1932

Abstract

Electron energy-loss spectroscopy (EELS) offers a window to view nanoscale properties and processes. When performed in a scanning transmission electron microscope, EELS can simultaneously render images of nanoscale objects with subnanometer spatial resolution and correlate them with spectroscopic information at a spectral resolution of ∼10–100 meV. Consequently, EELS is a near-perfect tool for understanding the optical and electronic properties of individual plasmonic metal nanoparticles and few-nanoparticle assemblies, which are significant in a wide range of fields. This review presents an overview of basic plasmonics and EELS theory and highlights several recent noteworthy experiments involving the interrogation of plasmonic metal nanoparticle systems using electron beams.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040214-121612
2016-05-27
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/physchem/67/1/annurev-physchem-040214-121612.html?itemId=/content/journals/10.1146/annurev-physchem-040214-121612&mimeType=html&fmt=ahah

Literature Cited

  1. Kreibig U, Genzel L. 1.  1985. Optical absorption of small metallic particles. Surf. Sci. 156:678–700 [Google Scholar]
  2. Jeanmaire DL, Van Duyne RP. 2.  1977. Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfacial Electrochem. 84:1–20 [Google Scholar]
  3. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I. 3.  et al. 1997. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78:1667 [Google Scholar]
  4. Nie S, Emory SR. 4.  1997. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–6 [Google Scholar]
  5. Malinsky MD, Kelly KL, Schatz GC, Van Duyne RP. 5.  2001. Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers. J. Am. Chem. Soc. 123:1471–82 [Google Scholar]
  6. Huang X, El-Sayed IH, Qian W, El-Sayed MA. 6.  2006. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128:2115–20 [Google Scholar]
  7. Linic S, Christopher P, Ingram DB. 7.  2011. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10:911–21 [Google Scholar]
  8. Herzog JB, Knight MW, Li Y, Evans KM, Halas NJ, Natelson D. 8.  2013. Dark plasmons in hot spot generation and polarization in interelectrode nanoscale junctions. Nano Lett. 13:1359–64 [Google Scholar]
  9. Gómez D, Teo Z, Altissimo M, Davis T, Earl S, Roberts A. 9.  2013. The dark side of plasmonics. Nano Lett. 13:3722–28 [Google Scholar]
  10. Ahmadivand A, Pala N, Güney DO. 10.  2015. Enhancement of photothermal heat generation by metallodielectric nanoplasmonic clusters. Opt. Express 23:A682–91 [Google Scholar]
  11. Baldwin CL, Bigelow NW, Masiello DJ. 11.  2014. Thermal signatures of plasmonic Fano interferences: toward the achievement of nanolocalized temperature manipulation. J. Phys. Chem. Lett. 5:1347–54 [Google Scholar]
  12. Mukherjee S, Libisch F, Large N, Neumann O, Brown LV. 12.  et al. 2013. Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett. 13:240–47 [Google Scholar]
  13. Ozbay E. 13.  2006. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–93 [Google Scholar]
  14. Maier SA. 14.  2007. Plasmonics: Fundamentals and Applications New York: Springer
  15. Mock JJ, Oldenburg SJ, Smith DR, Schultz DA, Schultz S. 15.  2002. Composite plasmon resonant nanowires. Nano Lett. 2:465–9 [Google Scholar]
  16. Murray WA, Barnes WL. 16.  2007. Plasmonic materials. Adv. Mater. 19:3771–82 [Google Scholar]
  17. Sönnichsen C, Alivisatos AP. 17.  2005. Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy. Nano Lett. 5:301–4 [Google Scholar]
  18. Schultz S, Smith DR, Mock JJ, Schultz DA. 18.  2000. Single-target molecule detection with nonbleaching multicolor optical immunolabels. PNAS 97:996–1001 [Google Scholar]
  19. Slaughter LS, Chang W-S, Swanglap P, Tcherniak A, Khanal PB. 19.  et al. 2010. Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: varying the width at constant aspect ratio. J. Phys. Chem. C 114:4934–38 [Google Scholar]
  20. Lindfors K, Kalkbrenner T, Stoller P, Sandoghdar V. 20.  2004. Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy. Phys. Rev. Lett. 93:037401 [Google Scholar]
  21. Chang W-S, Ha JW, Slaughter LS, Link S. 21.  2010. Plasmonic nanorod absorbers as orientation sensors. PNAS 107:2781–86 [Google Scholar]
  22. Berciaud S, Cognet L, Blab GA, Lounis B. 22.  2004. Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals. Phys. Rev. Lett. 93:257402 [Google Scholar]
  23. Ghenuche P, Cherukulappurath S, Taminiau TH, van Hulst NF, Quidant R. 23.  2008. Spectroscopic mode mapping of resonant plasmon nanoantennas. Phys. Rev. Lett. 101:116805 [Google Scholar]
  24. Wessel J. 24.  1985. Surface-enhanced optical microscopy. J. Opt. Soc. Am. B 2:1538–41 [Google Scholar]
  25. Duo L, Biagioni P, Finazzi M. 25.  2010. Recent developments in linear and nonlinear near-field microscopy on single plasmonic nanoparticles. Phys. Status Solidi B 247:2040–46 [Google Scholar]
  26. Olson J, Dominguez-Medina S, Hoggard A, Wang L-Y, Chang W-S, Link S. 26.  2015. Optical characterization of single plasmonic nanoparticles. Chem. Soc. Rev. 44:40–57 [Google Scholar]
  27. Rudberg E. 27.  1930. Characteristic energy losses of electrons scattered from incandescent solids. Proc. R. Soc. Lond. 127:111–40 [Google Scholar]
  28. Ruthemann G. 28.  1941. Diskrete energieverluste schneller elektronen in festkörpern. Naturwissenschaften 29:648 [Google Scholar]
  29. Bohm D, Pines D. 29.  1953. A collective description of electron interactions: III. Coulomb interactions in a degenerate electron gas. Phys. Rev. 92:3609–625 [Google Scholar]
  30. Pines D, Bohm D. 30.  1952. A collective description of electron interactions: II. Collective vs individual particle aspects of the interactions. Phys. Rev. 85:338–353 [Google Scholar]
  31. Drude P. 31.  1900. Zur elektronentheorie der metalle. Ann. Phys. 306:566–613 [Google Scholar]
  32. Powell C, Swan J. 32.  1959. Origin of the characteristic electron energy losses in magnesium. Phys. Rev. 116:81–83 [Google Scholar]
  33. Stern E, Ferrell R. 33.  1960. Surface plasma oscillations of a degenerate electron gas. Phys. Rev. 120:130–136 [Google Scholar]
  34. Fujimoto F, Komaki K-I. 34.  1968. Plasma oscillations excited by a fast electron in a metallic particle. J. Phys. Soc. Jpn. 25:1679–87 [Google Scholar]
  35. Crowell J, Ritchie R. 35.  1968. Radiative decay of Coulomb-stimulated plasmons in spheres. Phys. Rev. 172:436–440 [Google Scholar]
  36. Kokkinakis T, Alexopoulos K. 36.  1972. Observation of radiative decay of surface plasmons in small silver particles. Phys. Rev. Lett. 28:1632–34 [Google Scholar]
  37. Batson P. 37.  1980. Damping of bulk plasmons in small aluminum spheres. Solid State Commun. 34:477–80 [Google Scholar]
  38. Batson P. 38.  1982. A new surface plasmon resonance in clusters of small aluminum spheres. J. Microsc. 9:277–82 [Google Scholar]
  39. Cowley J. 39.  1982. Surface energies and surface structure of small crystals studied by use of a STEM instrument. Surf. Sci. 114:587–606 [Google Scholar]
  40. Cowley JM. 40.  1982. Energy losses of fast electrons at crystal surfaces. Phys. Rev. B 25:1401–4 [Google Scholar]
  41. Colliex C. 41.  1985. An illustrated review of various factors governing the high spatial resolution capabilities in EELS microanalysis. J. Microsc. 18:131–50 [Google Scholar]
  42. Howie A, Milne RH. 42.  1984. Electron energy loss spectra and reflection images from surfaces. J. Microsc. 136:279–85 [Google Scholar]
  43. Wang Z, Cowley J. 43.  1987. Surface plasmon excitation for supported metal particles. J. Microsc. 21:77–93 [Google Scholar]
  44. Wang Z, Cowley J. 44.  1987. Excitation of the supported metal particle surface plasmon with external electron beam. J. Microsc. 21:335–45 [Google Scholar]
  45. García de Abajo FJ. 45.  2010. Optical excitations in electron microscopy. Rev. Mod. Phys. 82:209–75 [Google Scholar]
  46. Egerton R. 46.  2011. Electron Energy-Loss Spectroscopy in the Electron Microscope New York: Springer
  47. Kociak M, Stéphan O, Walls MG, Tencé M, Colliex C. 47.  2011. Spatially resolved EELS: the spectrum-imaging technique and its applications. Scanning Transmission Electron Microscopy SJ Pennycook, PD Nellist 163–205 New York: Springer [Google Scholar]
  48. Pennycook SJ, Varela M, Lupini AR, Oxley MP, Chisholm MF. 48.  2009. Atomic-resolution spectroscopic imaging: past, present and future. J. Electron Microsc. 58:87–97 [Google Scholar]
  49. Browning ND, Arslan I, Erni R, Idrobo JC, Ziegler A. 49.  et al. 2006. Monochromators and aberration correctors: taking EELS to new levels of energy and spatial resolution. J. Phys. Conf. Ser. 26:59–64 [Google Scholar]
  50. Sawada H, Shimura N, Hosokawa F, Shibata N, Ikuhara Y. 50.  2015. Resolving 45-pm-separated Si–Si atomic columns with an aberration-corrected STEM. Microscopy 64:213–17 [Google Scholar]
  51. Dellby N, Corbin GJ, Dellby Z, Lovejoy TC, Szilagyi ZS. 51.  2014. Tuning high order geometric aberrations in quadrupole-octupole correctors. Microsc. Microanal. 20:928–29 [Google Scholar]
  52. Krivanek OL, Lovejoy TC, Dellby N, Aoki T, Carpenter RW. 52.  et al. 2014. Vibrational spectroscopy in the electron microscope. Nature 514:209–12 [Google Scholar]
  53. Sachan R, Malasi A, Ge J, Yadavali S, Krishna H. 53.  et al. 2014. Ferroplasmons: Intense localized surface plasmons in metal-ferromagnetic nanoparticles. ACS Nano 8:9790–98 [Google Scholar]
  54. Kociak M, Stephan O. 54.  2014. Mapping plasmons at the nanometer scale in an electron microscope. Chem. Soc. Rev. 43:3865–83 [Google Scholar]
  55. Pitarke J, Silkin V, Chulkov E, Echenique P. 55.  2007. Theory of surface plasmons and surface-plasmon polaritons. Rep. Prog. Phys. 70:1–87 [Google Scholar]
  56. Schwinger JS, Tsai W, De Raad LL, Milton K. 56.  1998. Classical Electrodynamics Reading, MA: Perseus
  57. Ashcroft NW, Mermin ND. 57.  1976. Solid State Physics Philadelphia: Saunders
  58. Fröhlich H. 58.  1949. Theory of Dielectrics Oxford, UK: Clarendon
  59. Devreese JT, Kunz AB, Collins TC. 59.  1974. Elementary Excitations in Solids, Molecules, and Atoms 1 New York: Springer
  60. Ferrell TL, Echenique PM. 60.  1985. Generation of surface excitations on dielectric spheres by an external electron beam. Phys. Rev. Lett. 55:1526–29 [Google Scholar]
  61. Barwick B, Flannigan DJ, Zewail AH. 61.  2009. Photon-induced near-field electron microscopy. Nature 462:902–6 [Google Scholar]
  62. Ferrell T, Warmack R, Anderson V, Echenique P. 62.  1987. Analytical calculation of stopping power for isolated small spheres. Phys. Rev. B 35:7365–71 [Google Scholar]
  63. Purcell EM, Pennypacker CR. 63.  1973. Scattering and absorption of light by nonspherical dielectric grains. Astrophys. J. 186:705–14 [Google Scholar]
  64. Bigelow NW, Vaschillo A, Iberi V, Camden JP, Masiello DJ. 64.  2012. Characterization of the electron- and photon-driven plasmonic excitations of metal nanorods. ACS Nano 6:7497–504 [Google Scholar]
  65. Draine BT, Flatau PJ. 65.  1994. Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. 11:1491–99 [Google Scholar]
  66. Geuquet N, Henrard L. 66.  2010. EELS and optical response of a noble metal nanoparticle in the frame of a discrete dipole approximation. J. Microsc. 110:1075–80 [Google Scholar]
  67. Yang W-H, Schatz GC, Van Duyne RP. 67.  1995. Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes. J. Chem. Phys. 103:869–75 [Google Scholar]
  68. Bigelow NW, Vaschillo A, Camden JP, Masiello DJ. 68.  2013. Signatures of Fano interferences in the electron energy loss spectroscopy and cathodoluminescence of symmetry-broken nanorod dimers. ACS Nano 7:4511–19 [Google Scholar]
  69. Li G, Cherqui C, Bigelow NW, Duscher G, Straney PJ. 69.  et al. 2015. Spatially mapping energy transfer from single plasmonic particles to semiconductor substrates via STEM/EELS. Nano Lett. 15:3465–71 [Google Scholar]
  70. Draine BT, Goodman J. 70.  1993. Beyond Clausius–Mossotti-wave propagation on a polarizable point lattice and the discrete dipole approximation. Astrophys. J. 405:685–97 [Google Scholar]
  71. Draine BT, Flatau PJ. 71.  1994. Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A 11:1491–99 [Google Scholar]
  72. Guillaume S-O, García de Abajo FJ, Henrard L. 72.  2013. Efficient modal-expansion discrete-dipole approximation: application to the simulation of optical extinction and electron energy-loss spectroscopies. Phys. Rev. B 88:245439 [Google Scholar]
  73. Hall WS. 73.  1994. The Boundary Element Method Dordrecht, Netherlands: Springer
  74. Hohenester U, Trügler A. 74.  2012. MNPBEM—a Matlab toolbox for the simulation of plasmonic nanoparticles. Comput. Phys. Commun. 183:370–81 [Google Scholar]
  75. Hohenester U. 75.  2014. Simulating electron energy loss spectroscopy with the MNPBEM toolbox. Comput. Phys. Commun. 185:1177–87 [Google Scholar]
  76. García de Abajo FJ, Aizpurua J. 76.  1997. Numerical simulation of electron energy loss near inhomogeneous dielectrics. Phys. Rev. B 56:15873–84 [Google Scholar]
  77. García de Abajo FJ, Howie A. 77.  1998. Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics. Phys. Rev. Lett. 80:235180–83 [Google Scholar]
  78. García de Abajo FJ, Howie A. 78.  2002. Retarded field calculation of electron energy loss in inhomogeneous dielectrics. Phys. Rev. B 65:115418 [Google Scholar]
  79. Bellido EP, Rossouw D, Botton GA. 79.  2014. Toward 10 mev electron energy-loss spectroscopy resolution for plasmonics. Microsc. Microanal. 20:767–78 [Google Scholar]
  80. Hörl A, Trügler A, Hohenester U. 80.  2013. Tomography of particle plasmon fields from electron energy loss spectroscopy. Phys. Rev. Lett. 111:076801 [Google Scholar]
  81. Waxenegger J, Trügler A, Hohenester U. 81.  2015. Plasmonics simulations with the MNPBEM toolbox: consideration of substrates and layer structures. Comput. Phys. Commun. 193:138–50 [Google Scholar]
  82. Yee KS. 82.  1966. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans. Antennas Propag. 14:302–7 [Google Scholar]
  83. Taflove A, Hagness SC. 83.  2005. Computational Electrodynamics Norwood, MA: Artech House
  84. Oskooi AF, Roundy D, Ibanescu M, Bermel P, Joannopoulos J, Johnson SG. 84.  2010. MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 181:687–702 [Google Scholar]
  85. Cao Y, Manjavacas A, Large N, Nordlander P. 85.  2015. Electron energy-loss spectroscopy calculation in finite-difference time-domain package. ACS Photonics 2:369–75 [Google Scholar]
  86. Matyssek C, Schmidt V, Hergert W, Wriedt T. 86.  2012. The T-matrix method in electron energy loss and cathodoluminescence spectroscopy calculations for metallic nano-particles. J. Microsc. 117:46–52 [Google Scholar]
  87. Kiewidt L, Karamehmedović M, Matyssek C, Hergert W, Mädler L, Wriedt T. 87.  2013. Numerical simulation of electron energy loss spectroscopy using a generalized multipole technique. J. Microsc. 133:101–8 [Google Scholar]
  88. Matyssek C, Niegemann J, Hergert W, Busch K. 88.  2011. Computing electron energy loss spectra with the discontinuous Galerkin time-domain method. Phot. Nano. Fund. Appl. 9:367–73 [Google Scholar]
  89. Dudarev S, Botton G, Savrasov S, Humphreys C, Sutton A. 89.  1998. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 57:1505–9 [Google Scholar]
  90. Hohenester U, Ditlbacher H, Krenn JR. 90.  2009. Electron-energy-loss spectra of plasmonic nanoparticles. Phys. Rev. Lett. 103:106801 [Google Scholar]
  91. García de Abajo FJ, Kociak M. 91.  2008. Probing the photonic local density of states with electron energy loss spectroscopy. Phys. Rev. Lett. 100:106804 [Google Scholar]
  92. Nelayah J, Kociak M, Stéphan O, García de Abajo FJ, Tencé M. 92.  et al. 2007. Mapping surface plasmons on a single metallic nanoparticle. Nat. Phys. 3:348–53 [Google Scholar]
  93. Guiton BS, Iberi V, Li S, Leonard DN, Parish CM. 93.  et al. 2011. Correlated optical measurements and plasmon mapping of silver nanorods. Nano Lett. 11:3482–88 [Google Scholar]
  94. Rossouw D, Couillard M, Vickery J, Kumacheva E, Botton GA. 94.  2011. Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe. Nano Lett. 11:1499–504 [Google Scholar]
  95. Alber I, Sigle W, Müller S, Neumann R, Picht O. 95.  et al. 2011. Visualization of multipolar longitudinal and transversal surface plasmon modes in nanowire dimers. ACS Nano 5:9845–53 [Google Scholar]
  96. Myroshnychenko V, Nelayah J, Adamo G, Geuquet N, Rodriguez-Fernandez J. 96.  et al. 2012. Plasmon spectroscopy and imaging of individual gold nanodecahedra: A combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study. Nano Lett. 12:4172–80 [Google Scholar]
  97. Schmidt FP, Ditlbacher H, Hofer F, Krenn JR, Hohenester U. 97.  2014. Morphing a plasmonic nanodisk into a nanotriangle. Nano Lett. 14:4810–15 [Google Scholar]
  98. Schmidt F-P, Ditlbacher H, Hohenester U, Hohenau A, Hofer F, Krenn JR. 98.  2012. Dark plasmonic breathing modes in silver nanodisks. Nano Lett. 12:5780–83 [Google Scholar]
  99. Mazzucco S, Geuquet N, Ye J, Stéphan O, Van Roy W. 99.  et al. 2012. Ultralocal modification of surface plasmons properties in silver nanocubes. Nano Lett. 12:1288–94 [Google Scholar]
  100. Iberi V, Bigelow NW, Mirsaleh-Kohan N, Griffin S, Simmons PD Jr.. 100.  2014. Resonance-Rayleigh scattering and electron energy-loss spectroscopy of silver nanocubes. J. Phys. Chem. C 118:10254–62 [Google Scholar]
  101. Li G, Cherqui C, Wu Y, Bigelow NW, Simmons PD Jr.. 101.  2015. Examining substrate-induced plasmon mode splitting and localization in truncated silver nanospheres with electron energy loss spectroscopy. J. Phys. Chem. Lett. 6:2569–76 [Google Scholar]
  102. Koh AL, Fernández-Domnguez AI, McComb DW, Maier S, Yang JKW. 102.  2011. High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures. Nano Lett. 11:1323–30 [Google Scholar]
  103. Barrow SJ, Rossouw D, Funston AM, Botton GA, Mulvaney P. 103.  2014. Mapping bright and dark modes in gold nanoparticle chains using electron energy loss spectroscopy. Nano Lett. 14:3799–808 [Google Scholar]
  104. Mirsaleh-Kohan N, Iberi V, Simmons PDJ, Bigelow NW, Vaschillo A. 104.  et al. 2012. Single-molecule surface-enhanced Raman scattering: Can STEM/EELS image electromagnetic hot spots?. J. Phys. Chem. Lett. 3:2303–9 [Google Scholar]
  105. Alber I, Sigle W, Demming-Janssen F, Neumann R, Trautmann C. 105.  et al. 2012. Multipole surface plasmon resonances in conductively coupled metal nanowire dimers. ACS Nano 6:9711–17 [Google Scholar]
  106. Sherry LJ, Chang S-H, Schatz GC, Van Duyne RP, Wiley BJ, Xia Y. 106.  2005. Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett. 5:2034–38 [Google Scholar]
  107. Zhang S, Bao K, Halas NJ, Xu H, Nordlander P. 107.  2011. Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett. 11:1657–63 [Google Scholar]
  108. Ringe E, McMahon JM, Sohn K, Cobley C, Xia Y. 108.  et al. 2010. Unraveling the effects of size, composition, and substrate on the localized surface plasmon resonance frequencies of gold and silver nanocubes: a systematic single-particle approach. J. Phys. Chem. C 114:12511–16 [Google Scholar]
  109. Nicoletti O, de la Peña F, Leary RK, Holland DJ, Ducati C, Midgley PA. 109.  2013. Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles. Nature 502:80–84 [Google Scholar]
  110. Catchpole K, Polman A. 110.  2008. Plasmonic solar cells. Opt. Express 16:21793–800 [Google Scholar]
  111. Schaadt DM, Feng B, Yu ET. 111.  2005. Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl. Phys. Lett. 86:063106 [Google Scholar]
  112. Nakayama K, Tanabe K, Atwater HA. 112.  2008. Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl. Phys. Lett. 93:121904 [Google Scholar]
  113. Li J, Cushing SK, Bright J, Meng F, Senty TR. 113.  et al. 2012. Ag@Cu2O core-shell nanoparticles as visible-light plasmonic photocatalysts. ACS Catal. 3:47–51 [Google Scholar]
  114. Cushing SK, Wu N. 114.  2013. Plasmon-enhanced solar energy harvesting. Interface 22:63–67 [Google Scholar]
  115. Cushing SK, Li J, Meng F, Senty TR, Suri S. 115.  et al. 2012. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J. Am. Chem. Soc. 134:15033–41 [Google Scholar]
  116. Clavero C. 116.  2014. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics 8:95–103 [Google Scholar]
  117. Brongersma ML, Halas NJ, Nordlander P. 117.  2015. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10:25–34 [Google Scholar]
  118. Hoggard A, Wang L-Y, Ma L, Fang Y, You G. 118.  et al. 2013. Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene. ACS Nano 7:11209–17 [Google Scholar]
  119. Li J, Cushing SK, Zheng P, Meng F, Chu D, Wu N. 119.  2013. Plasmon-induced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array. Nat. Commun. 4:2651 [Google Scholar]
  120. Seh ZW, Liu S, Low M, Zhang S-Y, Liu Z. 120.  et al. 2012. Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Adv. Mater. 24:2310–14 [Google Scholar]
  121. Tian Y, Tatsuma T. 121.  2004. Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2. Chem. Commun. 16:1810–11 [Google Scholar]
  122. Furube A, Du L, Hara K, Katoh R, Tachiya M. 122.  2007. Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J. Am. Chem. Soc. 129:14852–53 [Google Scholar]
  123. Liu Z, Hou W, Pavaskar P, Aykol M, Cronin SB. 123.  2011. Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett. 11:1111–16 [Google Scholar]
  124. DeSario PA, Pietron JJ, DeVantier DE, Brintlinger TH, Stroud RM, Rolison DR. 124.  2013. Plasmonic enhancement of visible-light water splitting with Au-TiO2 composite aerogels. Nanoscale 5:8073–83 [Google Scholar]
  125. DuChene JS, Sweeny BC, Johnston-Peck AC, Su D, Stach EA, Wei WD. 125.  2014. Prolonged hot electron dynamics in plasmonic-metal/semiconductor heterostructures with implications for solar photocatalysis. Angew. Chem. Int. Ed. 53:7887–91 [Google Scholar]
  126. Kawawaki T, Takahashi Y, Tatsuma T. 126.  2013. Enhancement of dye-sensitized photocurrents by gold nanoparticles: effects of plasmon coupling. J. Phys. Chem. C 117:5901–7 [Google Scholar]
  127. Li G, Cherqui C, Bigelow NW, Duscher G, Straney PJ. 127.  et al. 2015. Spatially mapping energy transfer from single plasmonic particles to semiconductor substrates via STEM/EELS. Nano Lett. 15:3465–71 [Google Scholar]
  128. Tame M, McEnery K, Özdemir Ş, Lee J, Maier S, Kim M. 128.  2013. Quantum plasmonics. Nat. Phys. 9:329–40 [Google Scholar]
  129. Ouyang F, Batson PE, Isaacson M. 129.  1992. Quantum size effects in the surface-plasmon excitation of small metallic particles by electron-energy-loss spectroscopy. Phys. Rev. B 23:15421–25 [Google Scholar]
  130. Scholl JA, Koh AL, Dionne JA. 130.  2012. Quantum plasmon resonances of individual metallic nanoparticles. Nature 483:421–68 [Google Scholar]
  131. Scholl JA, García-Etxarri A, Koh AL, Dionne JA. 131.  2013. Observation of quantum tunneling between two plasmonic nanoparticles. Nano Lett. 13:564–69 [Google Scholar]
  132. Wang Y, Kim J, Kim G, Kim KS. 132.  2006. Quantum size effects in the volume plasmon excitation of bismuth nanoparticles investigated by electron energy loss spectroscopy. Appl. Phys. Lett. 88:143106 [Google Scholar]
  133. Thakkar N, Cherqui C, Masiello DJ. 133.  2015. Quantum beats from entangled localized surface plasmons. ACS Photonics 2:157–64 [Google Scholar]
  134. Fakonas JS, Lee H, Kelaita YA, Atwater HA. 134.  2014. Two-plasmon quantum interference. Nat. Photon. 8:317–20 [Google Scholar]
  135. Fujii G, Fukuda D, Inoue S. 135.  2014. Direct observation of bosonic quantum interference of surface plasmon polaritons using photon-number-resolving detectors. Phys. Rev. B 90:085430 [Google Scholar]
  136. Di Martino G, Sonnefraud Y, Tame MS, Kéna-Cohen S, Dieleman F. 136.  et al. 2014. Observation of quantum interference in the plasmonic Hong–Ou–Mandel effect. Phys. Rev. Appl. 1:034004 [Google Scholar]
  137. Cai Y-J, Li M, Ren X-F, Zou C-L, Xiong X, Lei H-L. 137.  et al. 2014. High-visibility on-chip quantum interference of single surface plasmons. Phys. Rev. Appl. 2:014004 [Google Scholar]
  138. Otten M, Shah RA, Scherer NF, Min M, Pelton M, Gray SK. 138.  2015. Entanglement of two, three, or four plasmonically coupled quantum dots. Phys. Rev. B 92:125432 [Google Scholar]
  139. Bendaña X, Polman A, García de Abajo FJ. 139.  2011. Single-photon generation by electron beams. Nano Lett. 11:125099–103 [Google Scholar]
  140. Cognet L, Tardin C, Boyer D, Choquet D, Tamarat P, Lounis B. 140.  2003. Single metallic nanoparticle imaging for protein detection in cells. PNAS 100:11350–5 [Google Scholar]
  141. Hu M, Chen J, Li Z-Y, Au L, Hartland GV. 141.  et al. 2006. Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev. 35:1084–94 [Google Scholar]
  142. Kawabata A, Kubo R. 142.  1966. Electronic properties of fine metallic particles. II. Plasma resonance absorption. J. Phys. Soc. Jpn. 21:1765–72 [Google Scholar]
  143. Ganiere J-D, Rechsteiner R, Smithard M-A. 143.  1975. On the size dependence of the optical absorption due to small metal particles. Solid State Commun. 16:113–15 [Google Scholar]
  144. Wood D, Ashcroft N. 144.  1982. Quantum size effects in the optical properties of small metallic particles. Phys. Rev. B 25:6255–74 [Google Scholar]
  145. Ekardt W. 145.  1984. Work function of small metal particles: self-consistent spherical jellium-background model. Phys. Rev. B 29:41558–64 [Google Scholar]
  146. Tan SF, Wu L, Yang JKL, Bai P, Bosman M, Nijhuis CA. 146.  2014. Quantum plasmon resonances controlled by molecular tunnel junctions. Science 343:1496–99 [Google Scholar]
  147. Wu L, Duan H, Bai P, Bosman M, Yang JKW, Li E. 147.  2013. Fowler–Nordheim tunneling induced charge transfer plasmons between nearly touching nanoparticles. ACS Nano 7:707–16 [Google Scholar]
  148. Vesseur EJR, de Waele R, Kuttge M, Polman A. 148.  2007. Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence spectroscopy. Nano Lett. 7:2843–46 [Google Scholar]
  149. Van Wijngaarden J, Verhagen E, Polman A, Ross C, Lezec H, Atwater H. 149.  2006. Direct imaging of propagation and damping of near-resonance surface plasmon polaritons using cathodoluminescence spectroscopy. Appl. Phys. Lett. 88:221111 [Google Scholar]
  150. Kuttge M, Vesseur EJR, Koenderink A, Lezec H, Atwater H. 150.  et al. 2009. Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence. Phys. Rev. B 79:113405 [Google Scholar]
  151. Kaz DM, Bischak CG, Hetherington CL, Howard HH, Marti X. 151.  et al. 2013. Bright cathodoluminescent thin films for scanning nano-optical excitation and imaging. ACS Nano 7:10397–404 [Google Scholar]
  152. Myroshnychenko V, Nelayah J, Adamo G, Geuquet N, Rodríguez-Fernández J. 152.  et al. 2012. Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study. Nano Lett. 12:4172–80 [Google Scholar]
  153. Losquin A, Zagonel LF, Myroshnychenko V, Rodrguez-González B, Tencé M. 153.  et al. 2015. Unveiling nanometer scale extinction and scattering phenomena through combined electron energy loss spectroscopy and cathodoluminescence measurements. Nano Lett. 15:1229–37 [Google Scholar]
  154. Park ST, Lin M, Zewail AH. 154.  2010. Photon-induced near-field electron microscopy (PINEM): theoretical and experimental. New J. Phys. 12:123028 [Google Scholar]
  155. Piazza L, Lummen T, Quinonez E, Murooka Y, Reed B. 155.  et al. 2015. Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field. Nat. Commun. 6:6047 [Google Scholar]
  156. Yurtsever A, Baskin JS, Zewail AH. 156.  2012. Entangled nanoparticles: discovery by visualization in 4D electron microscopy. Nano Lett. 12:5027–32 [Google Scholar]
  157. Asenjo-Garcia A, García de Abajo FJ. 157.  2013. Plasmon electron energy-gain spectroscopy. New J. Phys. 15:103021 [Google Scholar]
  158. Boudarham G, Kociak M. 158.  2012. Modal decompositions of the local electromagnetic density of states and spatially resolved electron energy loss probability in terms of geometric modes. Phys. Rev. B 85:245447 [Google Scholar]
/content/journals/10.1146/annurev-physchem-040214-121612
Loading
/content/journals/10.1146/annurev-physchem-040214-121612
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error