1932

Abstract

Owing to the development of multiple novel therapies, there has been major progress in the treatment of advanced prostate cancer over the last two decades; however, the disease remains invariably fatal. Androgens and the androgen receptor (AR) play a critical role in prostate carcinogenesis, and targeting the AR signaling axis with abiraterone, enzalutamide, darolutamide, and apalutamide has improved outcomes for men with this lethal disease. Targeting the AR and elucidating mechanisms of resistance to these agents remain central to drug development efforts. This review provides an overview of the evolution and current approaches for targeting the AR in advanced prostate cancer. It describes the biology of AR signaling, explores AR-targeting resistance mechanisms, and discusses future perspectives and promising novel therapeutic strategies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-052220-015912
2022-01-06
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/62/1/annurev-pharmtox-052220-015912.html?itemId=/content/journals/10.1146/annurev-pharmtox-052220-015912&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Adams J. 1853. The case of scirrhous of the prostate gland with corresponding affliction of the lymphatic glands in the lumbar region and in the pelvis. Lancet 1:393
    [Google Scholar]
  2. 2. 
    Baade PD, Youlden DR, Krnjacki LJ. 2009. International epidemiology of prostate cancer: geographical distribution and secular trends. Mol. Nutr. Food Res. 53:2171–84
    [Google Scholar]
  3. 3. 
    Siegel RL, Miller KD, Jemal A. 2020. Cancer statistics, 2020. CA Cancer J. Clin. 70:17–30
    [Google Scholar]
  4. 4. 
    Wilding G. 1992. The importance of steroid hormones in prostate cancer. Cancer Surv 14:113–30
    [Google Scholar]
  5. 5. 
    Sartor O, de Bono JS. 2018. Metastatic prostate cancer. N. Engl. J. Med. 378:171653–54
    [Google Scholar]
  6. 6. 
    Richmond EJ, Rogol AD 2007. Male pubertal development and the role of androgen therapy. Nat. Clin. Pract. Endocrinol. Metab. 3:4338–44
    [Google Scholar]
  7. 7. 
    Culig Z, Santer FR. 2014. Androgen receptor signaling in prostate cancer. Cancer Metastasis Rev 33:2–3413–27
    [Google Scholar]
  8. 8. 
    Palmer JF 1837. The works of John Hunter, F.R.S.; with notes. Br. Foreign Med. Rev. 4:775–87
    [Google Scholar]
  9. 9. 
    White JW II 1893. The present position of the surgery of the hypertrophied prostate. Ann. Surg. 18:2152–88
    [Google Scholar]
  10. 10. 
    Huggins C, Hodges C. 1941. Studies on prostatic cancer. I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res 1:4293–97
    [Google Scholar]
  11. 11. 
    Huggins C, Stevens RE, Hodges CV. 1941. Studies on prostatic cancer: II. The effects of castration on advanced carcinoma of the prostate gland. Arch. Surg. 43:2209–23
    [Google Scholar]
  12. 12. 
    Huggins C, Scott WW. 1945. Bilateral adrenalectomy in prostatic cancer: clinical features and urinary excretion of 17-ketosteroids and estrogen. Ann. Surg. 122:61031–41
    [Google Scholar]
  13. 13. 
    Luft R, Olivecrona H. 1957. Hypophysectomy in the treatment of malignant tumors. Cancer 10:4789–94
    [Google Scholar]
  14. 14. 
    Veterans Admin. Co-op. Urol. Res. Group 1967. Treatment and survival of patients with cancer of the prostate. Surg. Gynecol. Obstet. 124:51011–17
    [Google Scholar]
  15. 15. 
    Matsuo H, Baba Y, Nair RM, Arimura A, Schally AV 1971. Structure of the porcine LH- and FSH-releasing hormone. I. The proposed amino acid sequence. Biochem. Biophys. Res. Commun. 43:61334–39
    [Google Scholar]
  16. 16. 
    Schally AV, Comaru-Schally AM, Plonowski A, Nagy A, Halmos G, Rekasi Z. 2000. Peptide analogs in the therapy of prostate cancer. Prostate 45:2158–66
    [Google Scholar]
  17. 17. 
    Sandow J, Von Rechenberg W, Jerzabek G, Stoll W 1978. Pituitary gonadotropin inhibition by a highly active analog of luteinizing hormone-releasing hormone. Fertil. Steril. 30:2205–9
    [Google Scholar]
  18. 18. 
    Kunath F, Borgmann H, Blumle A, Keck B, Wullich B et al. 2015. Gonadotropin-releasing hormone antagonists versus standard androgen suppression therapy for advanced prostate cancer: a systematic review with meta-analysis. BMJ Open 5:11e008217
    [Google Scholar]
  19. 19. 
    van Poppel H, Nilsson S. 2008. Testosterone surge: rationale for gonadotropin-releasing hormone blockers?. Urology 71:61001–6
    [Google Scholar]
  20. 20. 
    Sun M, Choueiri TK, Hamnvik OP, Preston MA, De Velasco G et al. 2016. Comparison of gonadotropin-releasing hormone agonists and orchiectomy: effects of androgen-deprivation therapy. JAMA Oncol 2:4500–7
    [Google Scholar]
  21. 21. 
    Mainwaring WI. 1969. A soluble androgen receptor in the cytoplasm of rat prostate. J. Endocrinol. 45:4531–41
    [Google Scholar]
  22. 22. 
    Anderson KM, Liao S. 1968. Selective retention of dihydrotestosterone by prostatic nuclei. Nature 219:5151277–79
    [Google Scholar]
  23. 23. 
    Bruchovsky N, Wilson JD. 1968. The intranuclear binding of testosterone and 5α-androstan-17β-ol-3-one by rat prostate. J. Biol. Chem. 243:225953–60
    [Google Scholar]
  24. 24. 
    Pavone-Macaluso M, de Voogt HJ, Viggiano G, Barasolo E, Lardennois B et al. 1986. Comparison of diethylstilbestrol, cyproterone acetate and medroxyprogesterone acetate in the treatment of advanced prostatic cancer: final analysis of a randomized phase III trial of the European Organization for Research on Treatment of Cancer Urological Group. J. Urol. 136:3624–31
    [Google Scholar]
  25. 25. 
    Seidenfeld J, Samson DJ, Hasselblad V, Aronson N, Albertsen PC et al. 2000. Single-therapy androgen suppression in men with advanced prostate cancer: a systematic review and meta-analysis. Ann. Intern. Med. 132:7566–77
    [Google Scholar]
  26. 26. 
    Akaza H, Hinotsu S, Usami M, Arai Y, Kanetake H et al. 2009. Combined androgen blockade with bicalutamide for advanced prostate cancer: long-term follow-up of a phase 3, double-blind, randomized study for survival. Cancer 115:153437–45
    [Google Scholar]
  27. 27. 
    Schmitt B, Bennett C, Seidenfeld J, Samson D, Wilt T 2000. Maximal androgen blockade for advanced prostate cancer. Cochrane Database Syst. Rev. 2000 2CD001526
    [Google Scholar]
  28. 28. 
    Chen CD, Welsbie DS, Tran C, Baek SH, Chen R et al. 2004. Molecular determinants of resistance to antiandrogen therapy. Nat. Med. 10:133–39
    [Google Scholar]
  29. 29. 
    Labrie F. 2004. Adrenal androgens and intracrinology. Semin. Reprod. Med. 22:4299–309
    [Google Scholar]
  30. 30. 
    Alva A, Hussain M 2013. The changing natural history of metastatic prostate cancer. Cancer J 19:119–24
    [Google Scholar]
  31. 31. 
    Fizazi K, Scher HI, Molina A, Logothetis CJ, Chi KN et al. 2012. Abiraterone acetate for treatment of metastatic castration-resistant prostate cancer: final overall survival analysis of the COU-AA-301 randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol 13:10983–92
    [Google Scholar]
  32. 32. 
    Fizazi K, Tran N, Fein L, Matsubara N, Rodriguez-Antolin A et al. 2017. Abiraterone plus prednisone in metastatic, castration-sensitive prostate cancer. N. Engl. J. Med. 377:4352–60
    [Google Scholar]
  33. 33. 
    Li Z, Bishop AC, Alyamani M, Garcia JA, Dreicer R et al. 2015. Conversion of abiraterone to D4A drives anti-tumour activity in prostate cancer. Nature 523:7560347–51
    [Google Scholar]
  34. 34. 
    Li Z, Alyamani M, Li J, Rogacki K, Abazeed M et al. 2016. Redirecting abiraterone metabolism to fine-tune prostate cancer anti-androgen therapy. Nature 533:7604547–51
    [Google Scholar]
  35. 35. 
    Gelmann EP. 2002. Molecular biology of the androgen receptor. J. Clin. Oncol. 20:133001–15
    [Google Scholar]
  36. 36. 
    Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G et al. 1995. The nuclear receptor superfamily: the second decade. Cell 83:6835–39
    [Google Scholar]
  37. 37. 
    Ferraldeschi R, Welti J, Luo J, Attard G, de Bono JS. 2015. Targeting the androgen receptor pathway in castration-resistant prostate cancer: progresses and prospects. Oncogene 34:141745–57
    [Google Scholar]
  38. 38. 
    Jenster G, van der Korput HA, van Vroonhoven C, van der Kwast TH, Trapman J, Brinkmann AO 1991. Domains of the human androgen receptor involved in steroid binding, transcriptional activation, and subcellular localization. Mol. Endocrinol. 5:101396–404
    [Google Scholar]
  39. 39. 
    Wen S, Niu Y, Huang H. 2020. Posttranslational regulation of androgen dependent and independent androgen receptor activities in prostate cancer. Asian J. Urol. 7:3203–18
    [Google Scholar]
  40. 40. 
    Georget V, Terouanne B, Nicolas JC, Sultan C 2002. Mechanism of antiandrogen action: key role of hsp90 in conformational change and transcriptional activity of the androgen receptor. Biochemistry 41:3911824–31
    [Google Scholar]
  41. 41. 
    Prescott J, Coetzee GA 2006. Molecular chaperones throughout the life cycle of the androgen receptor. Cancer Lett 231:112–19
    [Google Scholar]
  42. 42. 
    van de Wijngaart DJ, Dubbink HJ, van Royen ME, Trapman J, Jenster G. 2012. Androgen receptor coregulators: recruitment via the coactivator binding groove. Mol. Cell Endocrinol. 352:1–257–69
    [Google Scholar]
  43. 43. 
    Askew EB, Minges JT, Hnat AT, Wilson EM. 2012. Structural features discriminate androgen receptor N/C terminal and coactivator interactions. Mol. Cell Endocrinol. 348:2403–10
    [Google Scholar]
  44. 44. 
    Schaufele F, Carbonell X, Guerbadot M, Borngraeber S, Chapman MS et al. 2005. The structural basis of androgen receptor activation: intramolecular and intermolecular amino-carboxy interactions. PNAS 102:289802–7
    [Google Scholar]
  45. 45. 
    van Royen ME, Cunha SM, Brink MC, Mattern KA, Nigg AL et al. 2007. Compartmentalization of androgen receptor protein-protein interactions in living cells. J. Cell Biol. 177:163–72
    [Google Scholar]
  46. 46. 
    He B, Kemppainen JA, Wilson EM. 2000. FXXLF and WXXLF sequences mediate the NH2-terminal interaction with the ligand binding domain of the androgen receptor. J. Biol. Chem. 275:3022986–94
    [Google Scholar]
  47. 47. 
    Azad AA, Zoubeidi A, Gleave ME, Chi KN. 2015. Targeting heat shock proteins in metastatic castration-resistant prostate cancer. Nat. Rev. Urol. 12:126–36
    [Google Scholar]
  48. 48. 
    Kaku N, Matsuda K, Tsujimura A, Kawata M 2008. Characterization of nuclear import of the domain-specific androgen receptor in association with the importin α/β and Ran-guanosine 5′-triphosphate systems. Endocrinology 149:83960–69
    [Google Scholar]
  49. 49. 
    Thadani-Mulero M, Nanus DM, Giannakakou P. 2012. Androgen receptor on the move: boarding the microtubule expressway to the nucleus. Cancer Res 72:184611–15
    [Google Scholar]
  50. 50. 
    McEwan IJ. 2004. Molecular mechanisms of androgen receptor-mediated gene regulation: structure-function analysis of the AF-1 domain. Endocr. Relat. Cancer 11:2281–93
    [Google Scholar]
  51. 51. 
    He B, Kemppainen JA, Voegel JJ, Gronemeyer H, Wilson EM. 1999. Activation function 2 in the human androgen receptor ligand binding domain mediates interdomain communication with the NH2-terminal domain. J. Biol. Chem. 274:5237219–25
    [Google Scholar]
  52. 52. 
    Heinlein CA, Chang C. 2002. Androgen receptor (AR) coregulators: an overview. Endocr. Rev. 23:2175–200
    [Google Scholar]
  53. 53. 
    Millard CJ, Watson PJ, Fairall L, Schwabe JW 2013. An evolving understanding of nuclear receptor coregulator proteins. J. Mol. Endocrinol. 51:3T23–36
    [Google Scholar]
  54. 54. 
    Gao N, Zhang J, Rao MA, Case TC, Mirosevich J et al. 2003. The role of hepatocyte nuclear factor-3α (Forkhead Box A1) and androgen receptor in transcriptional regulation of prostatic genes. Mol. Endocrinol. 17:81484–507
    [Google Scholar]
  55. 55. 
    Wang Q, Li W, Liu XS, Carroll JS, Janne OA et al. 2007. A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol. Cell 27:3380–92
    [Google Scholar]
  56. 56. 
    Perez-Stable CM, Pozas A, Roos BA 2000. A role for GATA transcription factors in the androgen regulation of the prostate-specific antigen gene enhancer. Mol. Cell Endocrinol. 167:1–243–53
    [Google Scholar]
  57. 57. 
    Wu D, Sunkel B, Chen Z, Liu X, Ye Z, Li Q et al. 2014. Three-tiered role of the pioneer factor GATA2 in promoting androgen-dependent gene expression in prostate cancer. Nucleic Acids Res 42:63607–22
    [Google Scholar]
  58. 58. 
    Cersosimo RJ. 2012. New agents for the management of castration-resistant prostate cancer. Ann. Pharmacother. 46:111518–28
    [Google Scholar]
  59. 59. 
    Grossmann M, Zajac JD. 2011. Management of side effects of androgen deprivation therapy. Endocrinol. Metab. Clin. North Am. 40:3655–71
    [Google Scholar]
  60. 60. 
    Shore ND, Saad F, Cookson MS, George DJ, Saltzstein DR et al. 2020. Oral relugolix for androgen-deprivation therapy in advanced prostate cancer. N. Engl. J. Med. 382:232187–96
    [Google Scholar]
  61. 61. 
    Cheung AS, Pattison D, Bretherton I, Hoermann R, Lim Joon D et al. 2013. Cardiovascular risk and bone loss in men undergoing androgen deprivation therapy for non-metastatic prostate cancer: implementation of standardized management guidelines. Andrology 1:4583–89
    [Google Scholar]
  62. 62. 
    Rehman Y, Rosenberg JE. 2012. Abiraterone acetate: oral androgen biosynthesis inhibitor for treatment of castration-resistant prostate cancer. Drug Des. Devel. Ther. 6:13–18
    [Google Scholar]
  63. 63. 
    Danila DC, Morris MJ, de Bono JS, Ryan CJ, Denmeade SR, Smith MR et al. 2010. Phase II multicenter study of abiraterone acetate plus prednisone therapy in patients with docetaxel-treated castration-resistant prostate cancer. J. Clin. Oncol. 28:91496–501
    [Google Scholar]
  64. 64. 
    Fizazi K, Tran N, Fein L, Matsubara N, Rodriguez-Antolin A et al. 2019. Abiraterone acetate plus prednisone in patients with newly diagnosed high-risk metastatic castration-sensitive prostate cancer (LATITUDE): final overall survival analysis of a randomised, double-blind, phase 3 trial. Lancet Oncol 20:5686–700
    [Google Scholar]
  65. 65. 
    Hoyle AP, Ali A, James ND, Cook A, Parker CC et al. 2019. Abiraterone in “high-” and “low-risk” metastatic hormone-sensitive prostate cancer. Eur. Urol. 76:6719–28
    [Google Scholar]
  66. 66. 
    Ryan CJ, Smith MR, Fizazi K, Saad F, Mulders PF et al. 2015. Abiraterone acetate plus prednisone versus placebo plus prednisone in chemotherapy-naive men with metastatic castration-resistant prostate cancer (COU-AA-302): final overall survival analysis of a randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol 16:2152–60
    [Google Scholar]
  67. 67. 
    James ND, de Bono JS, Spears MR, Clarke NW, Mason MD et al. 2017. Abiraterone for prostate cancer not previously treated with hormone therapy. N. Engl. J. Med. 377:4338–51
    [Google Scholar]
  68. 68. 
    Tran C, Ouk S, Clegg NJ, Chen Y, Watson PA et al. 2009. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 324:5928787–90
    [Google Scholar]
  69. 69. 
    Scher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN et al. 2012. Increased survival with enzalutamide in prostate cancer after chemotherapy. N. Engl. J. Med. 367:131187–97
    [Google Scholar]
  70. 70. 
    Beer TM, Armstrong AJ, Rathkopf DE, Loriot Y, Sternberg CN et al. 2014. Enzalutamide in metastatic prostate cancer before chemotherapy. N. Engl. J. Med. 371:5424–33
    [Google Scholar]
  71. 71. 
    Davis ID, Martin AJ, Stockler MR, Begbie S, Chi KN et al. 2019. Enzalutamide with standard first-line therapy in metastatic prostate cancer. N. Engl. J. Med. 381:2121–31
    [Google Scholar]
  72. 72. 
    Armstrong AJ, Szmulewitz RZ, Petrylak DP, Holzbeierlein J, Villers A et al. 2019. ARCHES: a randomized, phase III study of androgen deprivation therapy with enzalutamide or placebo in men with metastatic hormone-sensitive prostate cancer. J. Clin. Oncol. 37:322974–86
    [Google Scholar]
  73. 73. 
    Hussain M, Fizazi K, Saad F, Rathenborg P, Shore N, Ferreira U et al. 2018. Enzalutamide in men with nonmetastatic, castration-resistant prostate cancer. N. Engl. J. Med. 378:262465–74
    [Google Scholar]
  74. 74. 
    Beer TM, Armstrong AJ, Rathkopf D, Loriot Y, Sternberg CN et al. 2017. Enzalutamide in men with chemotherapy-naive metastatic castration-resistant prostate cancer: extended analysis of the phase 3 PREVAIL study. Eur. Urol. 71:2151–54
    [Google Scholar]
  75. 75. 
    Sternberg CN, Fizazi K, Saad F, Shore ND, De Giorgi U et al. 2020. Enzalutamide and survival in nonmetastatic, castration-resistant prostate cancer. N. Engl. J. Med. 382:232197–206
    [Google Scholar]
  76. 76. 
    Higano CS. 2020. Cardiovascular disease and androgen axis-targeted drugs for prostate cancer. N. Engl. J. Med. 382:232257–59
    [Google Scholar]
  77. 77. 
    Chong JT, Oh WK, Liaw BC. 2018. Profile of apalutamide in the treatment of metastatic castration-resistant prostate cancer: evidence to date. OncoTargets Ther. 11:2141–47
    [Google Scholar]
  78. 78. 
    Small EJ, Saad F, Chowdhury S, Oudard S, Hadaschik BA et al. 2019. Apalutamide and overall survival in non-metastatic castration-resistant prostate cancer. Ann. Oncol. 30:111813–20
    [Google Scholar]
  79. 79. 
    Chi KN, Agarwal N, Bjartell A, Chung BH, Pereira de Santana, Gomes AJ et al. 2019. Apalutamide for metastatic, castration-sensitive prostate cancer. N. Engl. J. Med. 381:113–24
    [Google Scholar]
  80. 80. 
    Smith MR, Saad F, Chowdhury S, Oudard S, Hadaschik BA et al. 2021. Apalutamide and overall survival in prostate cancer. Eur. Urol. 79:1150–58
    [Google Scholar]
  81. 81. 
    Fizazi K, Smith MR, Tombal B. 2018. Clinical development of darolutamide: a novel androgen receptor antagonist for the treatment of prostate cancer. Clin. Genitourin. Cancer 16:5332–40
    [Google Scholar]
  82. 82. 
    Fizazi K, Shore N, Tammela TL, Ulys A, Vjaters E et al. 2020. Nonmetastatic, castration-resistant prostate cancer and survival with darolutamide. N. Engl. J. Med. 383:111040–49
    [Google Scholar]
  83. 83. 
    Crawford ED, Stanton W, Mandair D 2020. Darolutamide: an evidenced-based review of its efficacy and safety in the treatment of prostate cancer. Cancer Manag. Res. 12:5667–76
    [Google Scholar]
  84. 84. 
    Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ et al. 2015. Integrative clinical genomics of advanced prostate cancer. Cell 161:51215–28
    [Google Scholar]
  85. 85. 
    Cai C, He HH, Chen S, Coleman I, Wang H et al. 2011. Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1. Cancer Cell 20:4457–71
    [Google Scholar]
  86. 86. 
    Shan LX, Rodriguez MC, Jänne OA. 1990. Regulation of androgen receptor protein and mRNA concentrations by androgens in rat ventral prostate and seminal vesicles and in human hepatoma cells. Mol. Endocrinol. 4:111636–46
    [Google Scholar]
  87. 87. 
    Waltering KK, Helenius MA, Sahu B, Manni V, Linja MJ et al. 2009 Increased expression of androgen receptor sensitizes prostate cancer cells to low levels of androgens. Cancer Res 69:208141–49
    [Google Scholar]
  88. 88. 
    Romanel A, Gasi Tandefelt D, Conteduca V, Jayaram A, Casiraghi N et al. 2015. Plasma AR and abiraterone-resistant prostate cancer. Sci. Transl. Med. 7:312312re10
    [Google Scholar]
  89. 89. 
    Wyatt AW, Azad AA, Volik SV, Annala M, Beja K et al. 2016. Genomic alterations in cell-free DNA and enzalutamide resistance in castration-resistant prostate cancer. JAMA Oncol. 2:121598–606
    [Google Scholar]
  90. 90. 
    Jayaram A, Wingate A, Wetterskog D, Conteduca V, Khalaf D et al. 2019. Plasma androgen receptor copy number status at emergence of metastatic castration-resistant prostate cancer: a pooled multicohort analysis. JCO Precis Oncol 3:PO.19.00123
    [Google Scholar]
  91. 91. 
    Conteduca V, Wetterskog D, Sharabiani MTA, Grande E, Fernandez-Perez MP et al. 2017. Androgen receptor gene status in plasma DNA associates with worse outcome on enzalutamide or abiraterone for castration-resistant prostate cancer: a multi-institution correlative biomarker study. Ann. Oncol. 28:71508–16
    [Google Scholar]
  92. 92. 
    Fettke H, Kwan EM, Docanto MM, Bukczynska P, Ng N et al. 2020. Combined cell-free DNA and RNA profiling of the androgen receptor: clinical utility of a novel multianalyte liquid biopsy assay for metastatic prostate cancer. Eur. Urol. 78:2173–80
    [Google Scholar]
  93. 93. 
    Wallen MJ, Linja M, Kaartinen K, Schleutker J, Visakorpi T. 1999. Androgen receptor gene mutations in hormone-refractory prostate cancer. J. Pathol. 189:4559–63
    [Google Scholar]
  94. 94. 
    Marcelli M, Ittmann M, Mariani S, Sutherland R, Nigam R et al. 2000. Androgen receptor mutations in prostate cancer. Cancer Res 60:4944–49
    [Google Scholar]
  95. 95. 
    Steketee K, Timmerman L, Ziel-van der Made AC, Doesburg P, Brinkmann AO, Trapman J. 2002. Broadened ligand responsiveness of androgen receptor mutants obtained by random amino acid substitution of H874 and mutation hot spot T877 in prostate cancer. Int. J. Cancer 100:3309–17
    [Google Scholar]
  96. 96. 
    Duff J, McEwan IJ. 2005. Mutation of histidine 874 in the androgen receptor ligand-binding domain leads to promiscuous ligand activation and altered p160 coactivator interactions. Mol. Endocrinol. 19:122943–54
    [Google Scholar]
  97. 97. 
    Korpal M, Korn JM, Gao X, Rakiec DP, Ruddy DA et al. 2013. An F876L mutation in androgen receptor confers genetic and phenotypic resistance to MDV3100 (enzalutamide). Cancer Discov 3:91030–43
    [Google Scholar]
  98. 98. 
    Liu H, An X, Li S, Wang Y, Li J, Liu H 2015. Interaction mechanism exploration of R-bicalutamide/S-1 with WT/W741L AR using molecular dynamics simulations. Mol. BioSystems 11:123347–54
    [Google Scholar]
  99. 99. 
    Beltran H, Yelensky R, Frampton GM, Park K, Downing SR et al. 2013. Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity. Eur. Urol. 63:5920–26
    [Google Scholar]
  100. 100. 
    Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM et al. 2012. The mutational landscape of lethal castration-resistant prostate cancer. Nature 487:7406239–43
    [Google Scholar]
  101. 101. 
    Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y et al. 2010. Integrative genomic profiling of human prostate cancer. Cancer Cell 18:111–22
    [Google Scholar]
  102. 102. 
    Efstathiou E, Titus M, Wen S, Hoang A, Karlou M et al. 2015. Molecular characterization of enzalutamide-treated bone metastatic castration-resistant prostate cancer. Eur. Urol. 67:153–60
    [Google Scholar]
  103. 103. 
    Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M et al. 2014. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med. 371:111028–38
    [Google Scholar]
  104. 104. 
    Watson PA, Chen YF, Balbas MD, Wongvipat J, Socci ND et al. 2010. Constitutively active androgen receptor splice variants expressed in castration-resistant prostate cancer require full-length androgen receptor. PNAS 107:3916759–65
    [Google Scholar]
  105. 105. 
    Antonarakis ES, Lu C, Luber B, Wang H, Chen Y et al. 2017. Clinical significance of androgen receptor splice variant-7 mRNA detection in circulating tumor cells of men with metastatic castration-resistant prostate cancer treated with first- and second-line abiraterone and enzalutamide. J. Clin. Oncol. 35:192149–56
    [Google Scholar]
  106. 106. 
    Scher HI, Graf RP, Schreiber NA, Jayaram A, Winquist E et al. 2018. Assessment of the validity of nuclear-localized androgen receptor splice variant 7 in circulating tumor cells as a predictive biomarker for castration-resistant prostate cancer. JAMA Oncol 4:91179–86
    [Google Scholar]
  107. 107. 
    Armstrong AJ, Halabi S, Luo J, Nanus DM, Giannakakou P et al. 2019. Prospective multicenter validation of androgen receptor splice variant 7 and hormone therapy resistance in high-risk castration-resistant prostate cancer: the PROPHECY study. J. Clin. Oncol. 37:131120–29
    [Google Scholar]
  108. 108. 
    Dirix L. 2019. Predictive significance of androgen receptor splice variant 7 in patients with metastatic castration-resistant prostate cancer: the PROPHECY study. J. Clin. Oncol. 37:242180–81
    [Google Scholar]
  109. 109. 
    Sharp A, Porta N, Lambros MBK, Welti JC, Paschalis A et al. 2019. Dissecting prognostic from predictive utility: circulating AR-V7 biomarker testing for advanced prostate cancer. J. Clin. Oncol. 37:242182–84
    [Google Scholar]
  110. 110. 
    De Laere B, Ost P, Gronberg H, Lindberg J. 2019. Has the PROPHECY of AR-V7 been fulfilled?. J. Clin. Oncol. 37:242181–82
    [Google Scholar]
  111. 111. 
    Del Re M, Conteduca V, Crucitta S, Gurioli G, Casadei C et al. 2021. Androgen receptor gain in circulating free DNA and splicing variant 7 in exosomes predict clinical outcome in CRPC patients treated with abiraterone and enzalutamide. Prostate Cancer Prostatic Dis. 24:2524–31
    [Google Scholar]
  112. 112. 
    Fan L, Zhang F, Xu S, Cui X, Hussain A et al. 2018. Histone demethylase JMJD1A promotes alternative splicing of AR variant 7 (AR-V7) in prostate cancer cells. PNAS 115:20E4584–93
    [Google Scholar]
  113. 113. 
    Duan L, Chen Z, Lu J, Liang Y, Wang M et al. 2019. Histone lysine demethylase KDM4B regulates the alternative splicing of the androgen receptor in response to androgen deprivation. Nucleic Acids Res 47:2211623–36
    [Google Scholar]
  114. 114. 
    Paschalis A, Welti J, Neeb A, Yuan W, Figueiredo I et al. 2021. JMJD6 is a druggable oxygenase that regulates AR-V7 expression in prostate cancer. Cancer Res 81:41087–100
    [Google Scholar]
  115. 115. 
    Titus MA, Schell MJ, Lih FB, Tomer KB, Mohler JL. 2005. Testosterone and dihydrotestosterone tissue levels in recurrent prostate cancer. Clin. Cancer Res. 11:134653–57
    [Google Scholar]
  116. 116. 
    Tamae D, Mostaghel E, Montgomery B, Nelson PS, Balk SP et al. 2015. The DHEA-sulfate depot following P450c17 inhibition supports the case for AKR1C3 inhibition in high risk localized and advanced castration resistant prostate cancer. Chem. Biol. Interact. 234:332–38
    [Google Scholar]
  117. 117. 
    Lu C, Terbuch A, Dolling D, Yu J, Wang H et al. 2020. Treatment with abiraterone and enzalutamide does not overcome poor outcome from metastatic castration-resistant prostate cancer in men with the germline homozygous HSD3B1 c.1245C genotype. Ann. Oncol. 31:91178–85
    [Google Scholar]
  118. 118. 
    Chang KH, Li R, Kuri B, Lotan Y, Roehrborn CG et al. 2013. A gain of function mutation in DHT synthesis in castration-resistant prostate cancer. Cell 154:51074–84
    [Google Scholar]
  119. 119. 
    Khalaf DJ, Aragon IM, Annala M, Lozano R, Taavitsainen S et al. 2020. HSD3B1 (1245A>C) germline variant and clinical outcomes in metastatic castration-resistant prostate cancer patients treated with abiraterone and enzalutamide: results from two prospective studies. Ann. Oncol. 31:91186–97
    [Google Scholar]
  120. 120. 
    Arora VK, Schenkein E, Murali R, Subudhi SK, Wongvipat J et al. 2013. Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell 155:61309–22
    [Google Scholar]
  121. 121. 
    Li J, Alyamani M, Zhang A, Chang KH, Berk M et al. 2017. Aberrant corticosteroid metabolism in tumor cells enables GR takeover in enzalutamide resistant prostate cancer. eLife 6:e20183
    [Google Scholar]
  122. 122. 
    Lu NZ, Wardell SE, Burnstein KL, Defranco D, Fuller PJ et al. 2006. International Union of Pharmacology. LXV. The pharmacology and classification of the nuclear receptor superfamily: glucocorticoid, mineralocorticoid, progesterone, and androgen receptors. Pharmacol. Rev. 58:4782–97
    [Google Scholar]
  123. 123. 
    Grindstad T, Andersen S, Al-Saad S, Donnem T, Kiselev Y et al. 2015. High progesterone receptor expression in prostate cancer is associated with clinical failure. PLOS ONE 10:2e0116691
    [Google Scholar]
  124. 124. 
    Beltran H, Tomlins S, Aparicio A, Arora V, Rickman D et al. 2014. Aggressive variants of castration resistant prostate cancer. Clin. Cancer Res. 20:112846–50
    [Google Scholar]
  125. 125. 
    Parimi V, Goyal R, Poropatich K, Yang XJ 2014. Neuroendocrine differentiation of prostate cancer: a review. Am. J. Clin. Exp. Urol. 2:4273–85
    [Google Scholar]
  126. 126. 
    Small EJ, Huang J, Youngren J, Sokolov A, Aggarwal RR et al. 2015. Characterization of neuroendocrine prostate cancer (NEPC) in patients with metastatic castration resistant prostate cancer (mCRPC) resistant to abiraterone (Abi) or enzalutamide (Enz): preliminary results from the SU2C/PCF/AACR West Coast Prostate Cancer Dream Team (WCDT). J. Clin. Oncol. 33:15 Suppl.5003
    [Google Scholar]
  127. 127. 
    Lapuk AV, Volik SV, Wang Y, Collins CC 2014. The role of mRNA splicing in prostate cancer. Asian J. Androl. 16:4515–21
    [Google Scholar]
  128. 128. 
    Mu P, Zhang Z, Benelli M, Karthaus WR, Hoover E et al. 2017. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science 355:632084–88
    [Google Scholar]
  129. 129. 
    Zhou Z, Flesken-Nikitin A, Corney DC, Wang W, Goodrich DW et al. 2006. Synergy of p53 and Rb deficiency in a conditional mouse model for metastatic prostate cancer. Cancer Res 66:167889–98
    [Google Scholar]
  130. 130. 
    Annala M, Vandekerkhove G, Khalaf D, Taavitsainen S, Beja K et al. 2018. Circulating tumor DNA genomics correlate with resistance to abiraterone and enzalutamide in prostate cancer. Cancer Discov 8:4444–57
    [Google Scholar]
  131. 131. 
    De Laere B, Oeyen S, Mayrhofer M, Whitington T, van Dam PJ et al. 2019. TP53 outperforms other androgen receptor biomarkers to predict abiraterone or enzalutamide outcome in metastatic castration-resistant prostate cancer. Clin. Cancer Res. 25:61766–73
    [Google Scholar]
  132. 132. 
    Khalaf DJ, Annala M, Taavitsainen S, Finch DL, Oja C et al. 2019. Optimal sequencing of enzalutamide and abiraterone acetate plus prednisone in metastatic castration-resistant prostate cancer: a multicentre, randomised, open-label, phase 2, crossover trial. Lancet Oncol 20:121730–39
    [Google Scholar]
  133. 133. 
    Watson PA, Arora VK, Sawyers CL. 2015. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer 15:12701–11
    [Google Scholar]
  134. 134. 
    Le Moigne R, Hong NH, Pearson P, Lauriault V, Banuelos CA et al. 2020. Preclinical profile of EPI-7386, a second-generation N-terminal domain androgen receptor inhibitor for the treatment of prostate cancer. Ann. Oncol. 31:Suppl. 4S475
    [Google Scholar]
  135. 135. 
    Neklesa T, Snyder LB, Willard RR, Vitale N, Pizzano J et al. 2019. ARV-110: an oral androgen receptor PROTAC degrader for prostate cancer. J. Clin. Oncol. 37:7 Suppl259
    [Google Scholar]
  136. 136. 
    Seki M, Minamiguchi K, Kajiwara D, Mizutani H, Yoshida S et al. 2018. TAS3681, a novel type of AR antagonist with AR downregulating activity, as a new targeted therapy for aberrant AR-driven prostate cancer. J. Clin. Oncol. 36:6 Suppl298
    [Google Scholar]
  137. 137. 
    Li J, Fu X, Cao S, Li J, Xing S et al. 2018. Membrane-associated androgen receptor (AR) potentiates its transcriptional activities by activating heat shock protein 27 (HSP27). J. Biol. Chem. 293:3312719–29
    [Google Scholar]
  138. 138. 
    Lamoureux F, Thomas C, Yin MJ, Kuruma H, Beraldi E et al. 2011. Clusterin inhibition using OGX-011 synergistically enhances Hsp90 inhibitor activity by suppressing the heat shock response in castrate-resistant prostate cancer. Cancer Res 71:175838–49
    [Google Scholar]
  139. 139. 
    Sharma C, Seo YH. 2018. Small molecule inhibitors of HSF1-activated pathways as potential next-generation anticancer therapeutics. Molecules 23:112757
    [Google Scholar]
  140. 140. 
    Cato L, Neeb A, Sharp A, Buzon V, Ficarro SB et al. 2017. Development of Bag-1L as a therapeutic target in androgen receptor-dependent prostate cancer. eLife 6:e27159
    [Google Scholar]
  141. 141. 
    Wang L, Lonard DM, O'Malley BW. 2016. The role of steroid receptor coactivators in hormone dependent cancers and their potential as therapeutic targets. Horm. Cancer 7:4229–35
    [Google Scholar]
  142. 142. 
    Welti J, Sharp A, Brooks N, Yuan W, McNair C et al. 2021. Targeting p300/CBP axis in lethal prostate cancer. Cancer Discov. 11:51118–37
    [Google Scholar]
  143. 143. 
    Mateo J, Porta N, Bianchini D, McGovern U, Elliott T et al. 2020. Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol 21:1162–74
    [Google Scholar]
  144. 144. 
    de Bono J, Mateo J, Fizazi K, Saad F, Shore N et al. 2020. Olaparib for metastatic castration-resistant prostate cancer. N. Engl. J. Med. 382:222091–102
    [Google Scholar]
  145. 145. 
    Gui B, Gui F, Takai T, Feng C, Bai X et al. 2019. Selective targeting of PARP-2 inhibits androgen receptor signaling and prostate cancer growth through disruption of FOXA1 function. PNAS 116:2914573–82
    [Google Scholar]
  146. 146. 
    Liu B, Li L, Yang G, Geng C, Luo Y, Wu W et al. 2019. PARP inhibition suppresses GR-MYCN-CDK5-RB1-E2F1 signaling and neuroendocrine differentiation in castration-resistant prostate cancer. Clin. Cancer Res. 25:226839–51
    [Google Scholar]
  147. 147. 
    Abida W, Cyrta J, Heller G, Prandi D, Armenia J et al. 2019. Genomic correlates of clinical outcome in advanced prostate cancer. PNAS 116:2311428–36
    [Google Scholar]
  148. 148. 
    Zimmermann M, Murina O, Reijns MAM, Agathanggelou A, Challis R et al. 2018. CRISPR screens identify genomic ribonucleotides as a source of PARP-trapping lesions. Nature 559:7713285–89
    [Google Scholar]
  149. 149. 
    Antonarakis ES. 2018. Abiraterone plus olaparib in prostate cancer: a new form of synthetic lethality?. Lancet Oncol 19:7860–61
    [Google Scholar]
  150. 150. 
    Agarwal N, Shore N, Dunshee C, Karsh L, Azad A et al. 2020. TALAPRO-2: a placebo-controlled phase III study of talazoparib (TALA) plus enzalutamide (ENZA) for patients with first-line metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 38:Suppl. 6TPS264
    [Google Scholar]
  151. 151. 
    McCall P, Gemmell LK, Mukherjee R, Bartlett JM, Edwards J. 2008. Phosphorylation of the androgen receptor is associated with reduced survival in hormone-refractory prostate cancer patients. Br. J. Cancer 98:61094–101
    [Google Scholar]
  152. 152. 
    de Bono JS, Bracarda S, Sternberg CN, Chi KN, Olmos D et al. 2020. IPATential150: phase III study of ipatasertib (ipat) plus abiraterone (abi) versus placebo (pbo) plus abi in metastatic castration-resistant prostate cancer (mCRPC). Ann. Oncol. 31:Suppl. 4S1143–215
    [Google Scholar]
  153. 153. 
    Ko J, Meyer AN, Haas M, Donoghue DJ. 2021. Characterization of FGFR signaling in prostate cancer stem cells and inhibition via TKI treatment. Oncotarget 12:122–36
    [Google Scholar]
  154. 154. 
    Galazi M, Salji M, Weitsman G, Gomez V, Leung HY, Ng T. 2018. Effect of HER3 dimer feedback upregulation via PI3K-AKT-mTOR pathway inhibition on androgen receptor (AR) stabilization in metastatic prostate cancer. J. Clin. Oncol. 36:Suppl. 6226
    [Google Scholar]
  155. 155. 
    Anestis A, Zoi I, Papavassiliou AG, Karamouzis MV. 2020. Androgen receptor in breast cancer-clinical and preclinical research insights. Molecules 25:2358
    [Google Scholar]
  156. 156. 
    Dalin MG, Watson PA, Ho AL, Morris LG. 2017. Androgen receptor signaling in salivary gland cancer. Cancers 9:217
    [Google Scholar]
  157. 157. 
    Stankova K, Brown JS, Dalton WS, Gatenby RA 2019. Optimizing cancer treatment using game theory: a review. JAMA Oncol 5:196–103
    [Google Scholar]
  158. 158. 
    Mateo J, Sharp A, de Bono JS. 2017. Investigating genomic aberrations of the androgen receptor: moving closer to more precise prostate cancer care?. Eur. Urol. 72:2201–4
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-052220-015912
Loading
/content/journals/10.1146/annurev-pharmtox-052220-015912
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error