behavior in adult offspring: implication of glutamate excitotoxicity and oxidative stress. Toxicology 387:67–80
    [Google Scholar]
  92. 92. 
    Kronberg MF, Clavijo A, Moya A, Rossen A, Calvo D et al. 2018. Glyphosate-based herbicides modulate oxidative stress response in the nematode Caenorhabditis elegans. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 214:1–8
    [Google Scholar]
  93. 93. 
    Fodor K, Tit DM, Pasca B, Bustea C, Uivarosan D et al. 2018. Long-term resveratrol supplementation as a secondary prophylaxis for stroke. Oxid. Med. Cell Longev. 2018 4147320
    [Google Scholar]
  94. 94. 
    Panowski SH, Dillin A. 2009. Signals of youth: endocrine regulation of aging in Caenorhabditis elegans. Trends Endocrinol. Metab. 20:259–64
    [Google Scholar]
  95. 95. 
    Turkmen R, Birdane YO, Demirel HH, Kabu M, Ince S. 2019. Protective effects of resveratrol on biomarkers of oxidative stress, biochemical and histopathological changes induced by sub-chronic oral glyphosate-based herbicide in rats. Toxicol. Res. 8:238–45
    [Google Scholar]
  96. 96. 
    Ruiz LM, Salazar C, Jensen E, Ruiz PA, Tiznado W et al. 2015. Quercetin affects erythropoiesis and heart mitochondrial function in mice. Oxid. Med. Cell Longev. 2015 836301
    [Google Scholar]
  97. 97. 
    Dodd S, Dean O, Copolov DL, Malhi GS, Berk M. 2008. N-acetylcysteine for antioxidant therapy: pharmacology and clinical utility. Expert Opin. Biol. Ther. 8:1955–62
    [Google Scholar]
  98. 98. 
    Turkmen R, Birdane YO, Demirel HH, Yavuz H, Kabu M, Ince S. 2019. Antioxidant and cytoprotective effects of N-acetylcysteine against subchronic oral glyphosate-based herbicide-induced oxidative stress in rats. Environ. Sci. Pollut. Res. Int. 26:11427–37
    [Google Scholar]
  99. 99. 
    Seneff S, Swanson N, Li C. 2015. Aluminum and glyphosate can synergistically induce pineal gland pathology: connection to gut dysbiosis and neurological disease. Agric. Sci. 6:53106
    [Google Scholar]
  100. 100. 
    Wani AB, Chadar H, Wani AH, Singh S, Upadhyay N. 2017. Salicylic acid to decrease plant stress. Environ. Chem. Lett. 15:101–23
    [Google Scholar]
  101. 101. 
    Gomes MP, Le Manac'h SG, Moingt M, Smedbol E, Paquet S et al. 2016. Impact of phosphate on glyphosate uptake and toxicity in willow. J. Hazard. Mater. 304:269–79
    [Google Scholar]
  102. 102. 
    Steinrücken HC, Amrhein N. 1980. The herbicide glyphosate is a potent inhibitor of 5-enolpyruvylshikimic acid-3-phosphate synthase. Biochem. Biophys. Res. Commun. 94:1207–12
    [Google Scholar]
  103. 103. 
    Grunewald K, Schmidt W, Unger C, Hanschmann G. 2001. Behavior of glyphosate and aminomethylphosphonic acid (AMPA) in soils and water of reservoir Radeburg II catchment (Saxony/Germany). J. Plant Nutr. Soil Sci. 164:65–70
    [Google Scholar]
  104. 104. 
    Samsel A, Seneff S. 2015. Glyphosate, pathways to modern diseases III: manganese, neurological diseases, and associated pathologies. Surg. Neurol. Int. 6:45
    [Google Scholar]
  105. 105. 
    Stur E, Aristizabal-Pachon AF, Peronni KC, Agostini LP, Waigel S et al. 2019. Glyphosate-based herbicides at low doses affect canonical pathways in estrogen positive and negative breast cancer cell lines. PLOS ONE 14:e0219610
    [Google Scholar]
  106. 106. 
    Feng D, Malleret L, Soric A, Boutin O 2020. Kinetic study of glyphosate degradation in wet air oxidation conditions. Chemosphere 247:125930
    [Google Scholar]
  107. 107. 
    Samsel A, Seneff S. 2016. Glyphosate pathways to modern diseases V: amino acid analogue of glycine in diverse proteins. J. Biol. Phys. 16:9–46
    [Google Scholar]
  108. 108. 
    Lamb DC, Kelly DE, Hanley SZ, Mehmood Z, Kelly SL 1998. Glyphosate is an inhibitor of plant cytochrome P450: functional expression of Thlaspi arvensae Cytochrome P45071B1/reductase fusion protein in Escherichia coli. Biochem. Biophys. Res. Commun. 244:110–14
    [Google Scholar]
  109. 109. 
    Samsel A, Seneff S. 2013. Glyphosate's suppression of cytochrome P450 enzymes and amino acid biosynthesis by the gut microbiome: pathways to modern diseases. Entropy 15:1416–63
    [Google Scholar]
  110. 110. 
    Larsen K, Najle R, Lifschitz A, Maté ML, Lanusse C, Virkel GL 2014. Effects of sublethal exposure to a glyphosate-based herbicide formulation on metabolic activities of different xenobiotic-metabolizing enzymes in rats. Int. J. Toxicol. 33:307–18
    [Google Scholar]
  111. 111. 
    Fathi MA, Han G, Kang R, Shen D, Shen J, Li C. 2020. Disruption of cytochrome P450 enzymes in the liver and small intestine in chicken embryos in ovo exposed to glyphosate. Environ. Sci. Pollut. Res. Int. 27:16865–75
    [Google Scholar]
  112. 112. 
    Gasnier C, Benachour N, Clair E, Travert C, Langlois F et al. 2010. Dig1 protects against cell death provoked by glyphosate-based herbicides in human liver cell lines. J. Occup. Med. Toxicol. 5:29
    [Google Scholar]
  113. 113. 
    Abass K, Turpeinen M, Pelkonen O. 2009. An evaluation of the cytochrome P450 inhibition potential of selected pesticides in human hepatic microsomes. J. Environ. Sci. Health B 44:553–63
    [Google Scholar]
  114. 114. 
    Bai SH, Ogbourne SM. 2016. Glyphosate: environmental contamination, toxicity and potential risks to human health via food contamination. Environ. Sci. Pollut. Res. Int. 23:18988–9001
    [Google Scholar]
  115. 115. 
    Kwiatkowska M, Reszka E, Woźniak K, Jabłońska E, Michałowicz J, Bukowska B 2017. DNA damage and methylation induced by glyphosate in human peripheral blood mononuclear cells (in vitro study). Food Chem. Toxicol. 105:93–98
    [Google Scholar]
  116. 116. 
    Antunes AM, Rocha TL, Pires FS, de Freitas MA, Cruz Leite VRM et al. 2017. Gender-specific histopathological response in guppies Poecilia reticulata exposed to glyphosate or its metabolite aminomethylphosphonic acid. J. Appl. Toxicol. 37:1098–107
    [Google Scholar]
  117. 117. 
    Solomon K. 2016. Glyphosate in the general population and in applicators: a critical review of studies on exposures. Crit. Rev. Toxicol. 46:21–27
    [Google Scholar]
  118. 118. 
    Zoller O, Rhyn P, Zarn JA, Dudler V. 2020. Parkinson's disease in Louisiana, 1999–2012: based on hospital primary discharge diagnoses, incidence, and risk in relation to local agricultural crops, pesticides, and aquifer recharge. Int. J. Environ. Res. 228:113526
    [Google Scholar]
  119. 119. 
    Zoller O, Rhyn P, Zarn JA, Dudler V. 2020. Urine glyphosate level as a quantitative biomarker of oral exposure. Int. J. Hyg. Environ. 228:113526
    [Google Scholar]
  120. 120. 
    Eriguchi M, Iida K, Ikeda S, Osoegawa M, Nishioka K et al. 2019. Parkinsonism relating to intoxication with glyphosate. Intern. Med. 58:131935–38
    [Google Scholar]
  121. 121. 
    Donato F, Pira E, Ciocan C, Boffetta P. 2020. Exposure to glyphosate and risk of non-Hodgkin lymphoma and multiple myeloma: an updated meta-analysis. Med. Lav. 111:63–73
    [Google Scholar]
  122. 122. 
    Andreotti G, Koutros S, Hofmann JN, Sandler DP, Lubin JH et al. 2018. Glyphosate use and cancer incidence in the agricultural health study. J. Natl. Cancer Inst. 110:509–16
    [Google Scholar]
  123. 123. 
    Rueda-Ruzafa L, Cruz F, Roman P, Cardona D 2019. Gut microbiota and neurological effects of glyphosate. Neurotoxicology 75:1–8
    [Google Scholar]
  124. 124. 
    Ahc VB, He MM, Shin K, Mai V, Morris JG Jr 2018. Environmental and health effects of the herbicide glyphosate. Sci. Total Environ. 616:255–68
    [Google Scholar]
  125. 125. 
    Mink P, Mandel J, Lundin J, Sceurman B 2011. Epidemiologic studies of glyphosate and non-cancer health outcomes: a review. Regul. Toxicol. Pharmacol. 61:172–84
    [Google Scholar]
  126. 126. 
    Mengqin B. 2019. France plans to waste glyphosate in 2020. Pest. Sci. Adm. 40:51
    [Google Scholar]
  127. 127. 
    Morvillo M. 2020. Glyphosate effect: Has the glyphosate controversy affected the EU's regulatory epistemology?. Eur. J. Risk Regul. 11:3422–35
    [Google Scholar]
  128. 128. 
    Mansour SA, Mossa A-TH. 2010. Oxidative damage, biochemical and histopathological alterations in rats exposed to chlorpyrifos and the antioxidant role of zinc. Pestic. Biochem. Physiol. 96:14–23
    [Google Scholar]
  129. 129. 
    Gismondi E, Cossu-Leguille C, Beisel JN. 2013. Do male and female gammarids defend themselves differently during chemical stress?. Aquat. Toxicol. 140:432–38
    [Google Scholar]
  130. 130. 
    de Melo MS, Nazari EM, Joaquim-Justo C, Muller YMR, Gismondi E 2019. Effects of low glyphosate-based herbicide concentrations on endocrine-related gene expression in the decapoda Macrobrachium potiuna. Environ. Sci. Pollut. Res. Int. 26:21535–45
    [Google Scholar]
  131. 131. 
    Ruuskanen S, Rainio MJ, Kuosmanen V, Laihonen M, Saikkonen K et al. 2020. Female preference and adverse developmental effects of glyphosate-based herbicides on ecologically relevant traits in Japanese quails. Environ. Sci. Technol. 54:1128
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-020821-111552
Loading
/content/journals/10.1146/annurev-pharmtox-020821-111552
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error