1932

Abstract

Calcium (Ca2+) release–activated Ca2+ (CRAC) channels are a major route for Ca2+ entry in eukaryotic cells. These channels are store operated, opening when the endoplasmic reticulum (ER) is depleted of Ca2+, and are composed of the ER Ca2+ sensor protein STIM and the pore-forming plasma membrane subunit Orai. Recent years have heralded major strides in our understanding of the structure, gating, and function of the channels. Loss-of-function and gain-of-function mutants combined with RNAi knockdown strategies have revealed important roles for the channel in numerous human diseases, making the channel a clinically relevant target. Drugs targeting the channels generally lack specificity or exhibit poor efficacy in animal models. However, the landscape is changing, and CRAC channel blockers are now entering clinical trials. Here, we describe the key molecular and biological features of CRAC channels, consider various diseases associated with aberrant channel activity, and discuss targeting of the channels from a therapeutic perspective.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-031620-105135
2021-01-06
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/61/1/annurev-pharmtox-031620-105135.html?itemId=/content/journals/10.1146/annurev-pharmtox-031620-105135&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Putney JWJ. 1986. A model for receptor-regulated calcium entry. Cell Calcium 7:1–12
    [Google Scholar]
  2. 2. 
    Putney JWJ. 1990. Capacitative calcium entry revisited. Cell Calcium 11:611–24
    [Google Scholar]
  3. 3. 
    Thastrup O, Dawson AP, Scharff O, Foder B, Cullen PJ et al. 1989. Thapsigargin, a novel molecular probe for studying intracellular calcium release and storage. Agents Actions 27:17–23
    [Google Scholar]
  4. 4. 
    Takemura H, Hughes AR, Thastrup O, Putney JWJ 1989. Activation of calcium entry by the tumour promoter thapsigargin in parotid acinar cells. Evidence that an intracellular calcium pool and not an inositol phosphate regulates calcium fluxes at the plasma membrane. J. Biol. Chem. 264:12266–71
    [Google Scholar]
  5. 5. 
    Hoth M, Penner R. 1992. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355:353–56
    [Google Scholar]
  6. 6. 
    Hofer A, Fasolato C, Pozzan T 1998. Capacitative Ca2+ entry is closely linked to the filling state of internal Ca2+ stores: a study using simultaneous measurements of ICRAC and intraluminal [Ca2+]. J. Cell Biol. 140:325–34
    [Google Scholar]
  7. 7. 
    Parekh AB, Penner R. 1997. Store-operated calcium influx. Physiol. Rev. 77:901–30
    [Google Scholar]
  8. 8. 
    Prakriya M, Lewis RS. 2015. Store-operated calcium channels. Physiol. Rev. 95:1383–436
    [Google Scholar]
  9. 9. 
    Prakriya M, Lewis RS. 2002. Separation and characterization of currents through store-operated CRAC channels and Mg2+-inhibited cation (MIC) channels. J. Gen. Physiol. 119:487–508
    [Google Scholar]
  10. 10. 
    Zweifach A, Lewis RS. 1995. Rapid inactivation of depletion-activated calcium current (ICRAC) due to local calcium feedback. J. Gen. Physiol. 105:209–26
    [Google Scholar]
  11. 11. 
    Fierro L, Parekh AB. 1999. Fast calcium-dependent inactivation of calcium release-activated calcium current (CRAC) in RBL-1 cells. J. Membr. Biol. 168:9–17
    [Google Scholar]
  12. 12. 
    Zweifach A, Lewis RS. 1995. Slow calcium-dependent inactivation of depletion-activated calcium current. J. Biol. Chem. 270:14445–51
    [Google Scholar]
  13. 13. 
    Parekh AB. 1998. Slow feedback inhibition of calcium release-activated calcium current by calcium entry. J. Biol. Chem. 273:14925–32
    [Google Scholar]
  14. 14. 
    Hoth M, Button D, Lewis RS 2000. Mitochondrial control of calcium channel gating: a mechanism for sustained signaling and transcriptional activation in T lymphocytes. PNAS 97:10607–12
    [Google Scholar]
  15. 15. 
    Gilabert J-A, Parekh AB. 2000. Respiring mitochondria determine the pattern of activation and inactivation of the store-operated Ca2+ current ICRAC. EMBO J 19:6401–7
    [Google Scholar]
  16. 16. 
    Palty R, Raveh A, Kaminsky I, Meller R, Reuveny E 2012. SARAF inactivates the store operated calcium entry machinery to prevent excess calcium refilling. Cell 149:425–38
    [Google Scholar]
  17. 17. 
    Parekh AB, Putney JWJ. 2005. Store-operated calcium channels. Physiol. Rev. 85:757–810
    [Google Scholar]
  18. 18. 
    Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M et al. 2005. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J. Cell Biol. 169:435–45
    [Google Scholar]
  19. 19. 
    Liou J, Kim ML, Heo WD, Jones JT, Myers JW et al. 2005. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr. Biol. 15:1235–41
    [Google Scholar]
  20. 20. 
    Soboloff J, Rothberg BS, Madesh M, Gill DL 2012. STIM proteins: dynamic calcium signal transducers. Nat. Rev. Mol. Cell Biol. 13:549–65
    [Google Scholar]
  21. 21. 
    Covington ED, Wu MM, Lewis RS 2010. Essential role for the CRAC activation domain in store-dependent oligomerization of STIM1. Mol. Biol. Cell 21:1897–907
    [Google Scholar]
  22. 22. 
    Muik M, Fahrner M, Derler I, Schindl R, Bergsmann J et al. 2009. A cytosolic homomerization and a modulatory domain within STIM1 C terminus determine coupling to ORAI1 channels. J. Biol. Chem. 284:8421–26
    [Google Scholar]
  23. 23. 
    Zhou Y, Srinivasan P, Razavi S, Seymour S, Meraner P et al. 2010. Initial activation of STIM1, the regulator of store-operated calcium entry. Nat. Struct. Mol. Biol. 20:973–81
    [Google Scholar]
  24. 24. 
    Yang X, Jin H, Cai X, Li S, Shen Y 2012. Structural and mechanistic insights into the activation of Stromal interaction molecule 1 (STIM1). PNAS 109:5657–62
    [Google Scholar]
  25. 25. 
    Stathopulos PB, Li GY, Plevin MJ, Ames JB, Ikura M 2006. Stored Ca2+ depletion-induced oligomerization of stromal interaction molecule 1 (STIM1) via the EF-SAM region: an initiation mechanism for capacitive Ca2+ entry. J. Biol. Chem. 281:35855–62
    [Google Scholar]
  26. 26. 
    Liou J, Fivaz M, Inoue T, Meyer T 2007. Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after calcium store depletion. PNAS 104:9301–6
    [Google Scholar]
  27. 27. 
    Muik M, Frischauf I, Derler I, Fahrner M, Bergsmann J et al. 2008. Dynamic coupling of the putative coiled-coil domain of ORAI1 with STIM1 mediates ORAI1 channel activation. J. Biol. Chem. 283:8014–22
    [Google Scholar]
  28. 28. 
    Li Z, Lu J, Xu P, Xie X, Chen L, Xu T 2007. Mapping the interacting domains of STIM1 and Orai1 in Ca2+ release-activated Ca2+ channel activation. J. Biol. Chem. 282:29448–56
    [Google Scholar]
  29. 29. 
    Korzeniowski MK, Manjarrés IM, Varnai P, Balla T 2010. Activation of STIM1-Orai1 involves an intramolecular switching mechanism. Sci. Signal. 3:ra82
    [Google Scholar]
  30. 30. 
    Muik M, Fahrner M, Schindl R, Stathopulos P, Frischauf I et al. 2011. STIM1 couples to ORAI1 via an intramolecular transition into an extended conformation. EMBO J 30:1678–89
    [Google Scholar]
  31. 31. 
    Wu MM, Buchanan J, Luik RM, Lewis RS 2006. Ca store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. J. Cell Biol. 174:803–13
    [Google Scholar]
  32. 32. 
    Lur G, Haynes LP, Prior IA, Gerasimenko OV, Feske S et al. 2009. Ribosome-free terminals of rough ER allow formation of STIM1 puncta and segregation of STIM1 from IP3 receptors. Curr. Biol. 19:1648–53
    [Google Scholar]
  33. 33. 
    Zheng L, Stathopulos PB, Li GY, Ikura M 2008. Biophysical characterization of the EF-hand and SAM domain containing Ca2+ sensory region of STIM1 and STIM2. Biochem. Biophys. Res. Commun. 369:240–46
    [Google Scholar]
  34. 34. 
    Brandman O, Liou J, Park WS, Meyer T 2007. STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum calcium levels. Cell 131:1327–39
    [Google Scholar]
  35. 35. 
    Alonso MT, Barrero MJ, Carnicero E, Montero M, Garcia-Sancho J, Alvarez J 1998. Functional measurements of [Ca2+] in the endoplasmic reticulum using a herpes virus to deliver targeted aequorin. Cell Calcium 24:87–96
    [Google Scholar]
  36. 36. 
    Hofer AM, Schulz I. 1998. Quantification of intraluminal free [Ca] in the agonist-sensitive internal calcium store using compartmentalized fluorescent indicators: some considerations. Cell Calcium 20:235–42
    [Google Scholar]
  37. 37. 
    Luik RM, Wang B, Prakriya M, Wu MM, Lewis RS 2008. Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation. Nature 454:538–42
    [Google Scholar]
  38. 38. 
    Parekh AB, Fleig A, Penner R 1997. The store-operated calcium current ICRAC: nonlinear activation by InsP3 and dissociation from calcium release. Cell 89:973–80
    [Google Scholar]
  39. 39. 
    Fierro L, Parekh AB. 2000. Substantial depletion of the intracellular Ca2+ stores is required for macroscopic activation of the Ca2+ release-activated Ca2+ current in rat basophilic leukaemia cells. J. Physiol. 522:247–57
    [Google Scholar]
  40. 40. 
    Oh-hora M, Yamashita M, Hogan PG, Sharma S, Lamperti E et al. 2008. Dual functions for the endoplasmic reticulum calcium sensors for STIM1 and STIM2 in T cell activation and tolerance. Nat. Immunol. 9:432–42
    [Google Scholar]
  41. 41. 
    Bird GS, Hwang SY, Smyth JT, Fukushima M, Boyles RR, Putney JWJ 2009. STIM1 is a calcium sensor specialised for digital signalling. Curr. Biol. 19:1724–29
    [Google Scholar]
  42. 42. 
    Kar P, Bakowski D, Di Capite J, Nelson C, Parekh AB 2012. Different agonists recruit different stromal interaction molecule proteins to support cytoplasmic Ca2+ oscillations and gene expression. PNAS 109:6969–74
    [Google Scholar]
  43. 43. 
    Ong HL, Brito de Souza L, Zheng C, Cheng KT, Liu X et al. 2015. STIM2 enhances receptor-stimulated Ca2+ signaling by promoting recruitment of STIM1 to the endoplasmic reticulum–plasma membrane junctions. Sci. Signal. 8:ra3
    [Google Scholar]
  44. 44. 
    Williams RT, Manji SS, Parker NJ, Hancock MS, Van Stekelenburg L et al. 2001. Identification and characterization of the STIM (stromal interaction molecule) gene family: coding for a novel class of transmembrane proteins. Biochem. J. 357:673–85
    [Google Scholar]
  45. 45. 
    Darbellay B, Arnaudeau S, Bader CR, Konig S, Bernheim L 2011. STIM1L is a new actin-binding splice variant involved in fast repetitive Ca2+ release. J. Cell Biol. 194:335–46
    [Google Scholar]
  46. 46. 
    Rana A, Yen M, Sadaghiani AM, Malmersjö S, Park CY et al. 2015. Alternative splicing converts STIM2 from an activator to an inhibitor of store-operated calcium channels. J. Cell Biol. 209:653–66
    [Google Scholar]
  47. 47. 
    Miederer AM, Alansary D, Schwär G, Lee PH, Jung M et al. 2015. A STIM2 splice variant negatively regulates store-operated calcium entry. Nat. Commun. 6:6899
    [Google Scholar]
  48. 48. 
    Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel S-H et al. 2006. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441:179–85
    [Google Scholar]
  49. 49. 
    Vig M, Peinelt C, Beck A, Koomoa DL, Rabah D et al. 2006. CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312:1220–23
    [Google Scholar]
  50. 50. 
    Zhang SL, Yeromin AV, Zhang XH-F, Yu Y, Safrina O et al. 2006. Genome-wide RNAi screen of Ca2+ influx identifies genes that regulate Ca2+ release-activated Ca2+ channel activity. PNAS 103:9357–62
    [Google Scholar]
  51. 51. 
    Peinelt C, Vig M, Koomoa DL, Beck A, Nadler MJS et al. 2006. Amplification of CRAC current by STIM1 and CRACM1 (Orai1). Nat. Cell Biol. 8:771–73
    [Google Scholar]
  52. 52. 
    Vig M, Beck A, Billingsley JM, Lis A, Parvez S et al. 2006. CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr. Biol. 16:2073–79
    [Google Scholar]
  53. 53. 
    Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A, Hogan PG 2006. Orai1 is an essential pore subunit of the CRAC channel. Nature 443:230–33
    [Google Scholar]
  54. 54. 
    Yeromin AV, Zhang SL, Jiang W, Yu Y, Safrina O, Cahalan MD 2006. Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443:226–29
    [Google Scholar]
  55. 55. 
    McNally BA, Somasundaram S, Yamashita M, Prakriya M 2012. Gated regulation of CRAC channel ion selectivity by STIM1. Nature 482:241–45
    [Google Scholar]
  56. 56. 
    Gwack Y, Srikanth S, Feske S, Cruz-Guilloty F, Oh-hora M et al. 2007. Biochemical and functional characterization of Orai proteins. J. Biol. Chem. 282:16232–43
    [Google Scholar]
  57. 57. 
    Motiani RK, Abdullaev IF, Trebak M 2010. A native store-operated calcium channel encoded by Orai3: selective requirement of Orai3 versus Orai1 in estrogen receptor-positive versus estrogen receptor-negative breast cancer cells. J. Biol. Chem. 285:19173–83
    [Google Scholar]
  58. 58. 
    Lis A, Peinelt C, Beck A, Parvez S, Monteilh-Zoller M et al. 2007. CRACM1, CRACM2 and CRACM3 are store-operated Ca2+ channels with distinct functional properties. Curr. Biol. 17:794–800
    [Google Scholar]
  59. 59. 
    McNally BA, Yamashita M, Engh A, Prakriya M 2009. Structural determinants of ion permeation in CRAC channels. PNAS 106:22516–21
    [Google Scholar]
  60. 60. 
    Zhou Y, Ramachandran S, Oh-hora M, Rao A, Hogan PG 2010. Pore architecture of the ORAI1 store-operated calcium channel. PNAS 107:4896–901
    [Google Scholar]
  61. 61. 
    Hou X, Pedi L, Diver MM, Long SB. 2012. Crystal structure of the calcium release-activated calcium channel Orai. Science 338:1308–13
    [Google Scholar]
  62. 62. 
    Lewis RS, Prakriya M. 2015. Store-operated calcium channels. Physiol. Rev. 95:1383–436
    [Google Scholar]
  63. 63. 
    Hou X, Burstein SR, Long SB 2018. Structures reveal opening of the store-operated calcium channel Orai. eLife 7:e36758
    [Google Scholar]
  64. 64. 
    Frischauf I, Litvinukova M, Schober R, Zayats V, Svobodova B et al. 2017. Transmembrane helix connectivity in Orai1 controls two gates for calcium-dependent transcription. Sci. Signal. 10:eaao0358
    [Google Scholar]
  65. 65. 
    Liu X, Wu G, Yu Y, Chen X, Ji R et al. 2019. Molecular understanding of calcium permeation through the open Orai channel. PLOS Biol 17:e3000096
    [Google Scholar]
  66. 66. 
    Bohm J, Laporte J. 2018. Gain-of-function mutations in STIM1 and ORAI1 causing tubular aggregate myopathy and Stormorken syndrome. Cell Calcium 76:1–9
    [Google Scholar]
  67. 67. 
    Derler I, Plenk P, Fahrner M, Muik M, Jardin I et al. 2013. The extended transmembrane Orai1 N-terminal (ETON) region combines binding interface and gate for Orai1 activation by STIM1. J. Biol. Chem. 288:29025–34
    [Google Scholar]
  68. 68. 
    Willoughby D, Everett KL, Halls ML, Pacheco J, Skroblin P et al. 2012. Direct binding between Orai1 and AC8 mediates dynamic interplay between Ca2+ and cAMP signaling. Sci. Signal. 5:ra29
    [Google Scholar]
  69. 69. 
    Li H, Pink MD, Murphy JG, Stein A, Dell'Acqua ML, Hogan PG 2012. Balanced interactions of calcineurin with AKAP79 regulate Ca2+-calcineurin-NFAT signaling. Nat. Struct. Mol. Biol. 19:337–45
    [Google Scholar]
  70. 70. 
    Kar P, Samanta K, Kramer H, Morris O, Bakowski D, Parekh AB 2014. Dynamic assembly of a membrane signaling complex enables selective activation of NFAT by Orai1. Curr. Biol. 24:1361–68
    [Google Scholar]
  71. 71. 
    Yu F, Sun L, Machaca K 2010. Constitutive recycling of the store-operated Ca2+ channel Orai1 and its internalization during meiosis. J. Cell Biol. 191:523–35
    [Google Scholar]
  72. 72. 
    Yeh Y-C, Parekh AB. 2015. Distinct structural domains of caveolin-1 independently regulate Ca2+ release-activated Ca2+ channels and Ca2+ microdomain-dependent gene expression. Mol. Cell. Biol. 35:1341–49
    [Google Scholar]
  73. 73. 
    Lacruz RS, Feske S. 2015. Diseases caused by mutations in ORAI1 and STIM1. Ann. N. Y. Acad. Sci 1356:45–79
    [Google Scholar]
  74. 74. 
    Morin G, Bruechle NO, Singh AR, Knopp C, Jedraszak G et al. 2014. Gain-of-function mutation in STIM1 (P.R304W) is associated with Stormorken syndrome. Hum. Mutat. 35:1221–32
    [Google Scholar]
  75. 75. 
    Feske S. 2019. CRAC channels and disease—from human CRAC channelopathies and animal models to novel drugs. Cell Calcium 80:112–16
    [Google Scholar]
  76. 76. 
    Gwack Y, Srikanth S, Oh-hora M, Hogan PG, Lamperti E et al. 2008. Hair loss and defective T- and B-cell function in mice lacking ORAI1. Mol. Cell. Biol. 28:5209–22
    [Google Scholar]
  77. 77. 
    Chalmers SB, Monteith GR. 2018. ORAI channels and cancer. Cell Calcium 74:160–67
    [Google Scholar]
  78. 78. 
    Tang BD, Xia X, Lv XF, Yu BX, Yuan J-N et al. 2017. Inhibition of Orai1-mediated Ca2+ entry enhances chemosensitivity of HepG2 heptacarcinoma cells to 5-fluorouracil. J. Cell Mol. Med. 21:904–15
    [Google Scholar]
  79. 79. 
    Kim JH, Lkhagvadorj S, Lee MR, Hwang KH, Chung HC et al. 2014. Orai1 and STIM1 are critical for cell migration and proliferation of clear cell renal cell carcinoma. Biochem. Biophys. Res. Commun. 448:76–82
    [Google Scholar]
  80. 80. 
    Xia J, Wang H, Huang H, Sun L, Dong S et al. 2016. Elevated Orai1 and STIM1 expressions upregulate MACC1 expression to promote tumor cell proliferation, metabolism, migration, and invasion in human gastric cancer. Cancer Lett 381:31–40
    [Google Scholar]
  81. 81. 
    Benzerdjeb N, Sevestre H, Ahidouch A, Ouadid-Ahidouch H 2016. Orai3 is a predictive marker of metastasis and survival in resectable lung adenocarcinoma. Oncotarget 7:81588–97
    [Google Scholar]
  82. 82. 
    Perrouin-Verbe M-A, Bruyere F, Rozet F, Vandier C, Fromont G 2016. Expression of store-operated channel components in prostate cancer: the prognostic paradox. Hum. Pathol. 49:77–82
    [Google Scholar]
  83. 83. 
    Feng M, Grice DM, Faddy HM, Nguyen N, Leitch S et al. 2010. Store-independent activation of Orai1 by SPCA2 in mammary tumors. Cell 143:84–98
    [Google Scholar]
  84. 84. 
    Yang S, Zhang JJ, Huang XY 2009. Orai1 and STIM1 are critical for breast tumor cell migration and metastasis. Cancer Cell 15:124–34
    [Google Scholar]
  85. 85. 
    Zhou X, Friedmann KS, Lyrmann H, Zhou Y, Schoppmeyer R et al. 2018. A calcium optimum for cytotoxic T lymphocyte and natural killer cell cytotoxicity. J. Physiol. 596:2681–98
    [Google Scholar]
  86. 86. 
    Gerasimenko JV, Gerasimenko OV, Petersen OH 2014. The role of Ca2+ in the pathophysiology of pancreatitis. J. Physiol. 592:269–80
    [Google Scholar]
  87. 87. 
    Raraty M, Ward J, Erdemli G, Vaillant C, Neoptolemos JP et al. 2000. Calcium-dependent enzyme activation and vacuole formation in the apical granular region of pancreatic acinar cells. PNAS 97:13126–31
    [Google Scholar]
  88. 88. 
    Gerasimenko JV, Gryshchenko O, Ferdek PE, Stapleton E, Hébert TO et al. 2013. Ca2+ release-activated Ca2+ channel blockade as a potential tool in antipancreatitis therapy. PNAS 110:13186–91
    [Google Scholar]
  89. 89. 
    Wen L, Voronina S, Javed MA, Awais M, Szatmary P et al. 2015. Inhibitors of ORAI1 prevent cytosolic calcium-associated injury of human pancreatic acinar cells and acute pancreatitis in 3 mouse models. Gastroenterology 149:481–92
    [Google Scholar]
  90. 90. 
    Waldron RT, Chen Y, Pham H, Go A, Su HY et al. 2019. The Orai Ca2+ channel inhibitor CM4620 targets both parenchymal and immune cells to reduce inflammation in experimental acute pancreatitis. J. Physiol. 597:3085–105
    [Google Scholar]
  91. 91. 
    Holgate ST. 2011. The sentinel role of the airway epithelium in asthma pathogenesis. Immunol. Rev. 242:205–19
    [Google Scholar]
  92. 92. 
    Samanta K, Bakowski D, Parekh AB 2014. Key role for store-operated Ca2+ channels in activating gene expression in human airway bronchial epithelial cells. PLOS ONE 9:8e105586
    [Google Scholar]
  93. 93. 
    Rice LV, Bax HJ, Russell LJ, Barrett VJ, Walton SE et al. 2013. Characterization of selective calcium-release activated calcium channel blockers in mast cells and T-cells from human, rat, mouse and guinea-pig preparations. Eur. J. Pharmacol. 704:49–57
    [Google Scholar]
  94. 94. 
    Lin YP, Nelson C, Kramer H, Parekh AB 2018. The allergen Der p3 from house dust mite stimulates store-operated Ca2+ channels and mast cell migration through PAR4 receptors. Mol. Cell 70:228–41
    [Google Scholar]
  95. 95. 
    Jairaman A, Yamashita M, Schleimer RP, Prakriya M 2015. Store-operated Ca2+ release-activated Ca2+ channels regulate PAR2-activated Ca2+ signaling and cytokine production in airway epithelial cells. J. Immunol. 195:2122–33
    [Google Scholar]
  96. 96. 
    Yoshino T, Ishikawa J, Ohga K, Morokata T, Takezawa R et al. 2007. YM-58483, a selective CRAC channel inhibitor, prevents antigen-induced airway eosinophilia and late phase asthmatic responses via Th2 cytokine inhibition in animal models. Eur. J. Pharmacol. 560:225–33
    [Google Scholar]
  97. 97. 
    Kaur M, Birrell MA, Dekkak B, Reynolds S, Wong S et al. 2015. The role of CRAC channel in asthma. Pulm. Pharmacol. Ther. 35:67–74
    [Google Scholar]
  98. 98. 
    Sutovska M, Kocmalova M, Franova S, Vakkalanka S, Viswanadha S 2016. Pharmacodynamic evaluation of RP3128, a novel and potent CRAC channel inhibitor in guinea pig models of allergic asthma. Eur. J. Pharmacol. 772:62–70
    [Google Scholar]
  99. 99. 
    Di Sabatino A, Rovedatti L, Kaur R, Spencer JP, Brown JT et al. 2009. Targeting gut T cell Ca2+ release-activated Ca2+ channels inhibits T cell cytokine production and T-box transcription factor T-bet in inflammatory bowel disease. J. Immunol. 183:3454–62
    [Google Scholar]
  100. 100. 
    McCarl C-A, Khalil S, Ma J, Oh-hora M, Yamashita M et al. 2010. Store-operated Ca2+ entry through ORAI1 is critical for T cell-mediated autoimmunity and allograft rejection. J. Immunol. 185:5845–58
    [Google Scholar]
  101. 101. 
    Whitten JP. 2010. Inhibitors of store operated calcium release US Patent Appl. 2010/0152241A1
  102. 102. 
    Yen JH, Chang CM, Hsu YW, Lee CH, Wu MS et al. 2014. A polymorphism of ORAI1 rs7135617, is associated with susceptibility to rheumatoid arthritis. Mediators Inflamm 2014:834831
    [Google Scholar]
  103. 103. 
    Liu S, Watanabe S, Shudou M, Kuno M, Miura H, Maeyama K 2014. Upregulation of store-operated Ca2+ entry in the naïve CD4+ T cells with aberrant cytokine releasing in active rheumatoid arthritis. Immunol. Cell Biol. 92:752–60
    [Google Scholar]
  104. 104. 
    Liu S, Kiyoi T, Takemasa E, Maeyama K 2017. Intra-articular lentivirus-mediated gene therapy targeting CRACM1 for the treatment of collagen-induced arthritis. J. Pharmacol. Sci. 133:130–38
    [Google Scholar]
  105. 105. 
    Liu S, Hasegawa H, Takemasa E, Suzuki Y, Oka K et al. 2017. Efficiency and safety of CRAC inhibitors in human rheumatoid arthritis xenograft models. J. Immunol. 199:1584–95
    [Google Scholar]
  106. 106. 
    DeHaven WI, Smyth JT, Boyles RR, Bird GS, Putney JW 2008. Complex actions of 2-aminoethyldiphenyl borate (2-APB) on store-operated calcium entry. J. Biol. Chem. 283:19265–73
    [Google Scholar]
  107. 107. 
    Sadaghiani AM, Lee SM, Odegaard JI, Leveson-Gower DB, McPherson OM et al. 2014. Identification of Orai1 channel inhibitors by using minimal functional domains to screen small molecule microarrays. Chem. Biol. 21:1278–92
    [Google Scholar]
  108. 108. 
    Putney JW. 2001. Pharmacology of capacitative calcium entry. Mol. Interv. 1:84–94
    [Google Scholar]
  109. 109. 
    Merritt JE, Armstrong WP, Benham CD, Hallam TJ, Jacob R et al. 1990. SK&F 96365, a novel inhibitor of receptor-mediated calcium entry. Biochem. J. 271:515–22
    [Google Scholar]
  110. 110. 
    Franzius D, Hoth M, Penner R 1994. Non-specific effects of calcium entry antagonists in mast cells. Pflugers Arch 428:433–38
    [Google Scholar]
  111. 111. 
    Zakharov SI, Smani T, Dobrydneva Y, Monje F, Fichandler C et al. 2004. Diethylstilbestrol is a potent inhibitor of store-operated channels and capacitative Ca2+ influx. Mol. Pharmacol. 66:702–7
    [Google Scholar]
  112. 112. 
    Brueggemann LI, Markun DR, Henderson KK, Cribbs LL, Byron KL 2006. Pharmacological and electrophysiological characterization of store-operated currents and capacitative Ca2+ entry in vascular smooth muscle cells. J. Pharmacol. Exp. Ther. 317:488–99
    [Google Scholar]
  113. 113. 
    Kohn EC, Sandeen MA, Liotta LA 1992. In vivo efficacy of a novel inhibitor of selected signal transduction pathways including calcium, arachidonate, and inositol phosphates. Cancer Res 52:3208–12
    [Google Scholar]
  114. 114. 
    Rodland KD, Wersto RP, Hobson S, Kohn EC 1997. Thapsigargin-induced gene expression in nonexcitable cells is dependent on calcium influx. Mol. Endocrinol. 11:281–91
    [Google Scholar]
  115. 115. 
    Hussain MM, Kotz H, Minasian L, Premkumar A, Sarosy G et al. 2003. Phase II trial of carboxyamidotriazole in patients with relapsed epithelial ovarian cancer. J. Clin. Oncol. 21:4356–63
    [Google Scholar]
  116. 116. 
    Mignen O, Brink C, Enfissi A, Nadkarni A, Shuttleworth TJ et al. 2005. Carboxyamidotriazole-induced inhibition of mitochondrial calcium import blocks capacitative calcium entry and cell proliferation in HEK-293 cells. J. Cell Sci. 118:5615–23
    [Google Scholar]
  117. 117. 
    Maruyama T, Kanaji T, Nakade S, Mikoshiba K 1997. 2APB, 2-aminoethoxydeiphenyl borate, a membrane-permeable modulator of Ins(1,4,5)P3-induced Ca2+ release. J. Biochem. 122:498–505
    [Google Scholar]
  118. 118. 
    Ma HT, Patterson RL, Van Rossum DB, Birnbaumer L, Mikoshiba K, Gill DL 2000. Requirement of the inositol trisphosphate receptor for activation of store-operated Ca2+ channels. Science 287:1647–51
    [Google Scholar]
  119. 119. 
    Bakowski D, Glitsch MD, Parekh AB 2001. An examination of the secretion-like coupling model for the activation of the Ca2+ release-activated Ca2+ current ICRAC in RBL-1 cells. J. Physiol. 532:55–71
    [Google Scholar]
  120. 120. 
    Prakriya M, Lewis RS. 2001. Potentiation and inhibition of Ca2+ release-activated Ca2+ channels by 2-aminoethyldiphenyl borate (2-APB) occurs independently of IP3 receptors. J. Physiol. 536:3–19
    [Google Scholar]
  121. 121. 
    Mercer JC, DeHaven W, Smyth JT, Wedel B, Boyles RB et al. 2006. Large store-operated calcium-selective currents due to co-expression of Orai1 with the intracellular calcium sensor, STIM1. J. Biol. Chem. 281:24979–90
    [Google Scholar]
  122. 122. 
    Schindl R, Bergsmann J, Frischauf I, Derler I, Fahrner M et al. 2008. 2-Aminoethoxydiphenyl borate alters selectivity of Orai3 channels by increasing their pore size. J. Biol. Chem. 283:20261–67
    [Google Scholar]
  123. 123. 
    Goto J, Suzuki AZ, Ozaki S, Matsumoto N, Nakamura T et al. 2010. Two novel 2-aminoethyl diphenylborinate (2-APB) analogues differentially activate and inhibit store-operated Ca2+ entry via STIM proteins. Cell Calcium 47:1–10
    [Google Scholar]
  124. 124. 
    Djuric SW, BaMaung NY, Basha A, Liu H, Luly JR et al. 2000. 3,5-Bis(trifluoromethyl)pyrazoles: a novel class of NFAT transcription factor regulator. J. Med. Chem. 43:2975–81
    [Google Scholar]
  125. 125. 
    Takezawa R, Cheng H, Beck A, Ishikawa J, Launay P et al. 2006. A pyrazole derivative potently inhibits lymphocyte Ca2+ influx and cytokine production by facilitating transient receptor potential melastatin 4 channel activity. Mol. Pharmacol. 69:1413–20
    [Google Scholar]
  126. 126. 
    He LP, Hewavitharana T, Soboloff J, Spassova MA, Gill DL 2005. Functional link between store-operated and TRPC channels revealed by the 3,5-bis(trifluoromethyl)pyrazole derivative, BTP2. J. Biol. Chem. 280:10997–1006
    [Google Scholar]
  127. 127. 
    Ishikawa J, Ohga K, Yoshino T, Takezawa R, Ichikawa A et al. 2003. A pyrazole derivative, YM-58483, potently inhibits store-operated sustained calcium influx and Il-2 production in T lymphocytes. J. Immunol. 170:4441–49
    [Google Scholar]
  128. 128. 
    Lin FF, Elliott R, Colombero A, Gaida K, Kelley L et al. 2013. Generation and characterization of fully human monoclonal antibodies against human Orai1 for autoimmune disease. J. Pharmacol. Exp. Ther. 345:225–38
    [Google Scholar]
  129. 129. 
    Cox JH, Hussell S, Søndergaard H, Roepstorff K, Bui JV et al. 2013. Antibody-mediated targeting of the Orai1 calcium channel inhibits T cell function. PLOS ONE 8:e82944
    [Google Scholar]
  130. 130. 
    Gaida K, Salimi-Moosavi H, Subramanian R, Almon V, Knize A et al. 2017. Inhibition of CRAC with a human anti-ORAI1 monoclonal antibody inhibits T-cell-derived cytokine production but fails to inhibit a T-cell-dependent antibody response in the cynomolgus monkey. J. Immunotoxicol. 12:164–73
    [Google Scholar]
  131. 131. 
    Sun R, Yang Y, Ran X, Yang TT 2016. Calcium influx of mast cells is inhibited by aptamers targeting the first extracellular domain of Orai1. PLOS ONE 11:e0158223
    [Google Scholar]
  132. 132. 
    Ng S-W, DiCapite JL, Singaravelu K, Parekh AB 2008. Sustained activation of the tyrosine kinase Syk by antigen in mast cells requires local Ca2+ influx through Ca2+ release-activated Ca2+ channels. J. Biol. Chem. 283:31348–55
    [Google Scholar]
  133. 133. 
    Li J, McKeown L, Ojelabi O, Stacey M, Foster R et al. 2011. Nanomolar potency and selectivity of a Ca2+ release-activated Ca2+ channel inhibitor against store-operated Ca2+ entry and migration of vascular smooth muscle cells. Br. J. Pharmacol. 164:382–93
    [Google Scholar]
  134. 134. 
    Li J, Cubbon RM, Wilson LA, Amer MS, McKeown L et al. 2011. Orai1 and CRAC channel dependence of VEGF-activated Ca2+ entry and endothelial tube formation. Circ. Res. 108:1190–98
    [Google Scholar]
  135. 135. 
    Chen G, Panicker S, Lau KY, Apparsundaram S, Patel VA et al. 2013. Characterization of a novel CRAC inhibitor that potently blocks human T cell activation and effector functions. Mol. Immunol. 54:355–67
    [Google Scholar]
  136. 136. 
    Derler I, Schindl R, Fritsch R, Heftberger P, Riedl MC et al. 2013. The action of selective CRAC channel blockers is affected by the Orai pore geometry. Cell Calcium 53:139–51
    [Google Scholar]
  137. 137. 
    Cui C, Chang Y, Zhang X, Choi S, Tran H et al. 2018. Targeting Orai1-mediated store-operated calcium entry by RP4010 for anti-tumor activity in esophagus squamous cell carcinoma. Cancer Lett 432:169–79
    [Google Scholar]
  138. 138. 
    Vaeth M, Maus M, Klein-Hessling S, Freinkman E, Yang J et al. 2017. Store-operated Ca2+ entry controls clonal expansion of T cells through metabolic reprogramming. Immunity 47:664–79.e6
    [Google Scholar]
  139. 139. 
    Kaufmann U, Shaw PJ, Kozhaya L, Subramanian R, Gaida K et al. 2016. Selective Orai1 inhibition ameliorates autoimmune central nervous system inflammation by suppressing effector but not regulatory T cell function. J. Immunol. 196:573–85
    [Google Scholar]
  140. 140. 
    Jacob R. 1990. Agonist-stimulated divalent cation entry into single cultured human umbilical vein endothelial cells. J. Physiol. 421:55–77
    [Google Scholar]
  141. 141. 
    Parekh AB, Foguet M, Luebbert H, Stuehmer W 1993. Ca2+ oscillations and Ca2+ influx in Xenopus oocytes expressing a novel 5-hydroxytryptamine receptor. J. Physiol. 469:653–71
    [Google Scholar]
  142. 142. 
    Bautista DM, Lewis RS. 2004. Modulation of plasma membrane calcium-ATPase activity by local calcium microdomains near CRAC channels in human T cells. J. Physiol. 556:805–17
    [Google Scholar]
  143. 143. 
    Hogan PG, Chen L, Nardone J, Rao A 2003. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev 17:2205–32
    [Google Scholar]
  144. 144. 
    Machaca K. 2003. Ca2+-calmodulin dependent protein kinase II potentiates store-operated Ca2+ current. J. Biol. Chem. 278:33730–37
    [Google Scholar]
  145. 145. 
    Chang WC, Parekh AB. 2004. Close functional coupling between CRAC channels, arachidonic acid release and leukotriene secretion. J. Biol. Chem. 279:29994–99
    [Google Scholar]
  146. 146. 
    Chang W-C, Nelson C, Parekh AB 2006. Ca2+ influx through CRAC channels activates cytosolic phospholipase A2, leukotriene C4 secretion and expression of c-fos through ERK-dependent and independent pathways in mast cells. FASEB J 20:1681–93
    [Google Scholar]
  147. 147. 
    Lefkimmiatis K, Srikanthan M, Maiellaro I, Moyer MP, Curci S, Hofer AM 2009. Store-operated cyclic AMP signalling mediated by STIM1. Nat. Cell Biol. 11:433–42
    [Google Scholar]
  148. 148. 
    Alswied A, Parekh AB. 2015. Ca2+ influx through store-operated calcium channels replenishes the functional phosphatidylinositol 4,5-bisphosphate pool used by cysteinyl leukotriene type I receptors. J. Biol. Chem. 290:29555–66
    [Google Scholar]
  149. 149. 
    Lin S, Fagan KA, Li K-X, Shaul WPW, Cooper DMF, Rodman DM 2000. Sustained endothelial nitric oxide-synthase activation requires capacitative Ca2+ entry. J. Biol. Chem. 275:17979–85
    [Google Scholar]
  150. 150. 
    Feldman B, Fedida-Metula S, Nita J, Sekler I, Fishman D 2010. Coupling of mitochondria to store-operated Ca2+ signaling sustains constitutive activation of protein kinase B/Akt and augments survival of malignant melanoma cells. Cell Calcium 47:525–37
    [Google Scholar]
  151. 151. 
    Kaufmann U, Kahlfuss S, Yang J, Ivanova E, Koralov SB, Feske S 2017. Calcium signaling controls pathogenic Th17 cell-mediated inflammation by regulating mitochondrial function. Cell Metab 29:1104–18
    [Google Scholar]
  152. 152. 
    Steinckwich N, Frippiat JP, Stasia MJ, Erard M, Boxio R et al. 2007. Potent inhibition of store-operated Ca2+ influx and superoxide production in HL60 cells and polymorphonuclear neutrophils by the pyrazole derivative BTP2. J. Leukoc. Biol. 81:1054–64
    [Google Scholar]
  153. 153. 
    Vig M, DeHaven WI, Bird GS, Billingsley JM, Wang HJ et al. 2008. Defective mast cell effector functions in mice lacking the CRACM1 pore subunit of store-operated calcium release-activated calcium channels. Nat. Immunol. 9:89–96
    [Google Scholar]
  154. 154. 
    Maul-Pavicic A, Chiang SCC, Rensing-Ehl A, Jessen B, Fauriat C et al. 2011. ORAI1-mediated calcium influx is required for human cytotoxic lymphocyte degranulation and target cell lysis. PNAS 108:3324–29
    [Google Scholar]
  155. 155. 
    DiCapite JL, Shirley A, Nelson C, Bates G, Parekh AB 2009. Intercellular calcium wave propagation involving positive feedback between CRAC channels and cysteinyl leukotrienes. FASEB J 23:894–905
    [Google Scholar]
  156. 156. 
    Wilson SR, The L, Batia LM, Beattie K, Katibah GE et al. 2013. The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell 155:285–95
    [Google Scholar]
  157. 157. 
    Toth AB, Hori H, Novakovic MM, Bernstein NG, Lambot L, Prakriya M 2019. CRAC channels regulate astrocyte Ca2+ signaling and gliotransmitter release to modulate hippocampal GABAergic transmission. Sci. Signal. 12:eaaw5450
    [Google Scholar]
  158. 158. 
    Steinckwich N, Myers P, Janardhan KS, Flagler ND, King D et al. 2015. Role of the store-operated calcium entry protein, STIM1, in neutrophil chemotaxis and infiltration into a murine model of psoriasis-inflamed skin. FASEB J 29:3003–13
    [Google Scholar]
  159. 159. 
    Cheng KT, Liu X, Ong HL, Swaim W, Ambudkar IS 2011. Local Ca2+ entry via Orai1 regulates plasma membrane recruitment of TRPC1 and controls cytosolic Ca2+ signals required for specific functions. PLOS Biol 9:e10011025
    [Google Scholar]
  160. 160. 
    Lemonnier L, Prevarskaya N, Shuba Y, Vanden-Abeele F, Nilius B et al. 2002. Ca2+ modulation of volume-regulated anion channels: evidence for colocalization with store-operated channels. FASEB J 16:222–24
    [Google Scholar]
  161. 161. 
    Zholos A, Beck B, Sydorenko V, Lemonnier L, Bordat P et al. 2005. Ca2+- and volume-sensitive chloride currents are differentially regulated by agonists and store-operated Ca2+ entry. J. Gen. Physiol. 125:197–211
    [Google Scholar]
  162. 162. 
    Launay P, Cheng H, Srivatsan S, Penner R, Fleig A, Kinet JP 2004. TRPM4 regulates calcium oscillations after T cell activation. Science 306:1374–77
    [Google Scholar]
  163. 163. 
    Pulina MV, Zulian A, Baryshnikov SG, Linde CI, Krashima I et al. 2013. Cross-talk between plasma membrane Na+/Ca2+ exchanger-1 and TRPC/Orai containing channels: key players in arterial hypertension. Sodium Calcium Exchange: A Growing Spectrum of Pathophysiological Implications L Annunziato 365–74 New York: Springer
    [Google Scholar]
  164. 164. 
    Duffy SM, Ashmole I, Smallwood DT, Leyland ML, Bradding P 2015. Orai/CRACM1 and KCa3.1 ion channels interact in the human lung mast cell plasma membrane. Cell Commun. Signal. 13:32
    [Google Scholar]
  165. 165. 
    Dolmetsch RE, Xu K, Lewis RS 1998. Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392:933–36
    [Google Scholar]
  166. 166. 
    Di Capite J, Ng S-W, Parekh AB 2009. Decoding of cytoplasmic Ca2+ oscillations through the spatial signature drives gene expression. Curr. Biol. 19:853–58
    [Google Scholar]
  167. 167. 
    Ng S-W, Nelson C, Parekh AB 2009. Coupling of Ca2+ microdomains to spatially and temporally distinct cellular responses by the tyrosine kinase Syk. J. Biol. Chem. 284:24767–72
    [Google Scholar]
  168. 168. 
    Davis FM, Janoshazi A, Janardhan KS, Steinckwich N, D'Agostin DM et al. 2015. Essential role of Orai1 store-operated calcium channels in lactation. PNAS 112:5827–32
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-031620-105135
Loading
/content/journals/10.1146/annurev-pharmtox-031620-105135
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error