1932

Abstract

We review studies of vibrational energy transfer in a molecular junction geometry, consisting of a molecule bridging two heat reservoirs, solids or large chemical compounds. This setup is of interest for applications in molecular electronics, thermoelectrics, and nanophononics, and for addressing basic questions in the theory of classical and quantum transport. Calculations show that system size, disorder, structure, dimensionality, internal anharmonicities, contact interaction, and quantum coherent effects are factors that combine to determine the predominant mechanism (ballistic/diffusive), effectiveness (poor/good), and functionality (linear/nonlinear) of thermal conduction at the nanoscale. We review recent experiments and relevant calculations of quantum heat transfer in molecular junctions. We recount the Landauer approach, appropriate for the study of elastic (harmonic) phononic transport, and outline techniques that incorporate molecular anharmonicities. Theoretical methods are described along with examples illustrating the challenge of reaching control over vibrational heat conduction in molecules.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040215-112103
2016-05-27
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/physchem/67/1/annurev-physchem-040215-112103.html?itemId=/content/journals/10.1146/annurev-physchem-040215-112103&mimeType=html&fmt=ahah

Literature Cited

  1. Pop E. 1.  2010. Energy dissipation and transport in nanoscale devices. Nano Res. 3:147–69 [Google Scholar]
  2. Moore AL, Shi L. 2.  2014. Emerging challenges and materials for thermal management of electronics. Mater. Today 17:163–74 [Google Scholar]
  3. Balandin AA. 3.  2011. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10:569–81 [Google Scholar]
  4. Dresselhaus M, Chen G, Tang M, Yang R, Lee H. 4.  et al. 2007. New directions for low-dimensional thermoelectric materials. Adv. Mater. 19:1043–53 [Google Scholar]
  5. Shakouri A. 5.  2011. Recent developments in semiconductor thermoelectric physics and materials. Annu. Rev. Mater. Res. 41:399–431 [Google Scholar]
  6. Flynn GW, Parmenter CS, Wodtke AM. 6.  1996. Vibrational energy transfer. J. Phys. Chem. 100:12817–38 [Google Scholar]
  7. Gruebele M, Wolynes PG. 7.  2004. Vibrational energy flow and chemical reactions. Acc. Chem. Res. 37:261–67 [Google Scholar]
  8. Leitner D. 8.  2008. Energy flow in proteins. Annu. Rev. Phys. Chem. 59:233–59 [Google Scholar]
  9. Cahill DG, Braun PV, Chen G, Clarke DR, Fan S. 9.  et al. 2014. Nanoscale thermal transport. II. 2003–2012 Appl. Phys. Rev. 1:011305 [Google Scholar]
  10. Schwarzer D, Kutne P, Schröder C, Troe J. 10.  2004. Intramolecular vibrational energy redistribution in bridged azulene-anthracene compounds: ballistic energy transport through molecular chains. J. Chem. Phys. 121:1754–64 [Google Scholar]
  11. Bergfield JP, Ratner MA. 11.  2013. Forty years of molecular electronics: non-equilibrium heat and charge transport at the nanoscale. Phys. Status Solidi B 250:2249–66 [Google Scholar]
  12. Aradhya SV, Venkataraman L. 12.  2013. Single-molecule junctions beyond electronic transport. Nat. Nanotechnol. 8:399–410 [Google Scholar]
  13. Li N, Ren J, Wang L, Zhang G, Hänggi P, Li B. 13.  2012. Colloquium: Phononics: manipulating heat flow with electronic analogs and beyond. Rev. Mod. Phys. 84:1045–66 [Google Scholar]
  14. Yang N, Xu X, Zhang G, Li B. 14.  2012. Thermal transport in nanostructures. AIP Adv. 2:041410 [Google Scholar]
  15. Bauer GEW, Saitoh E, van Wees BJ. 15.  2012. Spin caloritronics. Nat. Mater. 11:391–99 [Google Scholar]
  16. Ekinci KL, Roukes ML. 16.  2005. Nanoelectromechanical systems. Rev. Sci. Instrum. 76:061101 [Google Scholar]
  17. Aspelmeyer M, Kippenberg TJ, Marquardt F. 17.  2014. Cavity optomechanics. Rev. Mod. Phys. 86:1391–452 [Google Scholar]
  18. Xiang ZL, Ashhab S, You J, Nori F. 18.  2013. Hybrid quantum circuits: superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85:623–53 [Google Scholar]
  19. Dhar A. 19.  2008. Heat transport in low-dimensional systems. Adv. Phys. 57:457–537 [Google Scholar]
  20. Terraneo M, Peyrard M, Casati G. 20.  2002. Controlling the energy flow in nonlinear lattices: a model for a thermal rectifier. Phys. Rev. Lett. 88:094302 [Google Scholar]
  21. Luo T, Chen G. 21.  2013. Nanoscale heat transfer—from computation to experiment. Phys. Chem. Chem. Phys. 15:3389–412 [Google Scholar]
  22. Marconnet AM, Panzer MA, Goodson KE. 22.  2013. Thermal conduction phenomena in carbon nanotubes and related nanostructured materials. Rev. Mod. Phys. 85:1295–326 [Google Scholar]
  23. Dubi Y, Di Ventra M. 23.  2011. Colloquium: Heat flow and thermoelectricity in atomic and molecular junctions. Rev. Mod. Phys. 83:131–56 [Google Scholar]
  24. Lepri S, Livi R, Politi A. 24.  2003. Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377:1–80 [Google Scholar]
  25. McGaughey A, Kaviany M. 25.  2006. Phonon transport in molecular dynamics simulations: formulation and thermal conductivity prediction. Adv. Heat Transf. 39:169–255 [Google Scholar]
  26. Wang JS, Wang J, Lu JT. 26.  2008. Quantum thermal transport in nanostructures. Eur. Phys. J. B 62:381–404 [Google Scholar]
  27. Wang JS, Agarwalla BK, Li H, Thingna J. 27.  2014. Nonequilibrium Green's function method for quantum thermal transport. Front. Phys. 9:673–97 [Google Scholar]
  28. Mingo N. 28.  2009. Green's function methods for phonon transport through nano-contacts. Thermal Nanosystems and Nanomaterials S Volz 63–94 Berlin: Springer [Google Scholar]
  29. Galperin M, Ratner MA, Nitzan A. 29.  2007. Molecular transport junctions: vibrational effects. J. Phys. Condens. Matter 19:103201 [Google Scholar]
  30. Galperin M, Nitzan A, Ratner MA. 30.  2007. Heat conduction in molecular transport junctions. Phys. Rev. B 75:155312 [Google Scholar]
  31. Wang RY, Segalman RA, Majumdar A. 31.  2006. Room temperature thermal conductance of alkanedithiol self-assembled monolayers. Appl. Phys. Lett. 89:173113 [Google Scholar]
  32. Meier T, Menges F, Nirmalraj P, Hölscher H, Riel H, Gotsmann B. 32.  2014. Length-dependent thermal transport along molecular chains. Phys. Rev. Lett. 113:060801 [Google Scholar]
  33. Losego MD, Grady ME, Sottos NR, Cahill DG, Braun PV. 33.  2012. Effects of chemical bonding on heat transport across interfaces. Nat. Mater. 11:502–6 [Google Scholar]
  34. Carter JA, Wang Z, Dlott DD. 34.  2009. Ultrafast nonlinear coherent vibrational sum-frequency spectroscopy methods to study thermal conductance of molecules at interfaces. Acc. Chem. Res. 42:1343–51 [Google Scholar]
  35. Rubtsova NI, Nyby CM, Zhang H, Zhang B, Zhou X. 35.  et al. 2015. Room-temperature ballistic energy transport in molecules with repeating units. J. Chem. Phys. 142:212412 [Google Scholar]
  36. Rubtsova NI, Rubtsov IV. 36.  2015. Vibrational energy transport in molecules studied by relaxation-assisted two-dimensional infrared spectroscopy. Annu. Rev. Phys. Chem. 66:717–38 [Google Scholar]
  37. Botan V, Backus EH, Pfister R, Moretto A, Crisma M. 37.  et al. 2007. Energy transport in peptide helices. PNAS 104:12749–54 [Google Scholar]
  38. Segal D, Nitzan A, Hänggi P. 38.  2003. Thermal conductance through molecular wires. J. Chem. Phys. 119:6840–55 [Google Scholar]
  39. Majumdar S, Sierra-Suarez JA, Schiffres SN, Ong WL, Higgs CF. 39.  et al. 2015. Vibrational mismatch of metal leads controls thermal conductance of self-assembled monolayer junctions. Nano Lett. 15:2985–91 [Google Scholar]
  40. Wang Z, Carter JA, Lagutchev A, Koh YK, Seong NH. 40.  et al. 2007. Ultrafast flash thermal conductance of molecular chains. Science 317:787–90 [Google Scholar]
  41. Wang Z, Cahill DG, Carter JA, Koh YK, Lagutchev A. 41.  et al. 2008. Ultrafast dynamics of heat flow across molecules. Chem. Phys. 350:31–44 [Google Scholar]
  42. Yue Y, Qasim LN, Kurnosov AA, Rubtsova NI, Mackin RT. 42.  et al. 2015. Band-selective ballistic energy transport in alkane oligomers: toward controlling the transport speed. J. Phys. Chem. B 119:6448–56 [Google Scholar]
  43. Kim P, Shi L, Majumdar A, McEuen PL. 43.  2001. Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87:215502 [Google Scholar]
  44. Schade M, Hamm P. 44.  2012. Transition from IVR-limited vibrational energy transport to bulk heat transport. Chem. Phys. 393:46–50 [Google Scholar]
  45. Thingna J, García-Palacios J, Wang JS. 45.  2012. Steady-state thermal transport in anharmonic systems: application to molecular junctions. Phys. Rev. B 85:195452 [Google Scholar]
  46. Segal D, Nitzan A. 46.  2005. Spin-boson thermal rectifier. Phys. Rev. Lett. 94:034301 [Google Scholar]
  47. Wu LA, Segal D. 47.  2009. Sufficient conditions for thermal rectification in hybrid quantum structures. Phys. Rev. Lett. 102:095503 [Google Scholar]
  48. Leitner DM. 48.  2013. Thermal boundary conductance and thermal rectification in molecules. J. Phys. Chem. B 117:12820–28 [Google Scholar]
  49. Pein BC, Sun Y, Dlott DD. 49.  2013. Unidirectional vibrational energy flow in nitrobenzene. J. Phys. Chem. A 117:6066–72 [Google Scholar]
  50. Pein BC, Dlott DD. 50.  2014. Modifying vibrational energy flow in aromatic molecules: effects of ortho substitution. J. Phys. Chem. A 118:965–73 [Google Scholar]
  51. Pein BC, Sun Y, Dlott DD. 51.  2013. Controlling vibrational energy flow in liquid alkylbenzenes. J. Phys. Chem. B 117:10898–904 [Google Scholar]
  52. Zürcher U, Talkner P. 52.  1990. Quantum-mechanical harmonic chain attached to heat baths. II. Nonequilibrium properties. Phys. Rev. A 42:3278–90 [Google Scholar]
  53. Dhar A, Roy D. 53.  2006. Heat transport in harmonic lattices. J. Stat. Phys. 125:801–20 [Google Scholar]
  54. Panasyuk GY, Levin GA, Yerkes KL. 54.  2012. Heat exchange mediated by a quantum system. Phys. Rev. E 86:021116 [Google Scholar]
  55. Ozpineci A, Ciraci S. 55.  2001. Quantum effects of thermal conductance through atomic chains. Phys. Rev. B 63:125415 [Google Scholar]
  56. Patton KR, Geller MR. 56.  2001. Thermal transport through a mesoscopic weak link. Phys. Rev. B 64:155320 [Google Scholar]
  57. Landauer R. 57.  1957. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Dev. 1:223–31 [Google Scholar]
  58. Saito K, Dhar A. 58.  2007. Fluctuation theorem in quantum heat conduction. Phys. Rev. Lett. 99:180601 [Google Scholar]
  59. Agarwalla BK, Li B, Wang JS. 59.  2012. Full-counting statistics of heat transport in harmonic junctions: transient, steady states, and fluctuation theorems. Phys. Rev. E 85:051142 [Google Scholar]
  60. Rego LGC, Kirczenow G. 60.  1998. Quantized thermal conductance of dielectric quantum wires. Phys. Rev. Lett. 81:232–35 [Google Scholar]
  61. Caroli C, Combescot R, Nozieres P, Saint-James D. 61.  1971. Direct calculation of the tunneling current. J. Phys. C 4:916–29 [Google Scholar]
  62. Walczak K, Yerkes KL. 62.  2014. Nanoscale transport of phonons: dimensionality, subdiffusion, molecular damping, and interference effects. J. Appl. Phys. 115:174308 [Google Scholar]
  63. Segal D. 63.  2006. Heat flow in nonlinear molecular junctions: master equation analysis. Phys. Rev. B 73:205415 [Google Scholar]
  64. Segal D. 64.  2008. Single mode heat rectifier: controlling energy flow between electronic conductors. Phys. Rev. Lett. 100:105901 [Google Scholar]
  65. Vinkler-Aviv Y, Schiller A, Andrei N. 65.  2014. Single-molecule-mediated heat current between an electronic and a bosonic bath. Phys. Rev. B 89:024307 [Google Scholar]
  66. Pendry JB. 66.  1983. Quantum limits to the flow of information and entropy. J. Phys. A 16:2161–71 [Google Scholar]
  67. Käso M, Wulf U. 67.  2014. Quantized thermal conductance via phononic heat transport in nanoscale devices at low temperatures. Phys. Rev. B 89:134309 [Google Scholar]
  68. Schwab K, Henriksen EA, Worlock JM, Roukes ML. 68.  2000. Measurement of the quantum of thermal conductance. Nature 404:974–77 [Google Scholar]
  69. McConnell HM. 69.  1961. Intramolecular charge transfer in aromatic free radicals. J. Chem. Phys. 35:508–15 [Google Scholar]
  70. Markussen T. 70.  2013. Phonon interference effects in molecular junctions. J. Chem. Phys. 139:244101 [Google Scholar]
  71. Mingo N, Broido DA. 71.  2005. Carbon nanotube ballistic thermal conductance and its limits. Phys. Rev. Lett. 95:096105 [Google Scholar]
  72. Yamamoto T, Watanabe K. 72.  2006. Nonequilibrium Green's function approach to phonon transport in defective carbon nanotubes. Phys. Rev. Lett. 96:255503 [Google Scholar]
  73. Kiršanskas G, Li Q, Flensberg K, Solomon GC, Leijnse M. 73.  2014. Designing π-stacked molecular structures to control heat transport through molecular junctions. Appl. Phys. Lett. 105:233102 [Google Scholar]
  74. Arroyo CR, Tarkuc S, Frisenda R, Seldenthuis JS, Woerde CHM. 74.  et al. 2013. Signatures of quantum interference effects on charge transport through a single benzene ring. Angew. Chem. Int. Ed. 125:3234–37 [Google Scholar]
  75. Manrique DZ, Huang C, Baghernejad M, Zhao X, Al-Owaedi OA. 75.  et al. 2015. A quantum circuit rule for interference effects in single-molecule electrical junctions. Nat. Commun. 6:6389 [Google Scholar]
  76. Fermi E, Pasta J, Ulam S. 76.  1965. Studies of nonlinear problems. Collected Papers of Enrico Fermi E Segre 978–88 Chicago: Univ. Chicago Press [Google Scholar]
  77. Schelling PK, Phillpot SR, Keblinski P. 77.  2002. Comparison of atomic-level simulation methods for computing thermal conductivity. Phys. Rev. B 65:144306 [Google Scholar]
  78. He Y, Savic I, Donadio D, Galli G. 78.  2012. Lattice thermal conductivity of semiconducting bulk materials: atomistic simulations. Phys. Chem. Chem. Phys. 14:16209–22 [Google Scholar]
  79. Chaudhuri A, Kundu A, Roy D, Dhar A, Lebowitz JL, Spohn H. 79.  2010. Heat transport and phonon localization in mass-disordered harmonic crystals. Phys. Rev. B 81:064301 [Google Scholar]
  80. Dhar A. 80.  2001. Heat conduction in the disordered harmonic chain revisited. Phys. Rev. Lett. 86:5882–85 [Google Scholar]
  81. Lee LW, Dhar A. 81.  2005. Heat conduction in a two-dimensional harmonic crystal with disorder. Phys. Rev. Lett. 95:094302 [Google Scholar]
  82. Lepri S, Livi R, Politi A. 82.  1997. Heat conduction in chains of nonlinear oscillators. Phys. Rev. Lett. 78:1896–99 [Google Scholar]
  83. Dhar A, Saito K. 83.  2008. Heat conduction in the disordered Fermi-Pasta-Ulam chain. Phys. Rev. E 78:061136 [Google Scholar]
  84. Saito K, Dhar A. 84.  2010. Heat conduction in a three dimensional anharmonic crystal. Phys. Rev. Lett. 104:040601 [Google Scholar]
  85. Das SG, Dhar A, Narayan O. 85.  2014. Heat conduction in the α-β-Fermi–Pasta–Ulam chain. J. Stat. Phys. 154:204–13 [Google Scholar]
  86. Liu S, Agarwalla BK, Wang JS, Li B. 86.  2013. Classical heat transport in anharmonic molecular junctions: exact solutions. Phys. Rev. E 87:022122 [Google Scholar]
  87. Li B, Wang L, Casati G. 87.  2006. Negative differential thermal resistance and thermal transistor. Appl. Phys. Lett. 88:143501 [Google Scholar]
  88. Li B, Wang L, Casati G. 88.  2004. Thermal diode: rectification of heat flux. Phys. Rev. Lett. 93:184301 [Google Scholar]
  89. Yang N, Zhang G, Li B. 89.  2008. Carbon nanocone: a promising thermal rectifier. Appl. Phys. Lett. 93:243111 [Google Scholar]
  90. Lo WC, Wang L, Li B. 90.  2008. Thermal transistor: heat flux switching and modulating. J. Phys. Soc. Jpn. 77:054402 [Google Scholar]
  91. Wang L, Li B. 91.  2008. Thermal memory: a storage of phononic information. Phys. Rev. Lett. 101:267203 [Google Scholar]
  92. Wu LA, Yu CX, Segal D. 92.  2009. Nonlinear quantum heat transfer in hybrid structures: sufficient conditions for thermal rectification. Phys. Rev. E 80:041103 [Google Scholar]
  93. Wu LA, Segal D. 93.  2011. Quantum heat transfer: a Born-Oppenheimer method. Phys. Rev. E 83:051114 [Google Scholar]
  94. Bandyopadhyay M, Segal D. 94.  2011. Quantum heat transfer in harmonic chains with self-consistent reservoirs: exact numerical simulations. Phys. Rev. E 84:011151 [Google Scholar]
  95. Sääskilahti K, Oksanen J, Tulkki J. 95.  2013. Thermal balance and quantum heat transport in nanostructures thermalized by local Langevin heat baths. Phys. Rev. E 88:012128 [Google Scholar]
  96. Velizhanin KA, Wang H, Thoss M. 96.  2008. Heat transport through model molecular junctions: a multilayer multiconfiguration time-dependent Hartree approach. Chem. Phys. Lett. 460:325–30 [Google Scholar]
  97. Saito K, Kato T. 97.  2013. Kondo signature in heat transfer via a local two-state system. Phys. Rev. Lett. 111:214301 [Google Scholar]
  98. Boudjada N, Segal D. 98.  2014. From dissipative dynamics to studies of heat transfer at the nanoscale: analysis of the spin-boson model. J. Phys. Chem. A 118:11323–36 [Google Scholar]
  99. Büttiker M. 99.  1986. Role of quantum coherence in series resistors. Phys. Rev. B 33:3020–26 [Google Scholar]
  100. Bolsterli M, Rich M, Visscher WM. 100.  1970. Simulation of nonharmonic interactions in a crystal by self-consistent reservoirs. Phys. Rev. A 1:1086–88 [Google Scholar]
  101. Rich M, Visscher WM. 101.  1975. Disordered harmonic chain with self-consistent reservoirs. Phys. Rev. B 11:2164–70 [Google Scholar]
  102. Bonetto F, Lebowitz JL, Lukkarinen J. 102.  2004. Fourier's law for a harmonic crystal with self-consistent stochastic reservoirs. J. Stat. Phys. 116:783–813 [Google Scholar]
  103. Visscher WM, Rich M. 103.  1975. Stationary nonequilibrium properties of a quantum-mechanical lattice with self-consistent reservoirs. Phys. Rev. A 12:675–80 [Google Scholar]
  104. Neto AF, Lemos HCF, Pereira E. 104.  2007. Heat conduction in quantum harmonic chains with alternate masses and self-consistent thermal reservoirs. Phys. Rev. E 76:031116 [Google Scholar]
  105. Pereira E, Lemos HCF, Avila RR. 105.  2011. Ingredients of thermal rectification: the case of classical and quantum self-consistent harmonic chains of oscillators. Phys. Rev. E 84:061135 [Google Scholar]
  106. Pereira E. 106.  2010. Thermal rectification in quantum graded mass systems. Phys. Lett. A 374:1933–37 [Google Scholar]
  107. Schwinger J. 107.  1961. Brownian motion of a quantum oscillator. J. Math. Phys. 2:407–32 [Google Scholar]
  108. Kadanoff LP, Baym GA. 108.  1962. Quantum Statistical Mechanics New York: Benjamin
  109. Keldysh LV. 109.  1965. Diagram techniques for nonequilibrium processes. Sov. Phys. JETP 20:1018–26 [Google Scholar]
  110. Haug H, Jauho AP, Cardona M. 110.  2008. Quantum Kinetics in Transport and Optics of Semiconductors 2 Springer: Berlin
  111. Meir Y, Wingreen NS. 111.  1992. Landauer formula for the current through an interacting electron region. Phys. Rev. Lett. 68:2512–15 [Google Scholar]
  112. Velizhanin KA, Thoss M, Wang H. 112.  2010. Meir–Wingreen formula for heat transport in a spin-boson nanojunction model. J. Chem. Phys. 133:084503 [Google Scholar]
  113. Wang JS, Wang J, Zeng N. 113.  2006. Nonequilibrium Green's function approach to mesoscopic thermal transport. Phys. Rev. B 74:033408 [Google Scholar]
  114. Rammer J. 114.  2007. Quantum Field Theory of Non-Equilibrium States Cambridge, UK: Cambridge Univ. Press
  115. Xu Y, Wang JS, Duan W, Gu BL, Li B. 115.  2008. Nonequilibrium Green's function method for phonon-phonon interactions and ballistic-diffusive thermal transport. Phys. Rev. B 78:224303 [Google Scholar]
  116. Luisier M. 116.  2012. Atomistic modeling of anharmonic phonon-phonon scattering in nanowires. Phys. Rev. B 86:245407 [Google Scholar]
  117. Wang JS, Zeng N, Wang J, Gan CK. 117.  2007. Nonequilibrium Green's function method for thermal transport in junctions. Phys. Rev. E 75:061128 [Google Scholar]
  118. Park TH, Galperin M. 118.  2011. Self-consistent full counting statistics of inelastic transport. Phys. Rev. B 84:205450 [Google Scholar]
  119. Mingo N. 119.  2006. Anharmonic phonon flow through molecular-sized junctions. Phys. Rev. B 74:125402 [Google Scholar]
  120. Thingna J, García-Palacios JL, Wang JS. 120.  2012. Steady-state thermal transport in anharmonic systems: application to molecular junctions. Phys. Rev. B 85:195452 [Google Scholar]
  121. Zhang L, Thingna J, He D, Wang JS, Li B. 121.  2013. Nonlinearity enhanced interfacial thermal conductance and rectification. Europhys. Lett. 103:64002 [Google Scholar]
  122. Mingo N, Stewart D, Broido D, Lindsay L, Li W. 122.  2014. Ab initio thermal transport. Length-Scale Dependent Phonon Interactions137–73 New York: Springer [Google Scholar]
  123. Agarwalla BK. 123.  2013. Study of full-counting statistics in heat transport in transient and steady state and quantum fluctuation theorems PhD Thesis, Natl. Univ. Singapore
  124. Li H, Agarwalla BK, Li B, Wang JS. 124.  2013. Cumulants of heat transfer across nonlinear quantum systems. Eur. Phys. J. B 86:500 [Google Scholar]
  125. Breuer HP, Petruccione F. 125.  2002. The Theory of Open Quantum Systems New York: Oxford Univ. Press
  126. Nitzan A. 126.  2006. Chemical Dynamics in Condensed Phases: Relaxation, Transfer and Reactions in Condensed Molecular Systems New York: Oxford Univ. Press
  127. Thingna J, Zhou H, Wang JS. 127.  2014. Improved Dyson series expansion for steady-state quantum transport beyond the weak coupling limit: divergences and resolution. J. Chem. Phys. 141:194101 [Google Scholar]
  128. Buldum A, Leitner DM, Ciraci S. 128.  1999. Thermal conduction through a molecule. Europhys. Lett. 47:208–12 [Google Scholar]
  129. Fujisaki H, Zhang Y, Straub JE. 129.  2011. Non-Markovian theory of vibrational energy relaxation and its applications to biomolecular systems. Advancing Theory for Kinetics and Dynamics of Complex, Many-Dimensional Systems: Clusters and Proteins T Komatsuzaki, RS Berry, DM Leitner 1–33 New York: Wiley [Google Scholar]
  130. Leitner DM. 130.  2001. Vibrational energy transfer and heat conduction in a one-dimensional glass. Phys. Rev. B 64:094201 [Google Scholar]
  131. Yu X, Leitner DM. 131.  2003. Vibrational energy transfer and heat conduction in a protein. J. Phys. Chem. B 107:1698–707 [Google Scholar]
  132. Yu X, Leitner DM. 132.  2005. Heat flow in proteins: computation of thermal transport coefficients. J. Chem. Phys. 122:054902 [Google Scholar]
  133. Fujisaki H, Straub JE. 133.  2005. Vibrational energy relaxation in proteins. PNAS 102:6726–31 [Google Scholar]
  134. Weiss U. 134.  1999. Quantum Dissipative Systems Singapore: World Sci.
  135. Dekker H. 135.  1987. Noninteracting-blip approximation for a two-level system coupled to a heat bath. Phys. Rev. A 35:1436–37 [Google Scholar]
  136. Segal D. 136.  2014. Heat transfer in the spin-boson model: a comparative study in the incoherent tunneling regime. Phys. Rev. E 90:012148 [Google Scholar]
  137. Yang Y, Wu CQ. 137.  2014. Quantum heat transport in a spin-boson nanojunction: coherent and incoherent mechanisms. Europhys. Lett. 107:30003 [Google Scholar]
  138. Segal D, Millis AJ, Reichman DR. 138.  2010. Numerically exact path-integral simulation of nonequilibrium quantum transport and dissipation. Phys. Rev. B 82:205323 [Google Scholar]
  139. Wang C, Ren J, Cao J. 139.  2015. Nonequilibrium energy transfer at nanoscale: a unified theory from weak to strong coupling. Sci. Rep. 5:11787 [Google Scholar]
  140. Taylor E, Segal D. 140.  2015. Quantum bounds on heat transport through nanojunctions. Phys. Rev. Lett. 114:220401 [Google Scholar]
  141. Leggett AJ, Chakravarty S, Dorsey AT, Fisher MPA, Garg A, Zwerger W. 141.  1987. Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59:1–85 [Google Scholar]
  142. Makri N, Makarov DE. 142.  1995. Tensor propagator for iterative quantum time evolution of reduced density matrices. I. Theory.. J. Chem. Phys. 102:4600–10 [Google Scholar]
  143. Makri N, Makarov DE. 143.  1995. Tensor propagator for iterative quantum time evolution of reduced density matrices. II. Numerical methodology. J. Chem. Phys. 102:4611–18 [Google Scholar]
  144. Thoss M, Wang H, Miller WH. 144.  2001. Self-consistent hybrid approach for complex systems: application to the spin-boson model with Debye spectral density. J. Chem. Phys. 115:2991–3005 [Google Scholar]
  145. Egger R, Weiss U. 145.  1992. Quantum Monte Carlo simulation of the dynamics of the spin-boson model. Z. Phys. B Condens. Matter 89:97–107 [Google Scholar]
  146. Segal D. 146.  2013. Qubit-mediated energy transfer between thermal reservoirs: beyond the Markovian master equation. Phys. Rev. B 87:195436 [Google Scholar]
  147. Carrega M, Solinas P, Braggio A, Sassetti M, Weiss U. 147.  2015. Functional integral approach to time-dependent heat exchange in open quantum systems: general method and applications. New J. Phys. 17:045030 [Google Scholar]
  148. Wang JS. 148.  2007. Quantum thermal transport from classical molecular dynamics. Phys. Rev. Lett. 99:160601 [Google Scholar]
  149. Liu R, Wang L. 149.  2015. Thermal vibration of a single-walled carbon nanotube predicted by semiquantum molecular dynamics. Phys. Chem. Chem. Phys. 17:5194–201 [Google Scholar]
  150. Turney JE, McGaughey AJH, Amon CH. 150.  2009. Assessing the applicability of quantum corrections to classical thermal conductivity predictions. Phys. Rev. B 79:224305 [Google Scholar]
/content/journals/10.1146/annurev-physchem-040215-112103
Loading
/content/journals/10.1146/annurev-physchem-040215-112103
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error