1932

Abstract

Although numerous environmental exposures have been suggested as triggers for preclinical autoimmunity, only a few have been confidently linked to autoimmune diseases. For disease-associated exposures, the lung is a common site where chronic exposure results in cellular toxicity, tissue damage, inflammation, and fibrosis. These features are exacerbated by exposures to particulate material, which hampers clearance and degradation, thus facilitating persistent inflammation. Coincident with exposure and resulting pathological processes is the posttranslational modification of self-antigens, which, in concert with the formation of tertiary lymphoid structures containing abundant B cells, is thought to promote the generation of autoantibodies that in some instances demonstrate major histocompatibility complex restriction. Under appropriate gene-environment interactions, these responses can have diagnostic specificity. Greater insight into the molecular and cellular requirements governing this process, especially those that distinguish preclinical autoimmunity from clinical autoimmunedisease, may facilitate determination of the significance of environmental exposures in human autoimmune disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-031320-111453
2021-01-06
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/61/1/annurev-pharmtox-031320-111453.html?itemId=/content/journals/10.1146/annurev-pharmtox-031320-111453&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Theofilopoulos AN, Kono DH, Baccala R 2017. The multiple pathways to autoimmunity. Nat. Immunol. 18:716–24
    [Google Scholar]
  2. 2. 
    Parks CG, Miller FW, Pollard KM, Selmi C, Germolec D et al. 2014. Expert panel workshop consensus statement on the role of the environment in the development of autoimmune disease. Int. J. Mol. Sci. 15:14269–97
    [Google Scholar]
  3. 3. 
    Pollard KM, Cauvi DM, Toomey CB, Hultman P, Kono DH 2019. Mercury-induced inflammation and autoimmunity. Biochim. Biophys. Acta Gen. Subj. 1863:12129299
    [Google Scholar]
  4. 4. 
    Crowe W, Allsopp PJ, Watson GE, Magee PJ, Strain JJ et al. 2017. Mercury as an environmental stimulus in the development of autoimmunity—a systematic review. Autoimmun. Rev. 16:72–80
    [Google Scholar]
  5. 5. 
    Germolec D, Kono DH, Pfau JC, Pollard KM 2012. Animal models used to examine the role of the environment in the development of autoimmune disease: findings from an NIEHS Expert Panel Workshop. J. Autoimmun. 39:285–93
    [Google Scholar]
  6. 6. 
    Celhar T, Fairhurst AM. 2017. Modelling clinical systemic lupus erythematosus: similarities, differences and success stories. Rheumatology 56:i88–99
    [Google Scholar]
  7. 7. 
    Du Y, Sanam S, Kate K, Mohan C 2015. Animal models of lupus and lupus nephritis. Curr. Pharm. Des. 21:2320–49
    [Google Scholar]
  8. 8. 
    Miller FW, Alfredsson L, Costenbader KH, Kamen DL, Nelson LM et al. 2012. Epidemiology of environmental exposures and human autoimmune diseases: findings from a National Institute of Environmental Health Sciences Expert Panel Workshop. J. Autoimmun. 39:259–71
    [Google Scholar]
  9. 9. 
    Gulati G, Brunner HI. 2018. Environmental triggers in systemic lupus erythematosus. Semin. Arthritis Rheum. 47:710–17
    [Google Scholar]
  10. 10. 
    Van Loveren H, Vos JG, Germolec D, Simeonova PP, Eijkemanns G, McMichael AJ 2001. Epidemiologic associations between occupational and environmental exposures and autoimmune disease: report of a meeting to explore current evidence and identify research needs. Int. J. Hyg. Environ. Health 203:483–95
    [Google Scholar]
  11. 11. 
    Parks CG, de Souza Espindola Santos A, Barbhaiya M, Costenbader KH 2017. Understanding the role of environmental factors in the development of systemic lupus erythematosus. Best Pract. Res. Clin. Rheumatol. 31:306–20
    [Google Scholar]
  12. 12. 
    Ercolini AM, Miller SD. 2009. The role of infections in autoimmune disease. Clin. Exp. Immunol. 155:1–15
    [Google Scholar]
  13. 13. 
    Getts DR, Chastain EM, Terry RL, Miller SD 2013. Virus infection, antiviral immunity, and autoimmunity. Immunol. Rev. 255:197–209
    [Google Scholar]
  14. 14. 
    Perez-De-Lis M, Retamozo S, Flores-Chavez A, Kostov B, Perez-Alvarez R et al. 2017. Autoimmune diseases induced by biological agents. A review of 12,731 cases (BIOGEAS Registry). Expert Opin. Drug Saf. 16:1255–71
    [Google Scholar]
  15. 15. 
    Rubin RL. 2015. Drug-induced lupus. Expert Opin. Drug Saf. 14:361–78
    [Google Scholar]
  16. 16. 
    Arbuckle MR, McClain MT, Rubertone MV, Scofield RH, Dennis GJ et al. 2003. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N. Engl. J. Med. 349:1526–33
    [Google Scholar]
  17. 17. 
    Lu R, Munroe ME, Guthridge JM, Bean KM, Fife DA et al. 2016. Dysregulation of innate and adaptive serum mediators precedes systemic lupus erythematosus classification and improves prognostic accuracy of autoantibodies. J. Autoimmun. 74:182–93
    [Google Scholar]
  18. 18. 
    Slight-Webb S, Lu R, Ritterhouse LL, Munroe ME, Maecker HT et al. 2016. Autoantibody-positive healthy individuals display unique immune profiles that may regulate autoimmunity. Arthritis Rheumatol 68:2492–502
    [Google Scholar]
  19. 19. 
    Sparks JA, Karlson EW. 2016. The roles of cigarette smoking and the lung in the transitions between phases of preclinical rheumatoid arthritis. Curr. Rheumatol. Rep. 18:15
    [Google Scholar]
  20. 20. 
    Barnes H, Goh NSL, Leong TL, Hoy R 2019. Silica-associated lung disease: an old-world exposure in modern industries. Respirology 24:1165–75
    [Google Scholar]
  21. 21. 
    Pollard KM. 2016. Silica, silicosis, and autoimmunity. Front. Immunol. 7:97
    [Google Scholar]
  22. 22. 
    Leung CC, Yu IT, Chen W 2012. Silicosis. Lancet 379:2008–18
    [Google Scholar]
  23. 23. 
    Caplan A. 1953. Certain unusual radiological appearances in the chest of coal-miners suffering from rheumatoid arthritis. Thorax 8:29–37
    [Google Scholar]
  24. 24. 
    Miall WE, Caplan A, Cochrane AL, Kilpatrick GS, Oldham PD 1953. An epidemiological study of rheumatoid arthritis associated with characteristic chest x-ray appearances in coal-workers. BMJ 2:1231–36
    [Google Scholar]
  25. 25. 
    Parks CG, Conrad K, Cooper GS 1999. Occupational exposure to crystalline silica and autoimmune disease. Environ. Health Perspect. 107:Suppl. 5793–802
    [Google Scholar]
  26. 26. 
    Brilland B, Beauvillain C, Mazurkiewicz G, Rucay P, Roquelaure Y et al. 2019. T cell dysregulation in non-silicotic silica exposed workers: a step toward immune tolerance breakdown. Front. Immunol. 10:2743
    [Google Scholar]
  27. 27. 
    Shtraichman O, Blanc PD, Ollech JE, Fridel L, Fuks L et al. 2015. Outbreak of autoimmune disease in silicosis linked to artificial stone. Occup. Med. 65:444–50
    [Google Scholar]
  28. 28. 
    Turner MT, Samuel SR, Silverstone EJ, Yates DH 2019. Silica exposure and connective tissue disease: an under-recognised association in three Australian artificial stone workers. Am. J. Respir. Crit. Care Med. 201:3378–80
    [Google Scholar]
  29. 29. 
    Conrad K, Mehlhorn J. 2000. Diagnostic and prognostic relevance of autoantibodies in uranium miners. Int. Arch. Allergy Immunol. 123:77–91
    [Google Scholar]
  30. 30. 
    Conrad K, Mehlhorn J, Luthke K, Dorner T, Frank KH 1996. Systemic lupus erythematosus after heavy exposure to quartz dust in uranium mines: clinical and serological characteristics. Lupus 5:62–69
    [Google Scholar]
  31. 31. 
    Wang W, Yu Y, Wu S, Sang L, Wang X et al. 2018. The rs2609255 polymorphism in the FAM13A gene is reproducibly associated with silicosis susceptibility in a Chinese population. Gene 661:196–201
    [Google Scholar]
  32. 32. 
    Zhang M, Peng LL, Ji XL, Yang HB, Zha RS, Gui GP 2019. Tumor necrosis factor gene polymorphisms are associated with silicosis: a systemic review and meta-analysis. Biosci. Rep. 39:BSR20181896
    [Google Scholar]
  33. 33. 
    Baka Z, Buzas E, Nagy G 2009. Rheumatoid arthritis and smoking: putting the pieces together. Arthritis Res. Ther. 11:238
    [Google Scholar]
  34. 34. 
    Bowes J, Barton A. 2008. Recent advances in the genetics of RA susceptibility. Rheumatology 47:399–402
    [Google Scholar]
  35. 35. 
    Lee YH, Bae SC, Song GG 2014. Gene-environmental interaction between smoking and shared epitope on the development of anti-cyclic citrullinated peptide antibodies in rheumatoid arthritis: a meta-analysis. Int. J. Rheum. Dis. 17:528–35
    [Google Scholar]
  36. 36. 
    Zhu X, Xie L, Qin H, Liang J, Yang Y et al. 2019. Interaction between IL-33 gene polymorphisms and current smoking with susceptibility to systemic lupus erythematosus. J. Immunol. Res. 2019:1547578
    [Google Scholar]
  37. 37. 
    Wolf BJ, Ramos PS, Hyer JM, Ramakrishnan V, Gilkeson GS et al. 2018. An analytic approach using candidate gene selection and logic forest to identify gene by environment interactions (G × E) for systemic lupus erythematosus in African Americans. Genes 9:10496
    [Google Scholar]
  38. 38. 
    Kiyohara C, Washio M, Horiuchi T, Tada Y, Asami T et al. 2009. Cigarette smoking, N-acetyltransferase 2 polymorphisms and systemic lupus erythematosus in a Japanese population. Lupus 18:630–38
    [Google Scholar]
  39. 39. 
    Rubio-Rivas M, Moreno R, Corbella X 2017. Occupational and environmental scleroderma. Systematic review and meta-analysis. Clin. Rheumatol. 36:569–82
    [Google Scholar]
  40. 40. 
    Zhao JH, Duan Y, Wang YJ, Huang XL, Yang GJ, Wang J 2016. The influence of different solvents on systemic sclerosis: an updated meta-analysis of 14 case-control studies. J. Clin. Rheumatol. 22:253–59
    [Google Scholar]
  41. 41. 
    Walecka I, Roszkiewicz M, Malewska A 2018. Potential occupational and environmental factors in SSc onset. Ann. Agric. Environ. Med. 25:596–601
    [Google Scholar]
  42. 42. 
    Ingegnoli F, Ughi N, Mihai C 2018. Update on the epidemiology, risk factors, and disease outcomes of systemic sclerosis. Best Pract. Res. Clin. Rheumatol. 32:223–40
    [Google Scholar]
  43. 43. 
    De Decker E, Vanthuyne M, Blockmans D, Houssiau F, Lenaerts J et al. 2018. High prevalence of occupational exposure to solvents or silica in male systemic sclerosis patients: a Belgian cohort analysis. Clin. Rheumatol. 37:1977–82
    [Google Scholar]
  44. 44. 
    Marie I, Menard JF, Duval-Modeste AB, Joly P, Dominique S et al. 2015. Association of occupational exposure with features of systemic sclerosis. J. Am. Acad. Dermatol. 72:456–64
    [Google Scholar]
  45. 45. 
    Barragan-Martinez C, Speck-Hernandez CA, Montoya-Ortiz G, Mantilla RD, Anaya JM, Rojas-Villarraga A 2012. Organic solvents as risk factor for autoimmune diseases: a systematic review and meta-analysis. PLOS ONE 7:e51506
    [Google Scholar]
  46. 46. 
    Bell JS, DeLuca GC. 2018. Genes, smoking, and organic solvent exposure: an alarming cocktail for MS risk. Neurology 91:199–200
    [Google Scholar]
  47. 47. 
    Hedstrom AK, Hossjer O, Katsoulis M, Kockum I, Olsson T, Alfredsson L 2018. Organic solvents and MS susceptibility: interaction with MS risk HLA genes. Neurology 91:e455–62
    [Google Scholar]
  48. 48. 
    Gibb H, O'Leary KG. 2014. Mercury exposure and health impacts among individuals in the artisanal and small-scale gold mining community: a comprehensive review. Environ. Health Perspect. 122:667–72
    [Google Scholar]
  49. 49. 
    Nyland JF, Fillion M, Barbosa F Jr., Shirley DL, Chine C et al. 2011. Biomarkers of methylmercury exposure immunotoxicity among fish consumers in Amazonian Brazil. Environ. Health Perspect. 119:1733–38
    [Google Scholar]
  50. 50. 
    Gardner RM, Nyland JF, Silva IA, Ventura AM, de Souza JM, Silbergeld EK 2010. Mercury exposure, serum antinuclear/antinucleolar antibodies, and serum cytokine levels in mining populations in Amazonian Brazil: a cross-sectional study. Environ. Res. 110:345–54
    [Google Scholar]
  51. 51. 
    Monastero RN, Karimi R, Nyland JF, Harrington J, Levine K, Meliker JR 2017. Mercury exposure, serum antinuclear antibodies, and serum cytokine levels in the Long Island Study of Seafood Consumption: a cross-sectional study in NY, USA. Environ. Res. 156:334–40
    [Google Scholar]
  52. 52. 
    Sporn TA. 2011. Mineralogy of asbestos. Recent Results Cancer Res 189:1–11
    [Google Scholar]
  53. 53. 
    Solbes E, Harper RW. 2018. Biological responses to asbestos inhalation and pathogenesis of asbestos-related benign and malignant disease. J. Investig. Med. 66:721–27
    [Google Scholar]
  54. 54. 
    Pfau JC. 2018. Immunotoxicity of asbestos. Curr. Opin. Toxicol. 10:1–7
    [Google Scholar]
  55. 55. 
    Bunderson-Schelvan M, Pfau JC, Crouch R, Holian A 2011. Nonpulmonary outcomes of asbestos exposure. J. Toxicol. Environ. Health B Crit. Rev. 14:122–52
    [Google Scholar]
  56. 56. 
    Pfau JC, Serve KM, Noonan CW 2014. Autoimmunity and asbestos exposure. Autoimmune Dis 2014:782045
    [Google Scholar]
  57. 57. 
    Diegel R, Black B, Pfau JC, McNew T, Noonan C, Flores R 2018. Case series: rheumatological manifestations attributed to exposure to Libby Asbestiform Amphiboles. J. Toxicol. Environ. Health A 81:734–47
    [Google Scholar]
  58. 58. 
    Pfau JC, Sentissi JJ, Weller G, Putnam EA 2005. Assessment of autoimmune responses associated with asbestos exposure in Libby, Montana, USA. Environ. Health Perspect. 113:25–30
    [Google Scholar]
  59. 59. 
    Marchand LS, St-Hilaire S, Putnam EA, Serve KM, Pfau JC 2012. Mesothelial cell and anti-nuclear autoantibodies associated with pleural abnormalities in an asbestos exposed population of Libby MT. Toxicol. Lett. 208:168–73
    [Google Scholar]
  60. 60. 
    Reid A, Franklin P, de Klerk N, Creaney J, Brims F et al. 2018. Autoimmune antibodies and asbestos exposure: evidence from Wittenoom, Western Australia. Am. J. Ind. Med. 61:615–20
    [Google Scholar]
  61. 61. 
    Ledda C, Caltabiano R, Loreto C, Cina D, Senia P et al. 2018. Prevalence of anti-nuclear autoantibodies in subjects exposed to natural asbestiform fibers: a cross-sectional study. J. Immunotoxicol. 15:24–28
    [Google Scholar]
  62. 62. 
    Noonan CW, Pfau JC, Larson TC, Spence MR 2006. Nested case-control study of autoimmune disease in an asbestos-exposed population. Environ. Health Perspect. 114:1243–47
    [Google Scholar]
  63. 63. 
    Larson TC, Williamson L, Antao VC 2020. Follow-up of the Libby, Montana screening cohort: a 17-year mortality study. J. Occup. Environ. Med. 62:e1–6
    [Google Scholar]
  64. 64. 
    Rubin RL. 2005. Drug-induced lupus. Toxicology 209:135–47
    [Google Scholar]
  65. 65. 
    Pollard KM. 2015. Environment, autoantibodies, and autoimmunity. Front. Immunol. 6:60
    [Google Scholar]
  66. 66. 
    Pollard KM, Kono DH. 2013. Requirements for innate immune pathways in environmentally induced autoimmunity. BMC Med 11:100
    [Google Scholar]
  67. 67. 
    Pollard KM. 2012. Gender differences in autoimmunity associated with exposure to environmental factors. J. Autoimmun. 38:J177–86
    [Google Scholar]
  68. 68. 
    Pollard KM, Hultman P, Kono DH 2010. Toxicology of autoimmune diseases. Chem. Res. Toxicol. 23:455–66
    [Google Scholar]
  69. 69. 
    Gualtierotti R, Biggioggero M, Penatti AE, Meroni PL 2010. Updating on the pathogenesis of systemic lupus erythematosus. Autoimmun. Rev. 10:3–7
    [Google Scholar]
  70. 70. 
    Miller FW, Pollard KM, Parks CG, Germolec DR, Leung PS et al. 2012. Criteria for environmentally associated autoimmune diseases. J. Autoimmun. 39:253–58
    [Google Scholar]
  71. 71. 
    Pollard KM, Christy JM, Cauvi DM, Kono DH 2018. Environmental xenobiotic exposure and autoimmunity. Curr. Opin. Toxicol. 10:15–22
    [Google Scholar]
  72. 72. 
    Holers VM, Demoruelle MK, Kuhn KA, Buckner JH, Robinson WH et al. 2018. Rheumatoid arthritis and the mucosal origins hypothesis: Protection turns to destruction. Nat. Rev. Rheumatol. 14:542–57
    [Google Scholar]
  73. 73. 
    Pentony P, Duquenne L, Dutton K, Mankia K, Gul H et al. 2017. The initiation of autoimmunity at epithelial surfaces: a focus on rheumatoid arthritis and systemic lupus erythematosus. Discov. Med. 24:191–200
    [Google Scholar]
  74. 74. 
    Wong J, Magun BE, Wood LJ 2016. Lung inflammation caused by inhaled toxicants: a review. Int. J. Chron. Obstruct. Pulmon. Dis. 11:1391–401
    [Google Scholar]
  75. 75. 
    Franklin BS, Mangan MS, Latz E 2016. Crystal formation in inflammation. Annu. Rev. Immunol. 34:173–202
    [Google Scholar]
  76. 76. 
    Brusselle GG, Joos GF, Bracke KR 2011. New insights into the immunology of chronic obstructive pulmonary disease. Lancet 378:1015–26
    [Google Scholar]
  77. 77. 
    Pinkerton JW, Kim RY, Robertson AAB, Hirota JA, Wood LG et al. 2017. Inflammasomes in the lung. Mol. Immunol. 86:44–55
    [Google Scholar]
  78. 78. 
    Sayan M, Mossman BT. 2016. The NLRP3 inflammasome in pathogenic particle and fibre-associated lung inflammation and diseases. Part. Fibre Toxicol. 13:51
    [Google Scholar]
  79. 79. 
    Moore BB, Lawson WE, Oury TD, Sisson TH, Raghavendran K, Hogaboam CM 2013. Animal models of fibrotic lung disease. Am. J. Respir. Cell Mol. Biol. 49:167–79
    [Google Scholar]
  80. 80. 
    Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J 2008. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320:674–77
    [Google Scholar]
  81. 81. 
    Dinarello CA. 2018. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol. Rev. 281:8–27
    [Google Scholar]
  82. 82. 
    Rabolli V, Badissi AA, Devosse R, Uwambayinema F, Yakoub Y et al. 2014. The alarmin IL-1α is a master cytokine in acute lung inflammation induced by silica micro- and nanoparticles. Part. Fibre Toxicol. 11:69
    [Google Scholar]
  83. 83. 
    Toomey CB, Cauvi DM, Hamel JC, Ramirez AE, Pollard KM 2014. Cathepsin B regulates the appearance and severity of mercury-induced inflammation and autoimmunity. Toxicol. Sci. 142:339–49
    [Google Scholar]
  84. 84. 
    Wang H, Wang G, Ansari GAS, Khan MF 2018. Trichloroethene metabolite dichloroacetyl chloride induces apoptosis and compromises phagocytosis in Kupffer cells: activation of inflammasome and MAPKs. PLOS ONE 13:e0210200
    [Google Scholar]
  85. 85. 
    Strzelak A, Ratajczak A, Adamiec A, Feleszko W 2018. Tobacco smoke induces and alters immune responses in the lung triggering inflammation, allergy, asthma and other lung diseases: a mechanistic review. Int. J. Environ. Res. Public Health 15:51033
    [Google Scholar]
  86. 86. 
    Gupta S, Kaplan MJ. 2016. The role of neutrophils and NETosis in autoimmune and renal diseases. Nat. Rev. Nephrol. 12:402–13
    [Google Scholar]
  87. 87. 
    Li Y, Cao X, Liu Y, Zhao Y, Herrmann M 2018. Neutrophil extracellular traps formation and aggregation orchestrate induction and resolution of sterile crystal-mediated inflammation. Front. Immunol. 9:1559
    [Google Scholar]
  88. 88. 
    Wong SL, Wagner DD. 2018. Peptidylarginine deiminase 4: a nuclear button triggering neutrophil extracellular traps in inflammatory diseases and aging. FASEB J 32:12fj201800691R
    [Google Scholar]
  89. 89. 
    Polverino F, Seys LJ, Bracke KR, Owen CA 2016. B cells in chronic obstructive pulmonary disease: moving to center stage. Am. J. Physiol. Lung. Cell Mol. Physiol. 311:L687–95
    [Google Scholar]
  90. 90. 
    Anderson R, Meyer PW, Ally MM, Tikly M 2016. Smoking and air pollution as pro-inflammatory triggers for the development of rheumatoid arthritis. Nicotine Tob. Res. 18:1556–65
    [Google Scholar]
  91. 91. 
    Caramori G, Ruggeri P, Di Stefano A, Mumby S, Girbino G et al. 2018. Autoimmunity and COPD: clinical implications. Chest 153:1424–31
    [Google Scholar]
  92. 92. 
    Mohamed BM, Verma NK, Davies AM, McGowan A, Crosbie-Staunton K et al. 2012. Citrullination of proteins: a common post-translational modification pathway induced by different nanoparticles in vitro and in vivo. Nanomedicine 7:1181–95
    [Google Scholar]
  93. 93. 
    Fubini B, Hubbard A. 2003. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. Free Radic. Biol. Med. 34:1507–16
    [Google Scholar]
  94. 94. 
    Castranova V, Vallyathan V. 2000. Silicosis and coal workers’ pneumoconiosis. Environ. Health Perspect. 108:Suppl. 4675–84
    [Google Scholar]
  95. 95. 
    Petrache Voicu SN, Dinu D, Sima C, Hermenean A, Ardelean A et al. 2015. Silica nanoparticles induce oxidative stress and autophagy but not apoptosis in the MRC-5 cell line. Int. J. Mol. Sci. 16:29398–416
    [Google Scholar]
  96. 96. 
    Khan MF, Wang G. 2018. Environmental agents, oxidative stress and autoimmunity. Curr. Opin. Toxicol. 7:22–27
    [Google Scholar]
  97. 97. 
    Boatti L, Rapallo F, Viarengo A, Marsano F 2017. Toxic effects of mercury on the cell nucleus of Dictyostelium discoideum. Environ. Toxicol 32:417–25
    [Google Scholar]
  98. 98. 
    Mohamed BM, Boyle NT, Schinwald A, Murer B, Ward R et al. 2018. Induction of protein citrullination and auto-antibodies production in murine exposed to nickel nanomaterials. Sci. Rep. 8:679
    [Google Scholar]
  99. 99. 
    Ogasawara Y, Ishii K. 2010. Exposure to chrysotile asbestos causes carbonylation of glucose 6-phosphate dehydrogenase through a reaction with lipid peroxidation products in human lung epithelial cells. Toxicol. Lett. 195:1–8
    [Google Scholar]
  100. 100. 
    Carubbi F, Alunno A, Gerli R, Giacomelli R 2019. Post-translational modifications of proteins: novel insights in the autoimmune response in rheumatoid arthritis. Cells 8:7657
    [Google Scholar]
  101. 101. 
    Wang G, Pierangeli SS, Papalardo E, Ansari GA, Khan MF 2010. Markers of oxidative and nitrosative stress in systemic lupus erythematosus: correlation with disease activity. Arthritis Rheum 62:2064–72
    [Google Scholar]
  102. 102. 
    Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S et al. 2019. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25:1822–32
    [Google Scholar]
  103. 103. 
    Bombardieri M, Lewis M, Pitzalis C 2017. Ectopic lymphoid neogenesis in rheumatic autoimmune diseases. Nat. Rev. Rheumatol. 13:141–54
    [Google Scholar]
  104. 104. 
    Corsiero E, Nerviani A, Bombardieri M, Pitzalis C 2016. Ectopic lymphoid structures: powerhouse of autoimmunity. Front. Immunol. 7:430
    [Google Scholar]
  105. 105. 
    Yin C, Mohanta S, Maffia P, Habenicht AJ 2017. Tertiary lymphoid organs (TLOs): powerhouses of disease immunity. Front. Immunol. 8:228
    [Google Scholar]
  106. 106. 
    Jones GW, Jones SA. 2016. Ectopic lymphoid follicles: inducible centres for generating antigen-specific immune responses within tissues. Immunology 147:141–51
    [Google Scholar]
  107. 107. 
    Vu Van D, Beier KC, Pietzke LJ, Al Baz MS, Feist RK et al. 2016. Local T/B cooperation in inflamed tissues is supported by T follicular helper-like cells. Nat. Commun. 7:10875
    [Google Scholar]
  108. 108. 
    Pitzalis C, Jones GW, Bombardieri M, Jones SA 2014. Ectopic lymphoid-like structures in infection, cancer and autoimmunity. Nat. Rev. Immunol. 14:447–62
    [Google Scholar]
  109. 109. 
    Pipi E, Nayar S, Gardner DH, Colafrancesco S, Smith C, Barone F 2018. Tertiary lymphoid structures: Autoimmunity goes local. Front. Immunol. 9:1952
    [Google Scholar]
  110. 110. 
    Corsiero E, Delvecchio FR, Bombardieri M, Pitzalis C 2019. B cells in the formation of tertiary lymphoid organs in autoimmunity, transplantation and tumorigenesis. Curr. Opin. Immunol. 57:46–52
    [Google Scholar]
  111. 111. 
    Kawasaki H. 2015. A mechanistic review of silica-induced inhalation toxicity. Inhal. Toxicol. 27:363–77
    [Google Scholar]
  112. 112. 
    Foster MH, Ord JR, Zhao EJ, Birukova A, Fee L et al. 2019. Silica exposure differentially modulates autoimmunity in lupus strains and autoantibody transgenic mice. Front. Immunol. 10:2336
    [Google Scholar]
  113. 113. 
    Mayeux JM, Escalante GM, Christy JM, Pawar RD, Kono DH, Pollard KM 2018. Silicosis and silica-induced autoimmunity in the diversity outbred mouse. Front. Immunol. 9:874
    [Google Scholar]
  114. 114. 
    Bates MA, Brandenberger C, Langohr I, Kumagai K, Harkema JR et al. 2015. Silica triggers inflammation and ectopic lymphoid neogenesis in the lungs in parallel with accelerated onset of systemic autoimmunity and glomerulonephritis in the lupus-prone NZBWF1 mouse. PLOS ONE 10:e0125481
    [Google Scholar]
  115. 115. 
    Bates MA, Akbari P, Gilley KN, Wagner JG, Li N et al. 2018. Dietary docosahexaenoic acid prevents silica-induced development of pulmonary ectopic germinal centers and glomerulonephritis in the lupus-prone NZBWF1 mouse. Front. Immunol. 9:2002
    [Google Scholar]
  116. 116. 
    Larsson A, Warfvinge G. 1998. Immunohistochemistry of ‘tertiary lymphoid follicles’ in oral amalgam-associated lichenoid lesions. Oral Dis 4:187–93
    [Google Scholar]
  117. 117. 
    Cauvi DM, Cauvi G, Toomey CB, Jacquinet E, Pollard KM 2017. Interplay between IFN-γ and IL-6 impacts the inflammatory response and expression of interferon-regulated genes in environmental-induced autoimmunity. Toxicol. Sci. 158:227–39
    [Google Scholar]
  118. 118. 
    Rom WN, Travis WD. 1992. Lymphocyte-macrophage alveolitis in nonsmoking individuals occupationally exposed to asbestos. Chest 101:779–86
    [Google Scholar]
  119. 119. 
    Green FH, Vallyathan V, Hahn FF 2007. Comparative pathology of environmental lung disease: an overview. Toxicol. Pathol. 35:136–47
    [Google Scholar]
  120. 120. 
    Huaux F. 2007. New developments in the understanding of immunology in silicosis. Curr. Opin. Allergy Clin. Immunol. 7:168–73
    [Google Scholar]
  121. 121. 
    Hoyne GF, Elliott H, Mutsaers SE, Prele CM 2017. Idiopathic pulmonary fibrosis and a role for autoimmunity. Immunol. Cell Biol. 95:577–83
    [Google Scholar]
  122. 122. 
    Kirkham PA, Caramori G, Casolari P, Papi AA, Edwards M et al. 2011. Oxidative stress-induced antibodies to carbonyl-modified protein correlate with severity of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 184:796–802
    [Google Scholar]
  123. 123. 
    Hensvold AH, Magnusson PK, Joshua V, Hansson M, Israelsson L et al. 2015. Environmental and genetic factors in the development of anticitrullinated protein antibodies (ACPAs) and ACPA-positive rheumatoid arthritis: an epidemiological investigation in twins. Ann. Rheum. Dis. 74:375–80
    [Google Scholar]
  124. 124. 
    Stolt P, Yahya A, Bengtsson C, Kallberg H, Ronnelid J et al. 2010. Silica exposure among male current smokers is associated with a high risk of developing ACPA-positive rheumatoid arthritis. Ann. Rheum. Dis. 69:1072–76
    [Google Scholar]
  125. 125. 
    Yahya A, Bengtsson C, Larsson P, Too CL, Mustafa AN et al. 2013. Silica exposure is associated with an increased risk of developing ACPA-positive rheumatoid arthritis in an Asian population: evidence from the Malaysian MyEIRA case-control study. Mod. Rheumatol. 24:2271–74
    [Google Scholar]
  126. 126. 
    Cooper GS, Makris SL, Nietert PJ, Jinot J 2009. Evidence of autoimmune-related effects of trichloroethylene exposure from studies in mice and humans. Environ. Health Perspect. 117:696–702
    [Google Scholar]
  127. 127. 
    Nietert PJ, Sutherland SE, Silver RM, Pandey JP, Knapp RG et al. 1998. Is occupational organic solvent exposure a risk factor for scleroderma. ? Arthritis Rheum 41:1111–18
    [Google Scholar]
  128. 128. 
    Salazar KD, Copeland CB, Luebke RW 2012. Effects of Libby amphibole asbestos exposure on two models of arthritis in the Lewis rat. J. Toxicol. Environ. Health A 75:351–65
    [Google Scholar]
  129. 129. 
    Liu G, Cheresh P, Kamp DW 2013. Molecular basis of asbestos-induced lung disease. Annu. Rev. Pathol. 8:161–87
    [Google Scholar]
  130. 130. 
    Kurien BT, Scofield RH. 2008. Autoimmunity and oxidatively modified autoantigens. Autoimmun. Rev. 7:567–73
    [Google Scholar]
  131. 131. 
    Matzaraki V, Kumar V, Wijmenga C, Zhernakova A 2017. The MHC locus and genetic susceptibility to autoimmune and infectious diseases. Genome Biol 18:76
    [Google Scholar]
  132. 132. 
    Sharif R, Fritzler MJ, Mayes MD, Gonzalez EB, McNearney TA et al. 2011. Anti-fibrillarin antibody in African American patients with systemic sclerosis: immunogenetics, clinical features, and survival analysis. J. Rheumatol. 38:1622–30
    [Google Scholar]
  133. 133. 
    Arnett FC, Fritzler MJ, Ahn C, Holian A 2000. Urinary mercury levels in patients with autoantibodies to U3-RNP (fibrillarin). J. Rheumatol. 27:405–10
    [Google Scholar]
  134. 134. 
    Baur X, Rihs HP, Altmeyer P, Degens P, Conrad K et al. 1996. Systemic sclerosis in German uranium miners under special consideration of autoantibody subsets and HLA class II alleles. Respir. Int. Rev. Thorac. Dis. 63:368–75
    [Google Scholar]
  135. 135. 
    Ueki A, Isozaki Y, Tomokuni A, Ueki H, Kusaka M et al. 2001. Different distribution of HLA class II alleles in anti-topoisomerase I autoantibody responders between silicosis and systemic sclerosis patients, with a common distinct amino acid sequence in the HLA-DQB1 domain. Immunobiology 204:458–65
    [Google Scholar]
  136. 136. 
    Fert-Bober J, Darrah E, Andrade F 2020. Insights into the study and origin of the citrullinome in rheumatoid arthritis. Immunol. Rev. 294:133–47
    [Google Scholar]
  137. 137. 
    Demoruelle MK, Wilson TM, Deane KD 2020. Lung inflammation in the pathogenesis of rheumatoid arthritis. Immunol. Rev. 294:124–32
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-031320-111453
Loading
/content/journals/10.1146/annurev-pharmtox-031320-111453
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error