1932

Abstract

Nanoparticles are among the most important industrial catalysts, with applications ranging from chemical manufacturing to energy conversion and storage. Heterogeneity is a general feature among these nanoparticles, with their individual differences in size, shape, and surface sites leading to variable, particle-specific catalytic activity. Assessing the activity of individual nanoparticles, preferably with subparticle resolution, is thus desired and vital to the development of efficient catalysts. It is challenging to measure the activity of single-nanoparticle catalysts, however. Several experimental approaches have been developed to monitor catalysis on single nanoparticles, including electrochemical methods, single-molecule fluorescence microscopy, surface plasmon resonance spectroscopy, X-ray microscopy, and surface-enhanced Raman spectroscopy. This review focuses on these experimental approaches, the associated methods and strategies, and selected applications in studying single-nanoparticle catalysis with chemical selectivity, sensitivity, or subparticle spatial resolution.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040513-103729
2014-04-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/physchem/65/1/annurev-physchem-040513-103729.html?itemId=/content/journals/10.1146/annurev-physchem-040513-103729&mimeType=html&fmt=ahah

Literature Cited

  1. Bell AT. 1.  2003. The impact of nanoscience on heterogeneous catalysis. Science 299:1688–91 [Google Scholar]
  2. Tao AR, Habas S, Yang P. 2.  2008. Shape control of colloidal metal nanocrystals. Small 4:310–25 [Google Scholar]
  3. Chen J, Lim B, Lee EP, Xia Y. 3.  2009. Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications. Nano Today 4:81–95 [Google Scholar]
  4. Muller DA. 4.  2009. Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nat. Mater. 8:263–70 [Google Scholar]
  5. Yang JC, Small MW, Grieshaber RV, Nuzzo RG. 5.  2012. Recent developments and applications of electron microscopy to heterogeneous catalysis. Chem. Soc. Rev. 41:8179–94 [Google Scholar]
  6. Chu M-W, Chen CH. 6.  2013. Chemical mapping and quantification at the atomic scale by scanning transmission electron microscopy. ACS Nano 7:4700–7 [Google Scholar]
  7. Murray RW. 7.  2008. Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores. Chem. Rev. 108:2688–720 [Google Scholar]
  8. Oja SM, Wood M, Zhang B. 8.  2013. Nanoscale electrochemistry. Anal. Chem. 85:473–86 [Google Scholar]
  9. Fan F-RF, Bard AJ. 9.  1995. Electrochemical detection of single molecules. Science 267871–74 [Google Scholar]
  10. Fan F-RF, Bard AJ. 10.  1997. An electrochemical Coulomb staircase: detection of single electron-transfer events at nanometer electrodes. Science 2771791–93 [Google Scholar]
  11. Chen S, Ingram R, Hostetler M, Pietron J, Murray R. 11.  et al. 1998. Gold nanoelectrodes of varied size: transition to molecule-like charging. Science 280:2098–101 [Google Scholar]
  12. Bard AJ, Fan FR, Pierce DT, Unwin PR, Wipf DO, Zhou F. 12.  1991. Chemical imaging of surfaces with the scanning electrochemical microscope. Science 254:68–74 [Google Scholar]
  13. Meier J, Friedrich KA, Stimming U. 13.  2002. Novel method for the investigation of single nanoparticle reactivity. Faraday Discuss. 121:365–72 [Google Scholar]
  14. Li Y, Cox JT, Zhang B. 14.  2010. Electrochemical responses and electrocatalysis at single Au nanoparticles. J. Am. Chem. Soc. 132:3047–54 [Google Scholar]
  15. Kwon SJ, Fan F-RF, Bard AJ. 15.  2010. Observing iridium oxide (IrOx) single nanoparticle collisions at ultramicroelectrodes. J. Am. Chem. Soc. 13213165–67 [Google Scholar]
  16. Sun P, Laforge FOO, Mirkin MV. 16.  2007. Scanning electrochemical microscopy in the 21st century. Phys. Chem. Chem. Phys. 9:802–23 [Google Scholar]
  17. Amemiya S, Bard AJ, Fan FR, Mirkin MV, Unwin PR. 17.  2008. Scanning electrochemical microscopy. Annu. Rev. Anal. Chem. 1:95–131 [Google Scholar]
  18. Meier J, Schiøtz J, Liu P, Nørskov JK, Stimming U. 18.  2004. Nano-scale effects in electrochemistry. Chem. Phys. Lett. 390:440–44 [Google Scholar]
  19. Chen S, Kucernak A. 19.  2004. Electrocatalysis under conditions of high mass transport rate: oxygen reduction on single submicrometer-sized Pt particles supported on carbon. J. Phys. Chem. B 108:3262–76 [Google Scholar]
  20. Chen S, Kucernak A. 20.  2004. Electrocatalysis under conditions of high mass transport: investigation of hydrogen oxidation on single submicron Pt particles supported on carbon. J. Phys. Chem. B 108:13984–94 [Google Scholar]
  21. Fernández JL, Walsh DA, Bard AJ. 21.  2005. Thermodynamic guidelines for the design of bimetallic catalysts for oxygen electroreduction and rapid screening by scanning electrochemical microscopy: M-Co (M: Pd, Ag, Au). J. Am. Chem. Soc. 127:357–65 [Google Scholar]
  22. Liu W, Ye H, Bard AJ. 22.  2010. Screening of novel metal oxide photocatalysts by scanning electrochemical microscopy and research of their photoelectrochemical properties. J. Phys. Chem. C 114:1201–7 [Google Scholar]
  23. Ebejer N, Güell AG, Lai SCS, McKelvey K, Snowden ME, Unwin PR. 23.  2013. Scanning electrochemical cell microscopy: a versatile technique for nanoscale electrochemistry and functional imaging. Annu. Rev. Anal. Chem. 6:329–51 [Google Scholar]
  24. Ebejer N, Schnippering M, Colburn AW, Edwards MA, Unwin PR. 24.  2010. Localized high resolution electrochemistry and multifunctional imaging: scanning electrochemical cell microscopy. Anal. Chem. 82:9141–45 [Google Scholar]
  25. Lai SCS, Dudin PV, Macpherson JV, Unwin PR. 25.  2011. Visualizing zeptomole (electro)catalysis at single nanoparticles within an ensemble. J. Am. Chem. Soc. 133:10744–47 [Google Scholar]
  26. Dumitrescu I, Dudin P, Edgeworth J, Macpherson J, Unwin P. 26.  2010. Electron transfer kinetics at single-walled carbon nanotube electrodes using scanning electrochemical microscopy. J. Phys. Chem. C 114:2633–39 [Google Scholar]
  27. Dudin PV, Snowden ME, Macpherson JV, Unwin PR. 27.  2011. Electrochemistry at nanoscale electrodes: individual single-walled carbon nanotubes (SWNTs) and SWNT-templated metal nanowires. ACS Nano 5:10017–25 [Google Scholar]
  28. Kleijn SE, Lai SC, Miller TS, Yanson AI, Koper MT, Unwin PR. 28.  2012. Landing and catalytic characterization of individual nanoparticles on electrode surfaces. J. Am. Chem. Soc. 134:18558–61 [Google Scholar]
  29. Güell AG, Ebejer N, Snowden ME, Macpherson JV, Unwin PR. 29.  2012. Structural correlations in heterogeneous electron transfer at monolayer and multilayer graphene electrodes. J. Am. Chem. Soc. 134:7258–61 [Google Scholar]
  30. Tel-Vered R, Bard AJ. 30.  2006. Generation and detection of single metal nanoparticles using scanning electrochemical microscopy techniques. J. Phys. Chem. B 110:25279–87 [Google Scholar]
  31. Li Y, Wu Q, Jiao S, Xu C, Wang L. 31.  2013. Single Pt nanowire electrode: preparation, electrochemistry, and electrocatalysis. Anal. Chem. 85:4135–40 [Google Scholar]
  32. Xiao X, Bard AJ. 32.  2007. Observing single nanoparticle collisions at an ultramicroelectrode by electrocatalytic amplification. J. Am. Chem. Soc. 129:9610–12 [Google Scholar]
  33. Xiao X, Pan S, Jang JS, Fan F-RF, Bard AJ. 33.  2009. Single nanoparticle electrocatalysis: effect of monolayers on particle and electrode on electron transfer. J. Phys. Chem. C 11314978–82 [Google Scholar]
  34. Zhou H, Fan F-RF, Bard AJ. 34.  2010. Observation of discrete Au nanoparticle collisions by electrocatalytic amplification using Pt ultramicroelectrode surface modification. J. Phys. Chem. Lett. 12671–74 [Google Scholar]
  35. Dasari R, Robinson DA, Stevenson KJ. 35.  2013. Ultrasensitive electroanalytical tool for detecting, sizing, and evaluating the catalytic activity of platinum nanoparticles. J. Am. Chem. Soc. 135:570–73 [Google Scholar]
  36. Xiao X, Fan F-RF, Zhou J, Bard AJ. 36.  2008. Current transients in single nanoparticle collision events. J. Am. Chem. Soc. 13016669–77 [Google Scholar]
  37. Kwon SJ, Zhou H, Fan F-RF, Vorobyev V, Zhang B, Bard AJ. 37.  2011. Stochastic electrochemistry with electrocatalytic nanoparticles at inert ultramicroelectrodes: theory and experiments. Phys. Chem. Chem. Phys. 135394–402 [Google Scholar]
  38. Fernando A, Parajuli S, Alpuche-Aviles MA. 38.  2013. Observation of individual semiconducting nanoparticle collisions by stochastic photoelectrochemical currents. J. Am. Chem. Soc. 135:10894–97 [Google Scholar]
  39. Sánchez-Sánchez CM, Rodríguez-López J, Bard AJ. 39.  2008. Scanning electrochemical microscopy. 60. Quantitative calibration of the SECM substrate generation/tip collection mode and its use for the study of the oxygen reduction mechanism. Anal. Chem. 80:3254–60 [Google Scholar]
  40. Cox JT, Zhang B. 40.  2012. Nanoelectrodes: recent advances and new directions. Annu. Rev. Anal. Chem. 5:253–72 [Google Scholar]
  41. Lu HP. 41.  1998. Single-molecule enzymatic dynamics. Science 282:1877–82 [Google Scholar]
  42. Edman L, Földes-Papp Z, Wennmalm S, Rigler R. 42.  1999. The fluctuating enzyme: a single molecule approach. Chem. Phys. 247:11–22 [Google Scholar]
  43. Velonia K, Flomenbom O, Loos D, Masuo S, Cotlet M. 43.  et al. 2005. Single-enzyme kinetics of CALB-catalyzed hydrolysis. Angew. Chem. Int. Ed. Engl. 44:560–64 [Google Scholar]
  44. English BP, Min W, van Oijen AM, Lee KT, Luo G. 44.  et al. 2005. Ever-fluctuating single enzyme molecules: Michaelis-Menten equation revisited. Nat. Chem. Biol. 2:87–94 [Google Scholar]
  45. Smiley RD, Hammes GG. 45.  2006. Single molecule studies of enzyme mechanisms. Chem. Rev. 106:3080–94 [Google Scholar]
  46. Roeffaers MBJ, Sels BF, Uji-i H, De Schryver FC, Jacobs PA. 46.  et al. 2006. Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting. Nature 439:572–75 [Google Scholar]
  47. Naito K, Tachikawa T, Fujitsuka M, Majima T. 47.  2008. Real-time single-molecule imaging of the spatial and temporal distribution of reactive oxygen species with fluorescent probes: applications to TiO2 photocatalysts. J. Phys. Chem. C 112:1048–59 [Google Scholar]
  48. Xu W, Kong JS, Yeh Y-TE, Chen P. 48.  2008. Single-molecule nanocatalysis reveals heterogeneous reaction pathways and catalytic dynamics. Nat. Mater. 7:992–96 [Google Scholar]
  49. Naito K, Tachikawa T, Fujitsuka M, Majima T. 49.  2005. Single-molecule fluorescence imaging of the remote TiO2 photocatalytic oxidation. J. Phys. Chem. B 109:23138–40 [Google Scholar]
  50. De Cremer G, Sels BF, De Vos DE, Hofkens J, Roeffaers MBJ. 50.  2010. Fluorescence micro(spectro)scopy as a tool to study catalytic materials in action. Chem. Soc. Rev. 39:4703–17 [Google Scholar]
  51. Tachikawa T, Majima T. 51.  2010. Single-molecule, single-particle fluorescence imaging of TiO2-based photocatalytic reactions. Chem. Soc. Rev. 39:4802–19 [Google Scholar]
  52. Chen P, Zhou X, Shen H, Andoy NM, Choudhary E. 52.  et al. 2010. Single-molecule fluorescence imaging of nanocatalytic processes. Chem. Soc. Rev. 39:4560–70 [Google Scholar]
  53. Buurmans ILC, Weckhuysen BM. 53.  2012. Heterogeneities of individual catalyst particles in space and time as monitored by spectroscopy. Nat. Chem. 4:873–86 [Google Scholar]
  54. Roeffaers MBJ, Sels BF, Uji-i H, Blanpain B, L'hoëst P. 54.  et al. 2007. Space- and time-resolved visualization of acid catalysis in ZSM-5 crystals by fluorescence microscopy. Angew. Chem. Int. Ed. Engl. 46:1706–9 [Google Scholar]
  55. Kox MHF, Stavitski E, Weckhuysen BM. 55.  2007. Nonuniform catalytic behavior of zeolite crystals as revealed by in situ optical microspectroscopy. Angew. Chem. Int. Ed. Engl. 46:3652–55 [Google Scholar]
  56. Tachikawa T, Yamashita S, Majima T. 56.  2010. Probing photocatalytic active sites on a single titanosilicate zeolite with a redox-responsive fluorescent dye. Angew. Chem. Int. Ed. Engl. 49:432–35 [Google Scholar]
  57. Tachikawa T, Majima T. 57.  2012. Photocatalytic oxidation surfaces on anatase TiO2 crystals revealed by single-particle chemiluminescence imaging. Chem. Commun. 48:3300–2 [Google Scholar]
  58. Buurmans ILC, Ruiz-Martínez J, Knowles WV, van der Beek D, Bergwerff JA. 58.  et al. 2011. Catalytic activity in individual cracking catalyst particles imaged throughout different life stages by selective staining. Nat. Chem. 3:862–67 [Google Scholar]
  59. Wee T-LE, Schmidt LC, Scaiano JC. 59.  2012. Photooxidation of 9-anthraldehyde catalyzed by gold nanoparticles: solution and single nanoparticle studies using fluorescence lifetime imaging. J. Phys. Chem. C 116:24373–79 [Google Scholar]
  60. Xu W, Kong JS, Chen P. 60.  2009. Probing the catalytic activity and heterogeneity of Au nanoparticles at the single-molecule level. Phys. Chem. Chem. Phys. 11:2767–78 [Google Scholar]
  61. Zhou X, Xu W, Liu G, Panda D, Chen P. 61.  2010. Size-dependent catalytic activity and dynamics of gold nanoparticles at the single-molecule level. J. Am. Chem. Soc. 132:138–46 [Google Scholar]
  62. Han K-S, Liu G, Zhou X, Medina RE, Chen P. 62.  2012. How does a single Pt nanocatalyst behave in two different reactions? A single-molecule study. Nano Lett. 12:1253–59 [Google Scholar]
  63. Zhou X, Andoy NM, Liu G, Choudhary E, Han K-S. 63.  et al. 2012. Quantitative super-resolution imaging uncovers reactivity patterns on single nanocatalysts. Nat. Nanotechnol. 7:237–41 [Google Scholar]
  64. Andoy NM, Zhou X, Choudhary E, Shen H, Liu G, Chen P. 64.  2013. Single-molecule catalysis mapping quantifies site-specific activity and uncovers radial activity gradient on single 2D nanocrystals. J. Am. Chem. Soc. 135:1845–52 [Google Scholar]
  65. Xu W, Shen H, Kim YJ, Zhou X, Liu G. 65.  et al. 2009. Single-molecule electrocatalysis by single-walled carbon nanotubes. Nano Lett. 9:3968–73 [Google Scholar]
  66. Xu W, Jain PK, Beberwyck BJ, Alivisatos AP. 66.  2012. Probing redox photocatalysis of trapped electrons and holes on single Sb-doped titania nanorod surfaces. J. Am. Chem. Soc. 134:3946–49 [Google Scholar]
  67. Roeffaers MBJ, Hofkens J, De Cremer G, De Schryver FC, Jacobs PA. 67.  et al. 2007. Fluorescence microscopy: bridging the phase gap in catalysis. Catal. Today 126:44–53 [Google Scholar]
  68. Roeffaers MBJ, Ameloot R, Bons A-J, Mortier W, De Cremer G. 68.  et al. 2008. Relating pore structure to activity at the subcrystal level for ZSM-5: an electron backscattering diffraction and fluorescence microscopy study. J. Am. Chem. Soc. 130:13516–17 [Google Scholar]
  69. Naito K, Tachikawa T, Fujitsuka M, Majima T. 69.  2009. Single-molecule observation of photocatalytic reaction in TiO2 nanotube: importance of molecular transport through porous structures. J. Am. Chem. Soc. 131:934–36 [Google Scholar]
  70. Thompson RE, Larson DR, Webb WW. 70.  2002. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82:2775–83 [Google Scholar]
  71. Yildiz A, Forkey JN, McKinney SA, Ha T, Goldman YE, Selvin PR. 71.  2003. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300:2061–65 [Google Scholar]
  72. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S. 72.  et al. 2006. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–45 [Google Scholar]
  73. Rust MJ, Bates M, Zhuang X. 73.  2006. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3:793–96 [Google Scholar]
  74. Hess ST, Girirajan TPK, Mason MD. 74.  2006. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91:4258–72 [Google Scholar]
  75. Roeffaers MBJ, De Cremer G, Libeert J, Ameloot R, Dedecker P. 75.  et al. 2009. Super-resolution reactivity mapping of nanostructured catalyst particles. Angew. Chem. Int. Ed. Engl. 48:9285–89 [Google Scholar]
  76. De Cremer G, Roeffaers MBJ, Bartholomeeusen E, Lin K, Dedecker P. 76.  et al. 2010. High-resolution single-turnover mapping reveals intraparticle diffusion limitation in Ti-MCM-41-catalyzed epoxidation. Angew. Chem. Int. Ed. Engl. 49:908–11 [Google Scholar]
  77. Tachikawa T, Yamashita S, Majima T. 77.  2011. Evidence for crystal-face-dependent TiO2 photocatalysis from single-molecule imaging and kinetic analysis. J. Am. Chem. Soc. 133:7197–204 [Google Scholar]
  78. Bian Z, Tachikawa T, Kim W, Choi W, Majima T. 78.  2012. Superior electron transport and photocatalytic abilities of metal-nanoparticle-loaded TiO2 superstructures. J. Phys. Chem. C 116:25444–53 [Google Scholar]
  79. Wang N, Tachikawa T, Majima T. 79.  2011. Single-molecule, single-particle observation of size-dependent photocatalytic activity in Au/TiO2 nanocomposites. Chem. Sci. 2:891–900 [Google Scholar]
  80. Tachikawa T, Yonezawa T, Majima T. 80.  2013. Super-resolution mapping of reactive sites on titania-based nanoparticles with water-soluble fluorogenic probes. ACS Nano 7:263–75 [Google Scholar]
  81. Zhou X, Choudhary E, Andoy NM, Zou N, Chen P. 81.  2013. Scalable parallel screening of catalyst activity at the single-particle level and subdiffraction resolution. ACS Catal. 3:1448–53 [Google Scholar]
  82. Pertsinidis A, Zhang Y, Chu S. 82.  2010. Subnanometre single-molecule localization, registration and distance measurements. Nature 466:647–51 [Google Scholar]
  83. Huang B, Wang W, Bates M, Zhuang X. 83.  2008. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319:810–13 [Google Scholar]
  84. Kox MHF, Domke KF, Day JPR, Rago G, Stavitski E. 84.  et al. 2009. Label-free chemical imaging of catalytic solids by coherent anti-Stokes Raman scattering and synchrotron-based infrared microscopy. Angew. Chem. Int. Ed. Engl. 48:8990–94 [Google Scholar]
  85. Parvulescu AN, Mores D, Stavitski E, Teodorescu CM, Bruijnincx PCA. 85.  et al. 2010. Chemical imaging of catalyst deactivation during the conversion of renewables at the single particle level: etherification of biomass-based polyols with alkenes over H-beta zeolites. J. Am. Chem. Soc. 132:10429–39 [Google Scholar]
  86. Guerrette JP, Percival SJ, Zhang B. 86.  2012. Fluorescence coupling for direct imaging of electrocatalytic heterogeneity. J. Am. Chem. Soc. 135:855–61 [Google Scholar]
  87. Harvey CE, van Schrojenstein Lantman EM, Mank AJG, Weckhuysen BM. 87.  2012. An integrated AFM-Raman instrument for studying heterogeneous catalytic systems: a first showcase. Chem. Commun. 48:1742–44 [Google Scholar]
  88. Karreman MA, Buurmans ILC, Agronskaia AV, Geus JW, Gerritsen HC, Weckhuysen BM. 88.  2013. Probing the different life stages of a fluid catalytic cracking particle with integrated laser and electron microscopy. Chemistry 19:3846–59 [Google Scholar]
  89. Tachikawa T, Wang N, Yamashita S, Cui S-C, Majima T. 89.  2010. Design of a highly sensitive fluorescent probe for interfacial electron transfer on a TiO2 surface. Angew. Chem. Int. Ed. Engl. 49:8593–97 [Google Scholar]
  90. Amirav L, Alivisatos AP. 90.  2013. Luminescence studies of individual quantum dot photocatalysts. J. Am. Chem. Soc. 135:13049–53 [Google Scholar]
  91. Link S, El-Sayed MA. 91.  1999. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 103:8410–26 [Google Scholar]
  92. Willets KA, Van Duyne RP. 92.  2007. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58:267–97 [Google Scholar]
  93. Langhammer C, Larsson EM. 93.  2012. Nanoplasmonic in situ spectroscopy for catalysis applications. ACS Catal. 2:2036–45 [Google Scholar]
  94. Novo C, Funston AM, Mulvaney P. 94.  2008. Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nat. Nanotechnol. 3:598–602 [Google Scholar]
  95. Tang ML, Liu N, Dionne JA, Alivisatos AP. 95.  2011. Observations of shape-dependent hydrogen uptake trajectories from single nanocrystals. J. Am. Chem. Soc. 133:13220–23 [Google Scholar]
  96. Liu N, Tang ML, Hentschel M, Giessen H, Alivisatos AP. 96.  2011. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat. Mater. 10:631–36 [Google Scholar]
  97. Eo M, Baek J, Song HD, Lee S, Yi J. 97.  2013. Quantification of electron transfer rates of different facets on single gold nanoparticles during catalytic reactions. Chem. Commun. 49:5204–6 [Google Scholar]
  98. Cheng J, Liu Y, Cheng X, He Y, Yeung ES. 98.  2010. Real time observation of chemical reactions of individual metal nanoparticles with high-throughput single molecule spectral microscopy. Anal. Chem. 82:8744–49 [Google Scholar]
  99. Herrmann LO, Baumberg JJ. 99.  2013. Watching single nanoparticles grow in real time through supercontinuum spectroscopy. Small 9:3743–47 [Google Scholar]
  100. Larsson EM, Langhammer C, Zoric I, Kasemo B. 100.  2009. Nanoplasmonic probes of catalytic reactions. Science 326:1091–94 [Google Scholar]
  101. Langhammer C, Larsson EM, Kasemo B, Zorić I. 101.  2010. Indirect nanoplasmonic sensing: ultrasensitive experimental platform for nanomaterials science and optical nanocalorimetry. Nano Lett. 10:3529–38 [Google Scholar]
  102. Seo D, Park G, Song H. 102.  2012. Plasmonic monitoring of catalytic hydrogen generation by a single nanoparticle probe. J. Am. Chem. Soc. 134:1221–27 [Google Scholar]
  103. Tittl A, Yin X, Giessen H, Tian X-D, Tian Z-Q. 103.  et al. 2013. Plasmonic smart dust for probing local chemical reactions. Nano Lett. 13:1816–21 [Google Scholar]
  104. Shan X, Patel U, Wang S, Iglesias R, Tao N. 104.  2010. Imaging local electrochemical current via surface plasmon resonance. Science 327:1363–66 [Google Scholar]
  105. Shan X, Díez-Pérez I, Wang L, Wiktor P, Gu Y. 105.  et al. 2012. Imaging the electrocatalytic activity of single nanoparticles. Nat. Nanotechnol. 7:668–72 [Google Scholar]
  106. Kelly K, Coronado E, Zhao L, Schatz G. 106.  2003. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107:668–77 [Google Scholar]
  107. Yano J, Yachandra VK. 107.  2009. X-ray absorption spectroscopy. Photosynth. Res. 102:241–54 [Google Scholar]
  108. Lengeler B. 108.  1985. Applications of X-ray absorption spectroscopy in materials science: status and new trends. Z. Phys. B 61:421–27 [Google Scholar]
  109. Neuhausler U, Jacobsen C, Schulze D, Stott D, Abend S. 109.  2000. A specimen chamber for soft X-ray spectromicroscopy on aqueous and liquid samples. J. Synchrotron Rad. 7:110–12 [Google Scholar]
  110. Drake IJ, Liu TCN, Gilles M, Tyliszczak T, Kilcoyne ALD. 110.  et al. 2004. An in situ cell for characterization of solids by soft X-ray absorption. Rev. Sci. Instrum. 75:3242–47 [Google Scholar]
  111. de Groot FMF, de Smit E, van Schooneveld MM, Aramburo LR, Weckhuysen BM. 111.  2010. In-situ scanning transmission X-ray microscopy of catalytic solids and related nanomaterials. ChemPhysChem 11:951–62 [Google Scholar]
  112. Grunwaldt J-D, Schroer CG. 112.  2010. Hard and soft X-ray microscopy and tomography in catalysis: bridging the different time and length scales. Chem. Soc. Rev. 39:4741–53 [Google Scholar]
  113. Frenkel AI, Rodriguez JA, Chen JG. 113.  2012. Synchrotron techniques for in situ catalytic studies: capabilities, challenges, and opportunities. ACS Catal. 2:2269–80 [Google Scholar]
  114. Bordiga S, Groppo E, Agostini G, van Bokhoven JA, Lamberti C. 114.  2013. Reactivity of surface species in heterogeneous catalysts probed by in situ X-ray absorption techniques. Chem. Rev. 113:1736–850 [Google Scholar]
  115. Meirer F, Cabana J, Liu Y, Mehta A, Andrews JC, Pianetta P. 115.  2011. Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy. J. Synchrotron Rad. 18:773–81 [Google Scholar]
  116. Guay D, Stewart-Ornstein J, Zhang X, Hitchcock AP. 116.  2005. In situ spatial and time-resolved studies of electrochemical reactions by scanning transmission X-ray microscopy. Anal. Chem. 77:3479–87 [Google Scholar]
  117. Bozzini B, D'Urzo L, Gianoncelli A, Kaulich B, Kiskinova M. 117.  et al. 2008. In situ soft X-ray dynamic microscopy of electrochemical processes. Electrochem. Commun. 10:1680–83 [Google Scholar]
  118. Beale AM, Jacques SDM, Weckhuysen BM. 118.  2010. Chemical imaging of catalytic solids with synchrotron radiation. Chem. Soc. Rev. 39:4656–72 [Google Scholar]
  119. Cats KH, Gonzalez-Jimenez ID, Liu Y, Nelson J, van Campen D. 119.  et al. 2013. X-ray nanoscopy of cobalt Fischer-Tropsch catalysts at work. Chem. Commun. 49:4622–24 [Google Scholar]
  120. Gonzalez-Jimenez ID, Cats K, Davidian T, Ruitenbeek M, Meirer F. 120.  et al. 2012. Hard X-ray nanotomography of catalytic solids at work. Angew. Chem. Int. Ed. Engl. 51:11986–90 [Google Scholar]
  121. Thomas JM, Hernandez-Garrido J-C. 121.  2009. Probing solid catalysts under operating conditions: electrons or X-rays?. Angew. Chem. Int. Ed. Engl. 48:3904–7 [Google Scholar]
  122. Bonse U, Busch F. 122.  1996. X-ray computed microtomography (microCT) using synchrotron radiation (SR). Prog. Biophys. Mol. Biol. 65:133–69 [Google Scholar]
  123. Bertsch PM, Hunter DB. 123.  2001. Applications of synchrotron-based X-ray microprobes. Chem. Rev. 101:1809–42 [Google Scholar]
  124. van Schooneveld MM, Hilhorst J, Petukhov AV, Tyliszczak T, Wang J. 124.  et al. 2011. Scanning transmission X-ray microscopy as a novel tool to probe colloidal and photonic crystals. Small 7:804–11 [Google Scholar]
  125. Liu Y, Meirer F, Wang J, Requena G, Williams P. 125.  et al. 2012. 3D elemental sensitive imaging using transmission X-ray microscopy. Anal. Bioanal. Chem. 404:1297–301 [Google Scholar]
  126. de Smit E, Swart I, Creemer JF, Hoveling GH, Gilles MK. 126.  et al. 2008. Nanoscale chemical imaging of a working catalyst by scanning transmission X-ray microscopy. Nature 456:222–25 [Google Scholar]
  127. de Smit E, Swart I, Creemer JF, Karunakaran C, Bertwistle D. 127.  et al. 2009. Nanoscale chemical imaging of the reduction behavior of a single catalyst particle. Angew. Chem. Int. Ed. Engl. 48:3632–36 [Google Scholar]
  128. Ruiz-Martínez J, Beale AM, Deka U, O'Brien MG, Quinn PD. 128.  et al. 2013. Correlating metal poisoning with zeolite deactivation in an individual catalyst particle by chemical and phase-sensitive X-ray microscopy. Angew. Chem. Int. Ed. Engl. 52:5983–87 [Google Scholar]
  129. Aramburo LR, de Smit E, Arstad B, van Schooneveld MM, Sommer L. 129.  et al. 2012. X-ray imaging of zeolite particles at the nanoscale: influence of steaming on the state of aluminum and the methanol-to-olefin reaction. Angew. Chem. Int. Ed. Engl. 51:3616–19 [Google Scholar]
  130. Aramburo LR, Ruiz-Martínez J, Sommer L, Arstad B, Buitrago-Sierra R. 130.  et al. 2013. X-ray imaging of SAPO-34 molecular sieves at the nanoscale: influence of steaming on the methanol-to-hydrocarbons reaction. ChemCatChem 5:1386–94 [Google Scholar]
  131. Aramburo LR, Liu Y, Tyliszczak T, de Groot FMF, Andrews JC, Weckhuysen BM. 131.  2013. 3D nanoscale chemical imaging of the distribution of aluminum coordination environments in zeolites with soft X-ray microscopy. ChemPhysChem 14:496–99 [Google Scholar]
  132. Tada M, Ishiguro N, Uruga T, Tanida H, Terada Y. 132.  et al. 2011. μ-XAFS of a single particle of a practical NiOx/Ce2Zr2Oy catalyst. Phys. Chem. Chem. Phys. 13:14910–13 [Google Scholar]
  133. O'Brien MG, Jacques SDM, Di Michiel M, Barnes P, Weckhuysen BM, Beale AM. 133.  2012. Active phase evolution in single Ni/Al2O3 methanation catalyst bodies studied in real time using combined μ-XRD-CT and μ-absorption-CT. Chem. Sci. 3:509–23 [Google Scholar]
  134. Chao W, Fischer P, Tyliszczak T, Rekawa S, Anderson E, Naulleau P. 134.  2012. Real space soft X-ray imaging at 10 nm spatial resolution. Opt. Express 20:9777–83 [Google Scholar]
  135. Jeanmaire DL, Van Duyne RP. 135.  1977. Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. 84:1–20 [Google Scholar]
  136. Schatz GC. 136.  1984. Theoretical studies of surface enhanced Raman scattering. Acc. Chem. Res. 17:370–76 [Google Scholar]
  137. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I. 137.  et al. 1997. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78:1667–70 [Google Scholar]
  138. Nie S, Emory SR. 138.  1997. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–6 [Google Scholar]
  139. Michaels AM, Nirmal M, Brus LE. 139.  1999. Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals. J. Am. Chem. Soc. 121:9932–39 [Google Scholar]
  140. Dieringer JA, Lettan RB, Scheidt KA, Van Duyne RP. 140.  2007. A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 129:16249–56 [Google Scholar]
  141. Gao P, Gosztola D, Weaver MJ. 141.  1988. Surface-enhanced Raman spectroscopy as a probe of electroorganic reaction pathways. 1. Processes involving adsorbed nitrobenzene, azobenzene, and related species. J. Phys. Chem. 92:7122–30 [Google Scholar]
  142. Fokas C, Deckert V. 142.  2002. Towards in situ Raman microscopy of single catalytic sites. Appl. Spectrosc. 56:192–99 [Google Scholar]
  143. Tian Z-Q, Ren B. 143.  2004. Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy. Annu. Rev. Phys. Chem. 55:197–229 [Google Scholar]
  144. Campion A, Kambhampati P. 144.  1998. Surface-enhanced Raman scattering. Chem. Soc. Rev. 27:241–50 [Google Scholar]
  145. Stiles PL, Dieringer JA, Shah NC, Van Duyne RP. 145.  2008. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 1:601–26 [Google Scholar]
  146. Brus L. 146.  2008. Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule Raman spectroscopy. Acc. Chem. Res. 41:1742–49 [Google Scholar]
  147. Sonntag MD, Klingsporn JM, Zrimsek AB, Sharma B, Ruvuna LK, Van Duyne RP. 147. 2014 Molecular plasmonics for nanoscale spectroscopy. Chem. Soc. Rev. 431230–47
  148. Anderson MS. 148.  2000. Locally enhanced Raman spectroscopy with an atomic force microscope. Appl. Phys. Lett. 76:3130–32 [Google Scholar]
  149. Hayazawa N, Inouye Y, Sekkat Z, Kawata S. 149.  2000. Metallized tip amplification of near-field Raman scattering. Opt. Commun. 183:333–36 [Google Scholar]
  150. Stöckle RM, Suh YD, Deckert V, Zenobi R. 150.  2000. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem. Phys. Lett. 318:131–36 [Google Scholar]
  151. Bailo E, Deckert V. 151.  2008. Tip-enhanced Raman scattering. Chem. Soc. Rev. 37:921–30 [Google Scholar]
  152. Yeo B-S, Stadler J, Schmid T, Zenobi R, Zhang W. 152.  2009. Tip-enhanced Raman spectroscopy: its status, challenges and future directions. Chem. Phys. Lett. 472:1–13 [Google Scholar]
  153. Domke KF, Pettinger B. 153.  2010. Studying surface chemistry beyond the diffraction limit: 10 years of TERS. ChemPhysChem 11:1365–73 [Google Scholar]
  154. Kim H, Kosuda KM, Van Duyne RP, Stair PC. 154.  2010. Resonance Raman and surface- and tip-enhanced Raman spectroscopy methods to study solid catalysts and heterogeneous catalytic reactions. Chem. Soc. Rev. 39:4820–44 [Google Scholar]
  155. Sonntag MD, Klingsporn JM, Garibay LK, Roberts JM, Dieringer JA. 155.  et al. 2012. Single-molecule tip-enhanced Raman spectroscopy. J. Phys. Chem. C 116:478–83 [Google Scholar]
  156. Zhang R, Zhang Y, Dong ZC, Jiang S, Zhang C. 156.  et al. 2013. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498:82–86 [Google Scholar]
  157. Domke KF, Pettinger B. 157.  2009. In situ discrimination between axially complexed and ligand-free Co porphyrin on Au(111) with tip-enhanced Raman spectroscopy. ChemPhysChem 10:1794–98 [Google Scholar]
  158. van Schrojenstein Lantman EM, Deckert-Gaudig T, Mank AJG, Deckert V, Weckhuysen BM. 158.  2012. Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. Nat. Nanotechnol. 7:583–86 [Google Scholar]
  159. Kang L, Xu P, Zhang B, Tsai H, Han X, Wang H-L. 159.  2013. Laser wavelength- and power-dependent plasmon-driven chemical reactions monitored using single particle surface enhanced Raman spectroscopy. Chem. Commun. 49:3389–91 [Google Scholar]
  160. Sun M, Zhang Z, Zheng H, Xu H. 160.  2012. In-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy. Sci. Rep. 2:647 [Google Scholar]
  161. Kang L, Xu P, Chen D, Zhang B, Du Y. 161.  et al. 2013. Amino acid-assisted synthesis of hierarchical silver microspheres for single particle surface-enhanced Raman spectroscopy. J. Phys. Chem. C 117:10007–12 [Google Scholar]
  162. Berweger S, Neacsu CC, Mao Y, Zhou H, Wong SS, Raschke MB. 162.  2009. Optical nanocrystallography with tip-enhanced phonon Raman spectroscopy. Nat. Nanotechnol. 4:496–99 [Google Scholar]
  163. Heck KN, Janesko BG, Scuseria GE, Halas NJ, Wong MS. 163.  2008. Observing metal-catalyzed chemical reactions in situ using surface-enhanced Raman spectroscopy on Pd-Au nanoshells. J. Am. Chem. Soc. 130:16592–600 [Google Scholar]
  164. Domke KF, Zhang D, Pettinger B. 164.  2006. Toward Raman fingerprints of single dye molecules at atomically smooth Au(111). J. Am. Chem. Soc. 128:14721–27 [Google Scholar]
  165. Neacsu C, Dreyer J, Behr N, Raschke M. 165.  2006. Scanning-probe Raman spectroscopy with single-molecule sensitivity. Phys. Rev. B 73:193406 [Google Scholar]
/content/journals/10.1146/annurev-physchem-040513-103729
Loading
/content/journals/10.1146/annurev-physchem-040513-103729
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error