1932

Abstract

G protein–coupled receptors (GPCRs) form a superfamily of plasma membrane receptors that couple to four major families of heterotrimeric G proteins, G, G, G, and G. GPCRs represent excellent targets for drug therapy. Since the individual GPCRs are expressed by many different cell types, the in vivo metabolic roles of a specific GPCR expressed by a distinct cell type are not well understood. The development of designer GPCRs known as DREADDs (designer receptors exclusively activated by a designer drug) that selectively couple to distinct classes of heterotrimeric G proteins has greatly facilitated studies in this area. This review focuses on the use of DREADD technology to explore the physiological and pathophysiological roles of distinct GPCR/G protein cascades in several metabolically important cell types. The novel insights gained from these studies should stimulate the development of GPCR-based treatments for major metabolic diseases such as type 2 diabetes and obesity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-030220-121042
2021-01-06
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/61/1/annurev-pharmtox-030220-121042.html?itemId=/content/journals/10.1146/annurev-pharmtox-030220-121042&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Sriram K, Insel PA. 2018. G protein–coupled receptors as targets for approved drugs: How many targets and how many drugs?. Mol. Pharmacol. 93:251–58
    [Google Scholar]
  2. 2. 
    Riddy DM, Delerive P, Summers RJ, Sexton PM, Langmead CJ 2018. G protein–coupled receptors targeting insulin resistance, obesity, and type 2 diabetes mellitus. Pharmacol. Rev. 70:39–67
    [Google Scholar]
  3. 3. 
    Ahren B. 2009. Islet G protein–coupled receptors as potential targets for treatment of type 2 diabetes. Nat. Rev. Drug Discov. 8:369–85
    [Google Scholar]
  4. 4. 
    Regard JB, Sato IT, Coughlin SR 2008. Anatomical profiling of G protein–coupled receptor expression. Cell 135:561–71
    [Google Scholar]
  5. 5. 
    Wettschureck N, Offermanns S. 2005. Mammalian G proteins and their cell type specific functions. Physiol. Rev. 85:1159–204
    [Google Scholar]
  6. 6. 
    Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL 2007. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. PNAS 104:5163–68
    [Google Scholar]
  7. 7. 
    Guettier JM, Gautam D, Scarselli M, Ruiz de Azua I, Li JH et al. 2009. A chemical-genetic approach to study G protein regulation of β cell function in vivo. PNAS 106:19197–202
    [Google Scholar]
  8. 8. 
    Inoue A, Raimondi F, Kadji FMN, Singh G, Kishi T et al. 2019. Illuminating G-protein-coupling selectivity of GPCRs. Cell 177:1933–47.e25
    [Google Scholar]
  9. 9. 
    Manvich DF, Webster KA, Foster SL, Farrell MS, Ritchie JC et al. 2018. The DREADD agonist clozapine N-oxide (CNO) is reverse-metabolized to clozapine and produces clozapine-like interoceptive stimulus effects in rats and mice. Sci. Rep. 8:3840
    [Google Scholar]
  10. 10. 
    Raper J, Morrison RD, Daniels JS, Howell L, Bachevalier J et al. 2017. Metabolism and distribution of clozapine-N-oxide: implications for nonhuman primate chemogenetics. ACS Chem. Neurosci. 8:1570–76
    [Google Scholar]
  11. 11. 
    Gomez JL, Bonaventura J, Lesniak W, Mathews WB, Sysa-Shah P et al. 2017. Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science 357:503–7
    [Google Scholar]
  12. 12. 
    Yadav PN, Abbas AI, Farrell MS, Setola V, Sciaky N et al. 2011. The presynaptic component of the serotonergic system is required for clozapine's efficacy. Neuropsychopharmacology 36:638–51
    [Google Scholar]
  13. 13. 
    Thompson KJ, Khajehali E, Bradley SJ, Navarrete JS, Huang XP et al. 2018. DREADD agonist 21 is an effective agonist for muscarinic-based DREADDs in vitro and in vivo. ACS Pharmacol. Transl. Sci. 1:61–72
    [Google Scholar]
  14. 14. 
    Vardy E, Robinson JE, Li C, Olsen RHJ, DiBerto JF et al. 2015. A new DREADD facilitates the multiplexed chemogenetic interrogation of behavior. Neuron 86:936–46
    [Google Scholar]
  15. 15. 
    Hudson BD, Christiansen E, Tikhonova IG, Grundmann M, Kostenis E et al. 2012. Chemically engineering ligand selectivity at the free fatty acid receptor 2 based on pharmacological variation between species orthologs. FASEB J 26:4951–65
    [Google Scholar]
  16. 16. 
    Roth BL. 2016. DREADDs for neuroscientists. Neuron 89:683–94
    [Google Scholar]
  17. 17. 
    Urban DJ, Roth BL. 2015. DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility. Annu. Rev. Pharmacol. Toxicol. 55:399–417
    [Google Scholar]
  18. 18. 
    Wess J. 2016. Use of designer G protein-coupled receptors to dissect metabolic pathways. Trends Endocrinol. Metab. 27:600–3
    [Google Scholar]
  19. 19. 
    Postic C, Dentin R, Girard J 2004. Role of the liver in the control of carbohydrate and lipid homeostasis. Diabetes Metab 30:398–408
    [Google Scholar]
  20. 20. 
    Lin HV, Accili D. 2011. Hormonal regulation of hepatic glucose production in health and disease. Cell Metab 14:9–19
    [Google Scholar]
  21. 21. 
    Unger RH, Cherrington AD. 2012. Glucagonocentric restructuring of diabetes: a pathophysiologic and therapeutic makeover. J. Clin. Investig. 122:4–12
    [Google Scholar]
  22. 22. 
    Exton JH. 1987. Mechanisms of hormonal regulation of hepatic glucose metabolism. Diabetes Metab. Rev. 3:163–83
    [Google Scholar]
  23. 23. 
    Estall JL, Drucker DJ. 2006. Glucagon and glucagon-like peptide receptors as drug targets. Curr. Pharm. Des. 12:1731–50
    [Google Scholar]
  24. 24. 
    Jiang G, Zhang BB. 2003. Glucagon and regulation of glucose metabolism. Am. J. Physiol. Endocrinol. Metab. 284:E671–78
    [Google Scholar]
  25. 25. 
    D'Alessio D. 2011. The role of dysregulated glucagon secretion in type 2 diabetes. Diabetes Obes. Metab. 13:Suppl. 1126–32
    [Google Scholar]
  26. 26. 
    Cho YM, Merchant CE, Kieffer TJ 2012. Targeting the glucagon receptor family for diabetes and obesity therapy. Pharmacol. Ther. 135:247–78
    [Google Scholar]
  27. 27. 
    Scheen AJ, Paquot N, Lefebvre PJ 2017. Investigational glucagon receptor antagonists in Phase I and II clinical trials for diabetes. Expert Opin. Investig. Drugs 26:1373–89
    [Google Scholar]
  28. 28. 
    Akhmedov D, Mendoza-Rodriguez MG, Rajendran K, Rossi M, Wess J, Berdeaux R 2017. Gs-DREADD knock-in mice for tissue-specific, temporal stimulation of cAMP signaling. Mol. Cell. Biol. 37:9e00584-16
    [Google Scholar]
  29. 29. 
    Exton JH. 1985. Mechanisms involved in alpha-adrenergic phenomena. Am. J. Physiol. 248:E633–47
    [Google Scholar]
  30. 30. 
    Liu J, Zhou L, Xiong K, Godlewski G, Mukhopadhyay B et al. 2012. Hepatic cannabinoid receptor-1 mediates diet-induced insulin resistance via inhibition of insulin signaling and clearance in mice. Gastroenterology 142:1218–28.e1
    [Google Scholar]
  31. 31. 
    Osei-Hyiaman D, Liu J, Zhou L, Godlewski G, Harvey-White J et al. 2008. Hepatic CB1 receptor is required for development of diet-induced steatosis, dyslipidemia, and insulin and leptin resistance in mice. J. Clin. Investig. 118:3160–69
    [Google Scholar]
  32. 32. 
    Rossi M, Zhu L, McMillin SM, Pydi SP, Jain S et al. 2018. Hepatic Gi signaling regulates whole-body glucose homeostasis. J. Clin. Investig. 128:746–59
    [Google Scholar]
  33. 33. 
    Hughey CC, Wasserman DH, Lee-Young RS, Lantier L 2014. Approach to assessing determinants of glucose homeostasis in the conscious mouse. Mamm. Genome 25:522–38
    [Google Scholar]
  34. 34. 
    Bauer A, McDonald AD, Nasir K, Peller L, Rade JJ et al. 2004. Inhibitory G protein overexpression provides physiologically relevant heart rate control in persistent atrial fibrillation. Circulation 110:3115–20
    [Google Scholar]
  35. 35. 
    Exton JH, Blackmore PF, El-Refai MF, Dehaye JP, Strickland WG et al. 1981. Mechanisms of hormonal regulation of liver metabolism. Adv. Cyclic Nucleotide Res. 14:491–505
    [Google Scholar]
  36. 36. 
    Li JH, Jain S, McMillin SM, Cui Y, Gautam D et al. 2013. A novel experimental strategy to assess the metabolic effects of selective activation of a Gq-coupled receptor in hepatocytes in vivo. Endocrinology 154:3539–51
    [Google Scholar]
  37. 37. 
    Blackmore PF, Hughes BP, Shuman EA, Exton JH 1982. α-Adrenergic activation of phosphorylase in liver cells involves mobilization of intracellular calcium without influx of extracellular calcium. J. Biol. Chem. 257:190–97
    [Google Scholar]
  38. 38. 
    Reinhart PH, Taylor WM, Bygrave FL 1984. The role of calcium ions in the mechanism of action of α-adrenergic agonists in rat liver. Biochem. J. 223:1–13
    [Google Scholar]
  39. 39. 
    Hu J, Stern M, Gimenez LE, Wanka L, Zhu L et al. 2016. A G protein-biased designer G protein-coupled receptor useful for studying the physiological relevance of Gq/11-dependent signaling pathways. J. Biol. Chem. 291:7809–20
    [Google Scholar]
  40. 40. 
    Alvarez-Curto E, Prihandoko R, Tautermann CS, Zwier JM, Pediani JD et al. 2011. Developing chemical genetic approaches to explore G protein-coupled receptor function: validation of the use of a receptor activated solely by synthetic ligand (RASSL). Mol. Pharmacol. 80:1033–46
    [Google Scholar]
  41. 41. 
    Nakajima K, Wess J. 2012. Design and functional characterization of a novel, arrestin-biased designer G protein-coupled receptor. Mol. Pharmacol. 82:575–82
    [Google Scholar]
  42. 42. 
    Pierce KL, Lefkowitz RJ. 2001. Classical and new roles of β-arrestins in the regulation of G-protein-coupled receptors. Nat. Rev. Neurosci. 2:727–33
    [Google Scholar]
  43. 43. 
    Luttrell LM, Gesty-Palmer D. 2010. Beyond desensitization: physiological relevance of arrestin-dependent signaling. Pharmacol. Rev. 62:305–30
    [Google Scholar]
  44. 44. 
    Rajagopal S, Rajagopal K, Lefkowitz RJ 2010. Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat. Rev. Drug Discov. 9:373–86
    [Google Scholar]
  45. 45. 
    Gurevich VV, Gurevich EV. 2014. Overview of different mechanisms of arrestin-mediated signaling. Curr. Protoc. Pharmacol. 67:2.10.1–9
    [Google Scholar]
  46. 46. 
    Guilherme A, Virbasius JV, Puri V, Czech MP 2008. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat. Rev. Mol. Cell Biol. 9:367–77
    [Google Scholar]
  47. 47. 
    Gonzalez-Muniesa P, Martinez-Gonzalez MA, Hu FB, Despres JP, Matsuzawa Y et al. 2017. Obesity. Nat. Rev. Dis. Primers 3:17034
    [Google Scholar]
  48. 48. 
    Kusminski CM, Bickel PE, Scherer PE 2016. Targeting adipose tissue in the treatment of obesity-associated diabetes. Nat. Rev. Drug Discov. 15:639–60
    [Google Scholar]
  49. 49. 
    Saltiel AR, Olefsky JM. 2017. Inflammatory mechanisms linking obesity and metabolic disease. J. Clin. Investig. 127:1–4
    [Google Scholar]
  50. 50. 
    Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH 2009. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health 9:88
    [Google Scholar]
  51. 51. 
    Amisten S, Neville M, Hawkes R, Persaud SJ, Karpe F, Salehi A 2015. An atlas of G-protein coupled receptor expression and function in human subcutaneous adipose tissue. Pharmacol. Ther. 146:61–93
    [Google Scholar]
  52. 52. 
    Wang L, Pydi SP, Cui Y, Zhu L, Meister J et al. 2019. Selective activation of Gs signaling in adipocytes causes striking metabolic improvements in mice. Mol. Metab. 27:83–91
    [Google Scholar]
  53. 53. 
    Caron A, Reynolds RP, Castorena CM, Michael NJ, Lee CE et al. 2019. Adipocyte Gs but not Gi signaling regulates whole-body glucose homeostasis. Mol. Metab. 27:11–21
    [Google Scholar]
  54. 54. 
    Hauke S, Keutler K, Phapale P, Yushchenko DA, Schultz C 2018. Endogenous fatty acids are essential signaling factors of pancreatic β-cells and insulin secretion. Diabetes 67:1986–98
    [Google Scholar]
  55. 55. 
    Schnell S, Schaefer M, Schofl C 2007. Free fatty acids increase cytosolic free calcium and stimulate insulin secretion from β-cells through activation of GPR40. Mol. Cell. Endocrinol. 263:173–80
    [Google Scholar]
  56. 56. 
    Alquier T, Peyot ML, Latour MG, Kebede M, Sorensen CM et al. 2009. Deletion of GPR40 impairs glucose-induced insulin secretion in vivo in mice without affecting intracellular fuel metabolism in islets. Diabetes 58:2607–15
    [Google Scholar]
  57. 57. 
    Wang L, Pydi SP, Zhu L, Barella LF, Cui Y et al. 2020. Adipocyte Gi signaling is essential for maintaining whole-body glucose homeostasis and insulin sensitivity. Nat. Commun. 11:2995
    [Google Scholar]
  58. 58. 
    Alexander SP, Christopoulos A, Davenport AP, Kelly E, Marrion NV et al. 2017. The concise guide to pharmacology 2017/18: G protein-coupled receptors. Br. J. Pharmacol. 174:Suppl. 1S17–129
    [Google Scholar]
  59. 59. 
    Ghorbani M, Himms-Hagen J. 1997. Appearance of brown adipocytes in white adipose tissue during CL 316,243-induced reversal of obesity and diabetes in Zucker fa/fa rats. Int. J. Obes. 21:465–75
    [Google Scholar]
  60. 60. 
    Xiao C, Goldgof M, Gavrilova O, Reitman ML 2015. Anti-obesity and metabolic efficacy of the β3-adrenergic agonist, CL316243, in mice at thermoneutrality compared to 22 degrees C. Obesity 23:1450–59
    [Google Scholar]
  61. 61. 
    Himms-Hagen J, Cui J, Danforth E Jr., Taatjes DJ, Lang SS et al. 1994. Effect of CL-316,243, a thermogenic beta 3-agonist, on energy balance and brown and white adipose tissues in rats. Am. J. Physiol. 266:R1371–82
    [Google Scholar]
  62. 62. 
    Collins S, Surwit RS. 2001. The beta-adrenergic receptors and the control of adipose tissue metabolism and thermogenesis. Recent Prog. Horm. Res. 56:309–28
    [Google Scholar]
  63. 63. 
    Susulic VS, Frederich RC, Lawitts J, Tozzo E, Kahn BB et al. 1995. Targeted disruption of the β3-adrenergic receptor gene. J. Biol. Chem. 270:29483–92
    [Google Scholar]
  64. 64. 
    Grujic D, Susulic VS, Harper ME, Himms-Hagen J, Cunningham BA et al. 1997. β3-Adrenergic receptors on white and brown adipocytes mediate β3-selective agonist-induced effects on energy expenditure, insulin secretion, and food intake. A study using transgenic and gene knockout mice. J. Biol. Chem. 272:17686–93
    [Google Scholar]
  65. 65. 
    Gavrilova O, Marcus-Samuels B, Reitman ML 2000. Lack of responses to a beta3-adrenergic agonist in lipoatrophic A-ZIP/F-1 mice. Diabetes 49:1910–16
    [Google Scholar]
  66. 66. 
    Robidoux J, Martin TL, Collins S 2004. β-adrenergic receptors and regulation of energy expenditure: a family affair. Annu. Rev. Pharmacol. Toxicol. 44:297–323
    [Google Scholar]
  67. 67. 
    Igawa Y, Michel MC. 2013. Pharmacological profile of β3-adrenoceptor agonists in clinical development for the treatment of overactive bladder syndrome. Naunyn-Schmiedeberg's Arch. Pharmacol. 386:177–83
    [Google Scholar]
  68. 68. 
    Cypess AM, Weiner LS, Roberts-Toler C, Franquet Elía E, Kessler SH et al. 2015. Activation of human brown adipose tissue by a β3-adrenergic receptor agonist. Cell Metab 21:33–38
    [Google Scholar]
  69. 69. 
    O'Mara AE, Johnson JW, Linderman JD, Brychta RJ, McGehee S et al. 2020. Chronic mirabegron treatment increases human brown fat, HDL cholesterol, and insulin sensitivity. J. Clin. Investig. 130:2209–19
    [Google Scholar]
  70. 70. 
    Finlin BS, Memetimin H, Zhu B, Confides AL, Vekaria HJ et al. 2020. The β3-adrenergic receptor agonist mirabegron improves glucose homeostasis in obese humans. J. Clin. Investig. 130:2319–31
    [Google Scholar]
  71. 71. 
    Heine M, Fischer AW, Schlein C, Jung C, Straub LG et al. 2018. Lipolysis triggers a systemic insulin response essential for efficient energy replenishment of activated brown adipose tissue in mice. Cell Metab 28:644–55.e4
    [Google Scholar]
  72. 72. 
    Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T et al. 2009. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58:1526–31
    [Google Scholar]
  73. 73. 
    Vijgen GH, Bouvy ND, Teule GJ, Brans B, Schrauwen P, van Marken Lichtenbelt WD 2011. Brown adipose tissue in morbidly obese subjects. PLOS ONE 6:e17247
    [Google Scholar]
  74. 74. 
    Klepac K, Kilic A, Gnad T, Brown LM, Herrmann B et al. 2016. The Gq signalling pathway inhibits brown and beige adipose tissue. Nat. Commun. 7:10895
    [Google Scholar]
  75. 75. 
    Boden G. 2008. Obesity and free fatty acids. Endocrinol. Metab. Clin. North Am. 37:635–46
    [Google Scholar]
  76. 76. 
    Roden M, Shulman GI. 2019. The integrative biology of type 2 diabetes. Nature 576:51–60
    [Google Scholar]
  77. 77. 
    Hudish LI, Reusch JE, Sussel L 2019. β Cell dysfunction during progression of metabolic syndrome to type 2 diabetes. J. Clin. Investig. 129:4001–8
    [Google Scholar]
  78. 78. 
    Amisten S, Salehi A, Rorsman P, Jones PM, Persaud SJ 2013. An atlas and functional analysis of G-protein coupled receptors in human islets of Langerhans. Pharmacol. Ther. 139:359–91
    [Google Scholar]
  79. 79. 
    Chia CW, Egan JM. 2020. Incretins in obesity and diabetes. Ann. N. Y. Acad. Sci. 1461:104–26
    [Google Scholar]
  80. 80. 
    Muller TD, Finan B, Bloom SR, D'Alessio D, Drucker DJ et al. 2019. Glucagon-like peptide 1 (GLP-1). Mol. Metab. 30:72–130
    [Google Scholar]
  81. 81. 
    Drucker DJ. 2018. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab 27:740–56
    [Google Scholar]
  82. 82. 
    Jain S, Ruiz de Azua I, Lu H, White MF, Guettier JM, Wess J 2013. Chronic activation of a designer Gq-coupled receptor improves β cell function. J. Clin. Investig. 123:1750–62
    [Google Scholar]
  83. 83. 
    Li Z, Zhou Z, Zhang L 2020. Current status of GPR40/FFAR1 modulators in medicinal chemistry (2016–2019): a patent review. Expert Opin. Ther. Pat. 30:27–38
    [Google Scholar]
  84. 84. 
    Tomita T, Hosoda K, Fujikura J, Inagaki N, Nakao K 2014. The G-protein-coupled long-chain fatty acid receptor GPR40 and glucose metabolism. Front. Endocrinol. 5:152
    [Google Scholar]
  85. 85. 
    Berger M, Scheel DW, Macias H, Miyatsuka T, Kim H et al. 2015. i/o-coupled receptor signaling restricts pancreatic β-cell expansion. PNAS 112:2888–93
    [Google Scholar]
  86. 86. 
    Coward P, Wada HG, Falk MS, Chan SD, Meng F et al. 1998. Controlling signaling with a specifically designed Gi-coupled receptor. PNAS 95:352–57
    [Google Scholar]
  87. 87. 
    Quesada I, Tuduri E, Ripoll C, Nadal A 2008. Physiology of the pancreatic α-cell and glucagon secretion: role in glucose homeostasis and diabetes. J. Endocrinol. 199:5–19
    [Google Scholar]
  88. 88. 
    Ahren B. 2015. Glucagon—early breakthroughs and recent discoveries. Peptides 67:74–81
    [Google Scholar]
  89. 89. 
    Wendt A, Eliasson L. 2020. Pancreatic α-cells—the unsung heroes in islet function. Semin. Cell Dev. Biol. 103:4150
    [Google Scholar]
  90. 90. 
    Rodriguez-Diaz R, Tamayo A, Hara M, Caicedo A 2019. The local paracrine actions of the pancreatic α cell. Diabetes 69:4550–58
    [Google Scholar]
  91. 91. 
    Lee YH, Wang MY, Yu XX, Unger RH 2016. Glucagon is the key factor in the development of diabetes. Diabetologia 59:1372–75
    [Google Scholar]
  92. 92. 
    Zhu L, Dattaroy D, Pham J, Wang L, Barella LF et al. 2019. Intraislet glucagon signaling is critical for maintaining glucose homeostasis. JCI Insight 4:e127994
    [Google Scholar]
  93. 93. 
    Capozzi ME, Svendsen B, Encisco SE, Lewandowski SL, Martin MD et al. 2019. β Cell tone is defined by proglucagon peptides through cAMP signaling. JCI Insight 4:e126742
    [Google Scholar]
  94. 94. 
    Svendsen B, Larsen O, Gabe MBN, Christiansen CB, Rosenkilde MM et al. 2018. Insulin secretion depends on intra-islet glucagon signaling. Cell Rep 25:1127–34.e2
    [Google Scholar]
  95. 95. 
    Ali S, Drucker DJ. 2009. Benefits and limitations of reducing glucagon action for the treatment of type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 296:E415–21
    [Google Scholar]
  96. 96. 
    Capozzi ME, Wait JB, Koech J, Gordon AN, Coch RW et al. 2019. Glucagon lowers glycemia when β cells are active. JCI Insight 4:16e129954
    [Google Scholar]
  97. 97. 
    Rodriguez-Diaz R, Molano RD, Weitz JR, Abdulreda MH, Berman DM et al. 2018. Paracrine interactions within the pancreatic islet determine the glycemic set point. Cell Metab 27:549–58.e4
    [Google Scholar]
  98. 98. 
    Thiebaud D, Jacot E, DeFronzo RA, Maeder E, Jequier E, Felber JP 1982. The effect of graded doses of insulin on total glucose uptake, glucose oxidation, and glucose storage in man. Diabetes 31:957–63
    [Google Scholar]
  99. 99. 
    DeFronzo RA, Tripathy D. 2009. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32:Suppl. 2S157–63
    [Google Scholar]
  100. 100. 
    Jean-Baptiste G, Yang Z, Khoury C, Gaudio S, Greenwood MT 2005. Peptide and non-peptide G-protein coupled receptors (GPCRs) in skeletal muscle. Peptides 26:1528–36
    [Google Scholar]
  101. 101. 
    Bone DBJ, Meister J, Knudsen JR, Dattaroy D, Cohen A et al. 2019. Skeletal muscle–specific activation of Gq signaling maintains glucose homeostasis. Diabetes 68:1341–52
    [Google Scholar]
  102. 102. 
    Krashes MJ. 2017. Untangling appetite circuits with optogenetics and chemogenetics. Appetite and Food Intake: Central Control RBS Harris 91–116 Boca Raton, FL: CRC Press
    [Google Scholar]
  103. 103. 
    Sternson SM, Eiselt AK. 2017. Three pillars for the neural control of appetite. Annu. Rev. Physiol. 79:401–23
    [Google Scholar]
  104. 104. 
    Morton GJ, Meek TH, Schwartz MW 2014. Neurobiology of food intake in health and disease. Nat. Rev. Neurosci. 15:367–78
    [Google Scholar]
  105. 105. 
    Krashes MJ, Shah BP, Koda S, Lowell BB 2013. Rapid versus delayed stimulation of feeding by the endogenously released AgRP neuron mediators GABA, NPY, and AgRP. Cell Metab 18:588–95
    [Google Scholar]
  106. 106. 
    Cowley MA, Smith RG, Diano S, Tschop M, Pronchuk N et al. 2003. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron 37:649–61
    [Google Scholar]
  107. 107. 
    Ren H, Orozco IJ, Su Y, Suyama S, Gutierrez-Juarez R et al. 2012. FoxO1 target Gpr17 activates AgRP neurons to regulate food intake. Cell 149:1314–26
    [Google Scholar]
  108. 108. 
    Krashes MJ, Koda S, Ye C, Rogan SC, Adams AC et al. 2011. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J. Clin. Investig. 121:1424–28
    [Google Scholar]
  109. 109. 
    Nakajima K, Cui Z, Li C, Meister J, Cui Y et al. 2016. Gs-coupled GPCR signalling in AgRP neurons triggers sustained increase in food intake. Nat. Commun. 7:10268
    [Google Scholar]
  110. 110. 
    Deleted in proof
  111. 111. 
    Alexander GM, Rogan SC, Abbas AI, Armbruster BN, Pei Y et al. 2009. Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron 63:27–39
    [Google Scholar]
  112. 112. 
    Carver CM, Shapiro MS. 2019. Gq-coupled muscarinic receptor enhancement of KCNQ2/3 channels and activation of TRPC channels in multimodal control of excitability in dentate gyrus granule cells. J. Neurosci. 39:1566–87
    [Google Scholar]
  113. 113. 
    Zhu H, Aryal DK, Olsen RH, Urban DJ, Swearingen A et al. 2016. Cre-dependent DREADD (Designer Receptors Exclusively Activated by Designer Drugs) mice. Genesis 54:439–46
    [Google Scholar]
  114. 114. 
    Ackermann AM, Zhang J, Heller A, Briker A, Kaestner KH 2017. High-fidelity glucagon-CreER mouse line generated by CRISPR-Cas9 assisted gene targeting. Mol. Metab. 6:236–44
    [Google Scholar]
  115. 115. 
    Tong Q, Ye CP, Jones JE, Elmquist JK, Lowell BB 2008. Synaptic release of GABA by AgRP neurons is required for normal regulation of energy balance. Nat. Neurosci. 11:998–1000
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-030220-121042
Loading
/content/journals/10.1146/annurev-pharmtox-030220-121042
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error