1932

Abstract

Oral vaccination enables pain-free and self-administrable vaccine delivery for rapid mass vaccination during pandemic outbreaks. Furthermore, it elicits systemic and mucosal immune responses. This protects against infection at mucosal surfaces, which may further enhance protection and minimize the spread of disease. The gastrointestinal (GI) tract presents a number of prospective mucosal inductive sites for vaccine targeting, including the oral cavity, stomach, and small intestine. However, currently available oral vaccines are effectively limited to live-attenuated and inactivated vaccines against enteric diseases. The GI tract poses a number of challenges,including degradative processes that digest biologics and mucosal barriers that limit their absorption. This review summarizes the approaches currently under development and future opportunities for oral vaccine delivery to established (intestinal) and relatively new (oral cavity, stomach) mucosal targets. Special consideration is given to recent advances in oral biologic delivery that offer promise as future platforms for the administration of oral vaccines.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-030320-092348
2021-01-06
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/61/1/annurev-pharmtox-030320-092348.html?itemId=/content/journals/10.1146/annurev-pharmtox-030320-092348&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Eek D, Krohe M, Mazar I, Horsfield A, Pompilus F et al. 2016. Patient-reported preferences for oral versus intravenous administration for the treatment of cancer: a review of the literature. Patient Prefer. Adherence 10:1609–21
    [Google Scholar]
  2. 2. 
    Durán-Lobato M, Niu Z, Alonso MJ 2019. Oral delivery of biologics for precision medicine. Adv. Mater. 32:131901935
    [Google Scholar]
  3. 3. 
    Vela Ramirez JE, Sharpe LA, Peppas NA 2017. Current state and challenges in developing oral vaccines. Adv. Drug Deliv. Rev. 114:116–31
    [Google Scholar]
  4. 4. 
    Marasini N, Skwarczynski M, Toth I 2014. Oral delivery of nanoparticle-based vaccines. Expert Rev. Vaccines 13:111361–76
    [Google Scholar]
  5. 5. 
    Lycke N. 2012. Recent progress in mucosal vaccine development: potential and limitations. Nat. Rev. Immunol. 12:8592–605
    [Google Scholar]
  6. 6. 
    Drucker DJ. 2019. Advances in oral peptide therapeutics. Nat. Rev. Drug Discov. 19:277–89
    [Google Scholar]
  7. 7. 
    Maher S, Brayden DJ, Casettari L, Illum L 2019. Application of permeation enhancers in oral delivery of macromolecules: an update. Pharmaceutics 11:141
    [Google Scholar]
  8. 8. 
    Holmgren J, Czerkinsky C. 2005. Mucosal immunity and vaccines. Nat. Med. 11:Suppl. 4S45–53
    [Google Scholar]
  9. 9. 
    Roberts L. 2013. Israel's silent polio epidemic breaks all the rules. Science 342:6159679–80
    [Google Scholar]
  10. 10. 
    Kraan H, Vrieling H, Czerkinsky C, Jiskoot W, Kersten G, Amorij J-P 2014. Buccal and sublingual vaccine delivery. J. Control. Release 190:580–92
    [Google Scholar]
  11. 11. 
    Liu W, Zeng Z, Luo S, Hu C, Xu N et al. 2019. Gastric subserous vaccination with Helicobacter pylori vaccine: an attempt to establish tissue-resident CD4+ memory T cells and induce prolonged protection. Front. Immunol. 10:1115
    [Google Scholar]
  12. 12. 
    Anselmo AC, Gokarn Y, Mitragotri S 2019. Non-invasive delivery strategies for biologics. Nat. Rev. Drug Discov. 18:119–40
    [Google Scholar]
  13. 13. 
    Vllasaliu D, Thanou M, Stolnik S, Fowler R 2018. Recent advances in oral delivery of biologics: nanomedicine and physical modes of delivery. Expert Opin. Drug Deliv. 15:8759–70
    [Google Scholar]
  14. 14. 
    Morales JO, Fathe KR, Brunaugh A, Ferrati S, Li S et al. 2017. Challenges and future prospects for the delivery of biologics: oral mucosal, pulmonary, and transdermal routes. AAPS J 19:3652–68
    [Google Scholar]
  15. 15. 
    Zhang C, Maruggi G, Shan H, Li J 2019. Advances in mRNA vaccines for infectious diseases. Front. Immunol. 10:594
    [Google Scholar]
  16. 16. 
    Lurie N, Saville M, Hatchett R, Halton J 2020. Developing Covid-19 vaccines at pandemic speed. N. Engl. J. Med. 382:211969–73
    [Google Scholar]
  17. 17. 
    Kang S, Hong S, Lee Y-K, Cho S 2018. Oral vaccine delivery for intestinal immunity—biological basis, barriers, delivery system, and M cell targeting. Polymers 10:9948
    [Google Scholar]
  18. 18. 
    Service RF. 2019. Pills give patients a shot inside the stomach. Science 363:6427571
    [Google Scholar]
  19. 19. 
    Brayden DJ, Baird AW. 2019. Stomaching drug delivery. N. Engl. J. Med. 380:171671–73
    [Google Scholar]
  20. 20. 
    Abramson A, Caffarel-Salvador E, Khang M, Dellal D, Silverstein D et al. 2019. An ingestible self-orienting system for oral delivery of macromolecules. Science 363:6427611–15
    [Google Scholar]
  21. 21. 
    Hashim M, Korupolu R, Syed B, Horlen K, Beraki S et al. 2019. Jejunal wall delivery of insulin via an ingestible capsule in anesthetized swine—a pharmacokinetic and pharmacodynamic study. Pharmacol. Res. Perspect. 7:5e00522
    [Google Scholar]
  22. 22. 
    Abramson A, Caffarel-Salvador E, Soares V, Minahan D, Tian RY et al. 2019. A luminal unfolding microneedle injector for oral delivery of macromolecules. Nat. Med. 25:101512–18
    [Google Scholar]
  23. 23. 
    Banerjee A, Ibsen K, Brown T, Chen R, Agatemor C, Mitragotri S 2018. Ionic liquids for oral insulin delivery. PNAS 115:287296–301
    [Google Scholar]
  24. 24. 
    McGhee JR, Fujihashi K. 2012. Inside the mucosal immune system. PLOS Biol 10:9e1001397
    [Google Scholar]
  25. 25. 
    Mowat AM, Agace WW. 2014. Regional specialization within the intestinal immune system. Nat. Rev. Immunol. 14:10667–85
    [Google Scholar]
  26. 26. 
    Lynch SV, Pedersen O. 2016. The human intestinal microbiome in health and disease. N. Engl. J. Med. 375:242369–79
    [Google Scholar]
  27. 27. 
    Aychek T, Jung S. 2014. The axis of tolerance. Science 343:61781439–40
    [Google Scholar]
  28. 28. 
    Knoop KA, Miller MJ, Newberry RD 2013. Transepithelial antigen delivery in the small intestine: different paths, different outcomes. Curr. Opin. Gastroenterol. 29:2112–18
    [Google Scholar]
  29. 29. 
    Song J-H, Nguyen HH, Cuburu N, Horimoto T, Ko S-Y et al. 2008. Sublingual vaccination with influenza virus protects mice against lethal viral infection. PNAS 105:51644–49
    [Google Scholar]
  30. 30. 
    Quiding M, Nordström I, Kilander A, Andersson G, Hanson LA et al. 1991. Intestinal immune responses in humans. Oral cholera vaccination induces strong intestinal antibody responses and interferon-gamma production and evokes local immunological memory. J. Clin. Investig. 88:1143–48
    [Google Scholar]
  31. 31. 
    Johansson EL, Wassén L, Holmgren J, Jertborn M, Rudin A 2001. Nasal and vaginal vaccinations have differential effects on antibody responses in vaginal and cervical secretions in humans. Infect. Immun. 69:127481–86
    [Google Scholar]
  32. 32. 
    Kozlowski PA, Cu-Uvin S, Neutra MR, Flanigan TP 1997. Comparison of the oral, rectal, and vaginal immunization routes for induction of antibodies in rectal and genital tract secretions of women. Infect. Immun. 65:41387–94
    [Google Scholar]
  33. 33. 
    Radulovic S, Wilson D, Calderon M, Durham S 2011. Systematic reviews of sublingual immunotherapy (SLIT). Allergy 66:6740–52
    [Google Scholar]
  34. 34. 
    Calderón MA, Simons FER, Malling H-J, Lockey RF, Moingeon P, Demoly P 2012. Sublingual allergen immunotherapy: mode of action and its relationship with the safety profile. Allergy 67:3302–11
    [Google Scholar]
  35. 35. 
    Creighton RL, Woodrow KA. 2019. Microneedle-mediated vaccine delivery to the oral mucosa. Adv. Healthc. Mater. 8:41801180
    [Google Scholar]
  36. 36. 
    Squier CA, Kremer MJ. 2001. Biology of oral mucosa and esophagus. JNCI Monogr 2001:297–15
    [Google Scholar]
  37. 37. 
    Hovav A-H. 2014. Dendritic cells of the oral mucosa. Mucosal Immunol 7:127–37
    [Google Scholar]
  38. 38. 
    Bimczok D, Clements RH, Waites KB, Novak L, Eckhoff DE et al. 2010. Human primary gastric dendritic cells induce a Th1 response to H. pylori. . Mucosal Immunol 3:3260–69
    [Google Scholar]
  39. 39. 
    Nagai S, Mimuro H, Yamada T, Baba Y, Moro K et al. 2007. Role of Peyer's patches in the induction of Helicobacter pylori–induced gastritis. PNAS 104:218971–76
    [Google Scholar]
  40. 40. 
    Kiriya K, Watanabe N, Nishio A, Okazaki K, Kido M et al. 2007. Essential role of Peyer's patches in the development of Helicobacter-induced gastritis. Int. Immunol. 19:4435–46
    [Google Scholar]
  41. 41. 
    Carney J. 2010. Gastric mucosal lymphoid follicles: histology, distribution, frequency, and etiologic features. Am. J. Surg. Pathol. 34:71019–24
    [Google Scholar]
  42. 42. 
    Mazzoni M, Bosi P, De Sordi N, Lalatta-Costerbosa G 2011. Distribution, organization and innervation of gastric MALT in conventional piglet. J. Anat. 219:5611–21
    [Google Scholar]
  43. 43. 
    Hu C, Liu W, Xu N, Huang A, Zeng Z et al. 2020. Perivascular lymphocyte clusters induced by gastric subserous layer vaccination mediate optimal immunity against Helicobacter through facilitating immune cell infiltration and local antibody response. J. Immunol. Res. 2020:1480281
    [Google Scholar]
  44. 44. 
    Xu N, Ruan G, Liu W, Hu C, Huang A et al. 2019. Vaccine-induced gastric CD4+ tissue-resident memory T cells proliferate in situ to amplify immune response against Helicobacter pylori insult. Helicobacter 24:5e12652
    [Google Scholar]
  45. 45. 
    Corr SC, Gahan CCGM, Hill C 2008. M-cells: origin, morphology and role in mucosal immunity and microbial pathogenesis. FEMS Immunol. Med. Microbiol. 52:12–12
    [Google Scholar]
  46. 46. 
    Tyrer P, Foxwell AR, Cripps AW, Apicella MA, Kyd JM 2006. Microbial pattern recognition receptors mediate M-cell uptake of a gram-negative bacterium. Infect. Immun. 74:1625–31
    [Google Scholar]
  47. 47. 
    Eldridge JH, Gilley RM, Staas JK, Moldoveanu Z, Meulbroek JA, Tice TR 1989. Biodegradable microspheres: vaccine delivery system for oral immunization. Curr. Top. Microbiol. Immunol 146:5966
    [Google Scholar]
  48. 48. 
    Eldridge JH, Staas JK, Meulbroek JA, McGhee JR, Tice TR, Gilley RM 1991. Biodegradable microspheres as a vaccine delivery system. Mol. Immunol. 28:3287–94
    [Google Scholar]
  49. 49. 
    Kumar S, Anselmo AC, Banerjee A, Zakrewsky M, Mitragotri S 2015. Shape and size-dependent immune response to antigen-carrying nanoparticles. J. Control. Release 220:141–48
    [Google Scholar]
  50. 50. 
    Tabata Y, Inoue Y, Ikada Y 1996. Size effect on systemic and mucosal immune responses induced by oral administration of biodegradable microspheres. Vaccine 14:171677–85
    [Google Scholar]
  51. 51. 
    Eldridge JH, Hammond CJ, Meulbroek JA, Staas JK, Gilley RM, Tice TR 1990. Controlled vaccine release in the gut-associated lymphoid tissues. I. Orally administered biodegradable microspheres target the Peyer's patches. J. Control. Release 11:1205–14
    [Google Scholar]
  52. 52. 
    Zachary JF. 2017. Mechanisms of microbial infections. Pathologic Basis of Veterinary Disease JF Zachary 132–241.e1. St. Louis, MO: Elsevier
    [Google Scholar]
  53. 53. 
    Chieppa M, Rescigno M, Huang AYC, Germain RN 2006. Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J. Exp. Med. 203:132841–52
    [Google Scholar]
  54. 54. 
    Yeh T-H, Hsu L-W, Tseng MT, Lee P-L, Sonjae K et al. 2011. Mechanism and consequence of chitosan-mediated reversible epithelial tight junction opening. Biomaterials 32:266164–73
    [Google Scholar]
  55. 55. 
    Snoeck V, Goddeeris B, Cox E 2005. The role of enterocytes in the intestinal barrier function and antigen uptake. Microbes Infect 7:7997–1004
    [Google Scholar]
  56. 56. 
    Ménard S, Cerf-Bensussan N, Heyman M 2010. Multiple facets of intestinal permeability and epithelial handling of dietary antigens. Mucosal Immunol 3:3247–59
    [Google Scholar]
  57. 57. 
    McDole JR, Wheeler LW, McDonald KG, Wang B, Konjufca V et al. 2012. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature 483:7389345–49
    [Google Scholar]
  58. 58. 
    Brandtzaeg P. 2013. Secretory immunity with special reference to the oral cavity. J. Oral Microbiol. https://doi.org/10.3402/jom.v5i0.20401
    [Crossref] [Google Scholar]
  59. 59. 
    Wu R-Q, Zhang D-F, Tu E, Chen Q-M, Chen W 2014. The mucosal immune system in the oral cavity—an orchestra of T cell diversity. Int. J. Oral Sci. 6:3125–32
    [Google Scholar]
  60. 60. 
    Liebowitz D, Lindbloom JD, Brandl JR, Garg SJ, Tucker SN 2015. High titre neutralising antibodies to influenza after oral tablet immunisation: a phase 1, randomised, placebo-controlled trial. Lancet Infect. Dis. 15:91041–48
    [Google Scholar]
  61. 61. 
    Gurwith M, Lock M, Taylor EM, Ishioka G, Alexander J et al. 2013. Safety and immunogenicity of an oral, replicating adenovirus serotype 4 vector vaccine for H5N1 influenza: a randomised, double-blind, placebo-controlled, phase 1 study. Lancet Infect. Dis. 13:3238–50
    [Google Scholar]
  62. 62. 
    Uddin AN, Bejugam NK, Gayakwad SG, Akther P, D'Souza MJ 2009. Oral delivery of gastro-resistant microencapsulated typhoid vaccine. J. Drug Target. 17:7553–60
    [Google Scholar]
  63. 63. 
    Garinot M, Fiévez V, Pourcelle V, Stoffelbach F, des Rieux A et al. 2007. PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination. J. Control. Release 120:3195–204
    [Google Scholar]
  64. 64. 
    Kim S-H, Seo K-W, Kim J, Lee K-Y, Jang Y-S 2010. The M cell-targeting ligand promotes antigen delivery and induces antigen-specific immune responses in mucosal vaccination. J. Immunol. 185:105787–95
    [Google Scholar]
  65. 65. 
    Shukla A, Katare OP, Singh B, Vyas SP 2010. M-cell targeted delivery of recombinant hepatitis B surface antigen using cholera toxin B subunit conjugated bilosomes. Int. J. Pharm. 385:147–52
    [Google Scholar]
  66. 66. 
    Zhu Q, Talton J, Zhang G, Cunningham T, Wang Z et al. 2012. Large intestine-targeted, nanoparticle-releasing oral vaccine to control genitorectal viral infection. Nat. Med. 18:81291–96
    [Google Scholar]
  67. 67. 
    Warzecha H, Mason HS, Lane C, Tryggvesson A, Rybicki E et al. 2003. Oral immunogenicity of human papillomavirus-like particles expressed in potato. J. Virol. 77:168702–11
    [Google Scholar]
  68. 68. 
    van der Lubben IM, Verhoef JC, van Aelst AC, Borchard G, Junginger HE 2001. Chitosan microparticles for oral vaccination: preparation, characterization and preliminary in vivo uptake studies in murine Peyer's patches. Biomaterials 22:7687–94
    [Google Scholar]
  69. 69. 
    Aran K, Chooljian M, Paredes J, Rafi M, Lee K et al. 2017. An oral microjet vaccination system elicits antibody production in rabbits. Sci. Transl. Med. 9:380eaaf6413
    [Google Scholar]
  70. 70. 
    Jones AT, Shen X, Walter KL, LaBranche CC, Wyatt LS et al. 2019. HIV-1 vaccination by needle-free oral injection induces strong mucosal immunity and protects against SHIV challenge. Nat. Commun. 10:1798
    [Google Scholar]
  71. 71. 
    Chen D, Kristensen D. 2009. Opportunities and challenges of developing thermostable vaccines. Expert Rev. Vaccines 8:5547–57
    [Google Scholar]
  72. 72. 
    Chen X, Fernando GJP, Crichton ML, Flaim C, Yukiko SR et al. 2011. Improving the reach of vaccines to low-resource regions, with a needle-free vaccine delivery device and long-term thermostabilization. J. Control. Release 152:3349–55
    [Google Scholar]
  73. 73. 
    van der Lubben IM, Verhoef JC, Borchard G, Junginger HE 2001. Chitosan and its derivatives in mucosal drug and vaccine delivery. Eur. J. Pharm. Sci. 14:3201–7
    [Google Scholar]
  74. 74. 
    Rice-Ficht AC, Arenas-Gamboa AM, Kahl-McDonagh MM, Ficht TA 2010. Polymeric particles in vaccine delivery. Curr. Opin. Microbiol. 13:1106–12
    [Google Scholar]
  75. 75. 
    Gregory A, Williamson D, Titball R 2013. Vaccine delivery using nanoparticles. Front. Cell Infect. Microbiol. 3:13
    [Google Scholar]
  76. 76. 
    Chen SC, Jones DH, Fynan EF, Farrar GH, Clegg JCS et al. 1998. Protective immunity induced by oral immunization with a rotavirus DNA vaccine encapsulated in microparticles. J. Virol. 72:75757–61
    [Google Scholar]
  77. 77. 
    He X-W, Wang F, Jiang L, Li J, Liu S et al. 2005. Induction of mucosal and systemic immune response by single-dose oral immunization with biodegradable microparticles containing DNA encoding HBsAg. J. Gen. Virol. 86:3601–10
    [Google Scholar]
  78. 78. 
    Roy K, Mao H-Q, Huang S-K, Leong KW 1999. Oral gene delivery with chitosan-DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat. Med. 5:4387–91
    [Google Scholar]
  79. 79. 
    Guo L, Yin R, Liu K, Lv X, Li Y et al. 2014. Immunological features and efficacy of a multi-epitope vaccine CTB-UE against H. pylori in BALB/c mice model. Appl. Microbiol. Biotechnol. 98:83495–507
    [Google Scholar]
  80. 80. 
    Kaneko H, Bednarek I, Wierzbicki A, Kiszka I, Dmochowski M et al. 2000. Oral DNA vaccination promotes mucosal and systemic immune responses to HIV envelope glycoprotein. Virology 267:18–16
    [Google Scholar]
  81. 81. 
    Lundstrom K. 2018. Latest development on RNA-based drugs and vaccines. Futur. Sci. OA 4:5FSO300
    [Google Scholar]
  82. 82. 
    Pardi N, Hogan MJ, Porter FW, Weissman D 2018. mRNA vaccines—a new era in vaccinology. Nat. Rev. Drug Discov. 17:261–79
    [Google Scholar]
  83. 83. 
    Hanes J, Chiba M, Langer R 1995. Polymer microspheres for vaccine delivery. Vaccine Design: The Subunit and Adjuvant Approach MF Powell, MJ Newman 389–412 New York: Springer
    [Google Scholar]
  84. 84. 
    Mašek J, Lubasová D, Lukáč R, Turánek-Knotigová P, Kulich P et al. 2017. Multi-layered nanofibrous mucoadhesive films for buccal and sublingual administration of drug-delivery and vaccination nanoparticles—important step towards effective mucosal vaccines. J. Control. Release 249:183–95
    [Google Scholar]
  85. 85. 
    Gala RP, Popescu C, Knipp GT, McCain RR, Ubale RV et al. 2017. Physicochemical and preclinical evaluation of a novel buccal measles vaccine. AAPS PharmSciTech 18:2283–92
    [Google Scholar]
  86. 86. 
    Delgado A, Lavelle EC, Hartshorne M, Davis SS 1999. PLG microparticles stabilised using enteric coating polymers as oral vaccine delivery systems. Vaccine 17:222927–38
    [Google Scholar]
  87. 87. 
    Yeh P-Y, Ellens H, Smith PL 1998. Physiological considerations in the design of particulate dosage forms for oral vaccine delivery. Adv. Drug Deliv. Rev. 34:2123–33
    [Google Scholar]
  88. 88. 
    Wang T, Jiang H, Zhao Q, Wang S, Zou M, Cheng G 2012. Enhanced mucosal and systemic immune responses obtained by porous silica nanoparticles used as an oral vaccine adjuvant: effect of silica architecture on immunological properties. Int. J. Pharm. 436:1351–58
    [Google Scholar]
  89. 89. 
    Awaad A, Nakamura M, Ishimura K 2012. Imaging of size-dependent uptake and identification of novel pathways in mouse Peyer's patches using fluorescent organosilica particles. Nanomedicine 8:5627–36
    [Google Scholar]
  90. 90. 
    Gutierro I, Hernández RM, Igartua M, Gascón AR, Pedraz JL 2002. Size dependent immune response after subcutaneous, oral and intranasal administration of BSA loaded nanospheres. Vaccine 21:167–77
    [Google Scholar]
  91. 91. 
    Eldridge JH, Meulbroek JA, Staas JK, Tice TR, Gilley R 1989. Vaccine-containing biodegradable microspheres specifically enter the gut-associated lymphoid tissue following oral administration and induce a disseminated mucosal immune response. Immunobiology of Proteins and Peptides V: Vaccines Mechanisms, Design, and Applications MZ Atassi 191–202 New York: Springer
    [Google Scholar]
  92. 92. 
    Foged C, Brodin B, Frokjaer S, Sundblad A 2005. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int. J. Pharm. 298:2315–22
    [Google Scholar]
  93. 93. 
    Jiang T, Singh B, Li H-S, Kim Y-K, Kang S-K et al. 2014. Targeted oral delivery of BmpB vaccine using porous PLGA microparticles coated with M cell homing peptide–coupled chitosan. Biomaterials 35:72365–73
    [Google Scholar]
  94. 94. 
    Jepson MA, Clark MA, Hirst BH 2004. M cell targeting by lectins: a strategy for mucosal vaccination and drug delivery. Adv. Drug Deliv. Rev. 56:4511–25
    [Google Scholar]
  95. 95. 
    Joshi VB, Geary SM, Salem AK 2013. Biodegradable particles as vaccine antigen delivery systems for stimulating cellular immune responses. Hum. Vaccin. Immunother. 9:122584–90
    [Google Scholar]
  96. 96. 
    Demento SL, Cui W, Criscione JM, Stern E, Tulipan J et al. 2012. Role of sustained antigen release from nanoparticle vaccines in shaping the T cell memory phenotype. Biomaterials 33:194957–64
    [Google Scholar]
  97. 97. 
    Zhou S, Liao X, Li X, Deng X, Li H 2003. Poly-d,l-lactide-co-poly(ethylene glycol) microspheres as potential vaccine delivery systems. J. Control. Release 86:2195–205
    [Google Scholar]
  98. 98. 
    Jepson M, Simmons N, O'Hagan D, Hirst B 1993. Comparison of poly(dl-lactide-co-glycolide) and polystyrene microsphere targeting to intestinal M cells. J. Drug Target. 1:3245–49
    [Google Scholar]
  99. 99. 
    Men Y, Thomasin C, Merkle HP, Gander B, Corradin G 1995. A single administration of tetanus toxoid in biodegradable microspheres elicits T cell and antibody responses similar or superior to those obtained with aluminum hydroxide. Vaccine 13:7683–89
    [Google Scholar]
  100. 100. 
    Carreño JM, Perez-Shibayama C, Gil-Cruz C, Printz A, Pastelin R et al. 2016. PLGA-microencapsulation protects Salmonella typhi outer membrane proteins from acidic degradation and increases their mucosal immunogenicity. Vaccine 34:354263–69
    [Google Scholar]
  101. 101. 
    Xiang SD, Selomulya C, Ho J, Apostolopoulos V, Plebanski M 2010. Delivery of DNA vaccines: an overview on the use of biodegradable polymeric and magnetic nanoparticles. WIREs Nanomed. Nanobiotechnol. 2:3205–18
    [Google Scholar]
  102. 102. 
    Salman HH, Irache JM, Gamazo C 2009. Immunoadjuvant capacity of flagellin and mannosamine-coated poly(anhydride) nanoparticles in oral vaccination. Vaccine 27:354784–90
    [Google Scholar]
  103. 103. 
    Benoit M-A, Baras B, Gillard J 1999. Preparation and characterization of protein-loaded poly(ε-caprolactone) microparticles for oral vaccine delivery. Int. J. Pharm. 184:173–84
    [Google Scholar]
  104. 104. 
    Howard KA, Li XW, Somavarapu S, Singh J, Green N et al. 2004. Formulation of a microparticle carrier for oral polyplex-based DNA vaccines. Biochim. Biophys. Acta Gen. Subj. 1674:2149–57
    [Google Scholar]
  105. 105. 
    Bowersock TL, Hogenesch H, Suckow M, Porter RE, Jackson R et al. 1996. Oral vaccination with alginate microsphere systems. J. Control. Release 39:2209–20
    [Google Scholar]
  106. 106. 
    Kim B, Bowersock T, Griebel P, Kidane A, Babiuk LA et al. 2002. Mucosal immune responses following oral immunization with rotavirus antigens encapsulated in alginate microspheres. J. Control. Release 85:1191–202
    [Google Scholar]
  107. 107. 
    Pavot V, Berthet M, Rességuier J, Legaz S, Handké N et al. 2014. Poly(lactic acid) and poly(lactic-co-glycolic acid) particles as versatile carrier platforms for vaccine delivery. Nanomedicine 9:172703–18
    [Google Scholar]
  108. 108. 
    Ahire VJ, Sawant KK, Doshi JB, Ravetkar SD 2007. Chitosan microparticles as oral delivery system for tetanus toxoid. Drug Dev. Ind. Pharm. 33:101112–24
    [Google Scholar]
  109. 109. 
    Borges O, Tavares J, de Sousa A, Borchard G, Junginger HE, Cordeiro-da-Silva A 2007. Evaluation of the immune response following a short oral vaccination schedule with hepatitis B antigen encapsulated into alginate-coated chitosan nanoparticles. Eur. J. Pharm. Sci. 32:4278–90
    [Google Scholar]
  110. 110. 
    Barhate G, Gautam M, Gairola S, Jadhav S, Pokharkar V 2013. Quillaja saponaria extract as mucosal adjuvant with chitosan functionalized gold nanoparticles for mucosal vaccine delivery: stability and immunoefficiency studies. Int. J. Pharm. 441:1636–42
    [Google Scholar]
  111. 111. 
    Liu J, Wu J, Wang B, Zeng S, Qi F et al. 2014. Oral vaccination with a liposome-encapsulated influenza DNA vaccine protects mice against respiratory challenge infection. J. Med. Virol. 86:5886–94
    [Google Scholar]
  112. 112. 
    Pang Y, Zhang Y, Wang H, Jin J, Piao J et al. 2013. Reduction of Salmonella enteritidis number after infections by immunization of liposome-associated recombinant SefA. Avian Dis 57:3627–33
    [Google Scholar]
  113. 113. 
    Wang D, Xu J, Feng Y, Liu Y, Mchenga SSS et al. 2010. Liposomal oral DNA vaccine (mycobacterium DNA) elicits immune response. Vaccine 28:183134–42
    [Google Scholar]
  114. 114. 
    Gupta PN, Vyas SP. 2011. Investigation of lectinized liposomes as M-cell targeted carrier-adjuvant for mucosal immunization. Colloids Surf. B Biointerfaces 82:1118–25
    [Google Scholar]
  115. 115. 
    Mann JFS, Scales HE, Shakir E, Alexander J, Carter KC et al. 2006. Oral delivery of tetanus toxoid using vesicles containing bile salts (bilosomes) induces significant systemic and mucosal immunity. Methods 38:290–95
    [Google Scholar]
  116. 116. 
    Conacher M, Alexander J, Brewer JM 2001. Oral immunisation with peptide and protein antigens by formulation in lipid vesicles incorporating bile salts (bilosomes). Vaccine 19:202965–74
    [Google Scholar]
  117. 117. 
    Sanders MT, Brown LE, Deliyannis G, Pearse MJ 2005. ISCOM™-based vaccines: the second decade. Immunol. Cell Biol. 83:2119–28
    [Google Scholar]
  118. 118. 
    Roland KL, Brenneman KE. 2013. Salmonella as a vaccine delivery vehicle. Expert Rev. Vaccines 12:91033–45
    [Google Scholar]
  119. 119. 
    da Silva AJ, Zangirolami TC, Novo-Mansur MTM, de Campos Giordano R, Martins EAL 2014. Live bacterial vaccine vectors: an overview. Braz. J. Microbiol. 45:41117–29
    [Google Scholar]
  120. 120. 
    Kotton CN, Hohmann EL. 2004. Enteric pathogens as vaccine vectors for foreign antigen delivery. Infect. Immun. 72:105535–47
    [Google Scholar]
  121. 121. 
    Tuboly T, Nagy É, Derbyshire JB 1993. Potential viral vectors for the stimulation of mucosal antibody responses against enteric viral antigens in pigs. Res. Vet. Sci. 54:3345–50
    [Google Scholar]
  122. 122. 
    Draper SJ, Heeney JL. 2010. Viruses as vaccine vectors for infectious diseases and cancer. Nat. Rev. Microbiol. 8:162–73
    [Google Scholar]
  123. 123. 
    Choi JH, Schafer SC, Zhang L, Kobinger GP, Juelich T et al. 2012. A single sublingual dose of an adenovirus-based vaccine protects against lethal Ebola challenge in mice and guinea pigs. Mol. Pharm. 9:1156–67
    [Google Scholar]
  124. 124. 
    Rollier CS, Reyes-Sandoval A, Cottingham MG, Ewer K, Hill AVS 2011. Viral vectors as vaccine platforms: deployment in sight. Curr. Opin. Immunol. 23:3377–82
    [Google Scholar]
  125. 125. 
    Lubeck MD, Davis AR, Chengalvala M, Natuk RJ, Morin JE et al. 1989. Immunogenicity and efficacy testing in chimpanzees of an oral hepatitis B vaccine based on live recombinant adenovirus. PNAS 86:176763–67
    [Google Scholar]
  126. 126. 
    Tacket CO, Losonsky G, Lubeck MD, Davis AR, Mizutani S et al. 1992. Initial safety and immunogenicity studies of an oral recombinant adenohepatitis B vaccine. Vaccine 10:10673–76
    [Google Scholar]
  127. 127. 
    Khurana S, Coyle EM, Manischewitz J, King LR, Ishioka G et al. 2015. Oral priming with replicating adenovirus serotype 4 followed by subunit H5N1 vaccine boost promotes antibody affinity maturation and expands H5N1 cross-clade neutralization. PLOS ONE 10:1e0115476
    [Google Scholar]
  128. 128. 
    Peters W, Brandl JR, Lindbloom JD, Martinez CJ, Scallan CD et al. 2013. Oral administration of an adenovirus vector encoding both an avian influenza A hemagglutinin and a TLR3 ligand induces antigen specific granzyme B and IFN-γ T cell responses in humans. Vaccine 31:131752–58
    [Google Scholar]
  129. 129. 
    Kim L, Martinez CJ, Hodgson KA, Trager GR, Brandl JR et al. 2016. Systemic and mucosal immune responses following oral adenoviral delivery of influenza vaccine to the human intestine by radio controlled capsule. Sci. Rep. 6:37295
    [Google Scholar]
  130. 130. 
    Clements JD, Norton EB. 2018. The mucosal vaccine adjuvant LT(R192G/L211A) or dmLT. mSphere 3:4e00215–18
    [Google Scholar]
  131. 131. 
    Summerton NA, Welch RW, Bondoc L, Yang H-H, Pleune B et al. 2010. Toward the development of a stable, freeze-dried formulation of Helicobacter pylori killed whole cell vaccine adjuvanted with a novel mutant of Escherichia coli heat-labile toxin. Vaccine 28:51404–11
    [Google Scholar]
  132. 132. 
    Holmgren J, Bourgeois A, Carlin N, Clements J, Gustafsson B et al. 2013. Development and preclinical evaluation of safety and immunogenicity of an oral ETEC vaccine containing inactivated E. coli bacteria overexpressing colonization factors CFA/I, CS3, CS5 and CS6 combined with a hybrid LT/CT B subunit antigen, administered alone and together with dmLT adjuvant. Vaccine 31:2457–64
    [Google Scholar]
  133. 133. 
    El-Kamary SS, Cohen MB, Bourgeois AL, Van De Verg L, Bauers N et al. 2013. Safety and immunogenicity of a single oral dose of recombinant double mutant heat-labile toxin derived from enterotoxigenic Escherichia coli. Clin. Vaccine Immunol 20:111764–70
    [Google Scholar]
  134. 134. 
    Lundgren A, Bourgeois L, Carlin N, Clements J, Gustafsson B et al. 2014. Safety and immunogenicity of an improved oral inactivated multivalent enterotoxigenic Escherichia coli (ETEC) vaccine administered alone and together with dmLT adjuvant in a double-blind, randomized, placebo-controlled Phase I study. Vaccine 32:527077–84
    [Google Scholar]
  135. 135. 
    Norton EB, Lawson LB, Mahdi Z, Freytag LC, Clements JD 2012. The A subunit of Escherichia coli heat-labile enterotoxin functions as a mucosal adjuvant and promotes IgG2a, IgA, and Th17 responses to vaccine antigens. Infect. Immun. 80:72426–35
    [Google Scholar]
  136. 136. 
    El-Kamary SS, Pasetti MF, Mendelman PM, Frey SE, Bernstein DI et al. 2010. Adjuvanted intranasal Norwalk virus-like particle vaccine elicits antibodies and antibody-secreting cells that express homing receptors for mucosal and peripheral lymphoid tissues. J. Infect. Dis. 202:111649–58
    [Google Scholar]
  137. 137. 
    Albu DI, Jones-Trower A, Woron AM, Stellrecht K, Broder CC, Metzger DW 2003. Intranasal vaccination using interleukin-12 and cholera toxin subunit B as adjuvants to enhance mucosal and systemic immunity to human immunodeficiency virus type 1 glycoproteins. J. Virol. 77:105589–97
    [Google Scholar]
  138. 138. 
    Toka FN, Rouse BT. 2005. Mucosal application of plasmid-encoded IL-15 sustains a highly protective anti-Herpes simplex virus immunity. J. Leukoc. Biol. 78:1178–86
    [Google Scholar]
  139. 139. 
    Arora A, Prausnitz MR, Mitragotri S 2008. Micro-scale devices for transdermal drug delivery. Int. J. Pharm. 364:2227–36
    [Google Scholar]
  140. 140. 
    Paliwal S, Hwang BH, Tsai KY, Mitragotri S 2013. Diagnostic opportunities based on skin biomarkers. Eur. J. Pharm. Sci. 50:5546–56
    [Google Scholar]
  141. 141. 
    Coffey JW, Corrie SR, Kendall MAF 2013. Early circulating biomarker detection using a wearable microprojection array skin patch. Biomaterials 34:379572–83
    [Google Scholar]
  142. 142. 
    Coffey JW, Corrie SR, Kendall MAF 2018. Rapid and selective sampling of IgG from skin in less than 1 min using a high surface area wearable immunoassay patch. Biomaterials 170:49–57
    [Google Scholar]
  143. 143. 
    Kim Y-C, Park J-H, Prausnitz MR 2012. Microneedles for drug and vaccine delivery. Adv. Drug Deliv. Rev. 64:141547–68
    [Google Scholar]
  144. 144. 
    Meliga SC, Coffey JW, Crichton ML, Flaim C, Veidt M, Kendall MAF 2017. The hyperelastic and failure behaviors of skin in relation to the dynamic application of microscopic penetrators in a murine model. Acta Biomater 48:341–56
    [Google Scholar]
  145. 145. 
    Ma Y, Tao W, Krebs SJ, Sutton WF, Haigwood NL, Gill HS 2014. Vaccine delivery to the oral cavity using coated microneedles induces systemic and mucosal immunity. Pharm. Res. 31:92393–403
    [Google Scholar]
  146. 146. 
    McNeilly CL, Crichton ML, Primiero CA, Frazer IH, Roberts MS, Kendall MAF 2014. Microprojection arrays to immunise at mucosal surfaces. J. Control. Release 196:252–60
    [Google Scholar]
  147. 147. 
    Depelsenaire ACI, Meliga SC, McNeilly CL, Pearson FE, Coffey JW et al. 2014. Colocalization of cell death with antigen deposition in skin enhances vaccine immunogenicity. J. Investig. Dermatol. 134:92361–70
    [Google Scholar]
  148. 148. 
    Crichton ML, Muller DA, Depelsenaire ACI, Pearson FE, Wei J et al. 2016. The changing shape of vaccination: improving immune responses through geometrical variations of a microdevice for immunization. Sci. Rep. 6:27217
    [Google Scholar]
  149. 149. 
    Uddin MN, Allon A, Roni MA, Kouzi S 2019. Overview and future potential of fast dissolving buccal films as drug delivery system for vaccines. J. Pharm. Pharm. Sci. 22:1388–406
    [Google Scholar]
  150. 150. 
    Imran M. 2012. Therapeutic agent preparations for delivery into a lumen of the intestinal tract using a swallowable drug delivery device US Patent 9 861:683
  151. 151. 
    Rani Ther. 2020. Rani therapeutics announces positive phase I study results of oral octreotide using RaniPill™ PR Newswire, Jan. 30 https://www.prnewswire.com/news-releases/rani-therapeutics-announces-positive-phase-i-study-results-of-oral-octreotide-using-ranipill-300992818.html?tc=eml_cleartime
  152. 152. 
    Mistilis MJ, Bommarius AS, Prausnitz MR 2015. Development of a thermostable microneedle patch for influenza vaccination. J. Pharm. Sci. 104:2740–49
    [Google Scholar]
  153. 153. 
    Maher S, Mrsny RJ, Brayden DJ 2016. Intestinal permeation enhancers for oral peptide delivery. Adv. Drug Deliv. Rev. 106:277–319
    [Google Scholar]
  154. 154. 
    Lamson NG, Berger A, Fein KC, Whitehead KA 2020. Anionic nanoparticles enable the oral delivery of proteins by enhancing intestinal permeability. Nat. Biomed. Eng. 4:184–96
    [Google Scholar]
  155. 155. 
    Buckley ST, Bækdal TA, Vegge A, Maarbjerg SJ, Pyke C et al. 2018. Transcellular stomach absorption of a derivatized glucagon-like peptide-1 receptor agonist. Sci. Transl. Med. 10:467eaar7047
    [Google Scholar]
  156. 156. 
    Tuvia S, Pelled D, Marom K, Salama P, Levin-Arama M et al. 2014. A novel suspension formulation enhances intestinal absorption of macromolecules via transient and reversible transport mechanisms. Pharm. Res. 31:82010–21
    [Google Scholar]
  157. 157. 
    Li W, Joshi MD, Singhania S, Ramsey KH, Murthy AK 2014. Peptide vaccine: progress and challenges. Vaccines 2:3515–36
    [Google Scholar]
  158. 158. 
    Nayak B, Panda AK, Ray P, Ray AR 2009. Formulation, characterization and evaluation of rotavirus encapsulated PLA and PLGA particles for oral vaccination. J. Microencapsul. 26:2154–65
    [Google Scholar]
  159. 159. 
    Slütter B, Plapied L, Fievez V, Alonso Sande M, des Rieux A et al. 2009. Mechanistic study of the adjuvant effect of biodegradable nanoparticles in mucosal vaccination. J. Control. Release 138:2113–21
    [Google Scholar]
  160. 160. 
    Sarti F, Perera G, Hintzen F, Kotti K, Karageorgiou V et al. 2011. In vivo evidence of oral vaccination with PLGA nanoparticles containing the immunostimulant monophosphoryl lipid A. Biomaterials 32:164052–57
    [Google Scholar]
  161. 161. 
    Filipović-Grčić J, Škalko-Basnet N, Jalšienjak I 2001. Mucoadhesive chitosan-coated liposomes: characteristics and stability. J. Microencapsul. 18:13–12
    [Google Scholar]
  162. 162. 
    Perrie Y, Obrenovic M, McCarthy D, Gregoriadis G 2002. Liposome (Lipodine™)-mediated DNA vaccination by the oral route. J. Liposome Res. 12:1–2185–97
    [Google Scholar]
  163. 163. 
    Kazanji M, Laurent F, Péry P 1994. Immune responses and protective effect in mice vaccinated orally with surface sporozoite protein of Eimeria falciformis in ISCOMs. Vaccine 12:9798–804
    [Google Scholar]
  164. 164. 
    Top FH Jr, Grossman RA, Bartelloni PJ, Segal HE, Dudding BA et al. 1971. Immunization with live types 7 and 4 adenovirus vaccines. I. Safety, infectivity, antigenicity, and potency of adenovirus type 7 vaccine in humans. J. Infect. Dis. 124:2148–54
    [Google Scholar]
  165. 165. 
    Lameiro MH, Malpique R, Silva AC, Alves PM, Melo E 2006. Encapsulation of adenoviral vectors into chitosan-bile salt microparticles for mucosal vaccination. J. Biotechnol. 126:2152–62
    [Google Scholar]
  166. 166. 
    Shata MT, Reitz MS Jr, DeVico AL, Lewis GK, Hone DM 2001. Mucosal and systemic HIV-1 Env-specific CD8+ T-cells develop after intragastric vaccination with a Salmonella Env DNA vaccine vector. Vaccine 20:3623–29
    [Google Scholar]
  167. 167. 
    Naito T, Kaneko Y, Kozbor D 2007. Oral vaccination with modified vaccinia virus Ankara attached covalently to TMPEG-modified cationic liposomes overcomes pre-existing poxvirus immunity from recombinant vaccinia immunization. J. Gen. Virol. 88:61–70
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-030320-092348
Loading
/content/journals/10.1146/annurev-pharmtox-030320-092348
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error