1932

Abstract

The driven similarity renormalization group (DSRG) provides an alternative way to address the intruder state problem in quantum chemistry. In this review, we discuss recent developments of multireference methods based on the DSRG. We provide a pedagogical introduction to the DSRG and its various extensions and discuss its formal properties in great detail. In addition, we report several illustrative applications of the DSRG to molecular systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-042018-052416
2019-06-14
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/physchem/70/1/annurev-physchem-042018-052416.html?itemId=/content/journals/10.1146/annurev-physchem-042018-052416&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Kohn W, Sham LJ 1965. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140:A1133–38
    [Google Scholar]
  2. 2.
    Coester F, Kümmel H 1960. Short-range correlations in nuclear wave functions. Nucl. Phys. 17:477–85
    [Google Scholar]
  3. 3.
    Coester F 1958. Bound states of a many-particle system. Nucl. Phys. 7:421–24
    [Google Scholar]
  4. 4.
    Čížek J 1969. On the use of the cluster expansion and the technique of diagrams in calculations of correlation effects in atoms and molecules. Adv. Chem. Phys. 14:35–89
    [Google Scholar]
  5. 5.
    Čížek J 1966. On correlation problem in atomic and molecular systems: calculation of wavefunction components in Ursell-type expansion using quantum-field theoretical methods. J. Chem. Phys. 45:4256
    [Google Scholar]
  6. 6.
    Cohen AJ, Mori-Sanchez P, Yang W 2008. Insights into current limitations of density functional theory. Science 321:792–94
    [Google Scholar]
  7. 7.
    Kulik HJ 2015. Perspective: treating electron over-delocalization with the DFT+U method. J. Chem. Phys. 142:240901
    [Google Scholar]
  8. 8.
    Furche F, Perdew JP 2006. The performance of semilocal and hybrid density functionals in 3d transition-metal chemistry. J. Chem. Phys. 124:044103
    [Google Scholar]
  9. 9.
    Cramer CJ, Truhlar DG 2009. Density functional theory for transition metals and transition metal chemistry. Phys. Chem. Chem. Phys. 11:10757–816
    [Google Scholar]
  10. 10.
    Roos BO, Taylor PR, Siegbahn PEM 1980. A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach. Chem. Phys. 48:157–73
    [Google Scholar]
  11. 11.
    Andersson K, Malmqvist , Roos BO, Sadlej AJ, Wolinski K 1990. Second-order perturbation theory with a CASSCF reference function. J. Phys. Chem. 94:5483–88
    [Google Scholar]
  12. 12.
    Angeli C, Cimiraglia R, Evangelisti S, Leininger T, Malrieu JP 2001. Introduction of n-electron valence states for multireference perturbation theory. J. Chem. Phys. 114:10252–64
    [Google Scholar]
  13. 13.
    Chaudhuri RK, Freed KF, Hose G, Piecuch P, Kowalski K 2005. Comparison of low-order multireference many-body perturbation theories. J. Chem. Phys. 122:134105
    [Google Scholar]
  14. 14.
    Werner HJ, Knowles PJ 1988. An efficient internally contracted multiconfiguration–reference configuration interaction method. J. Chem. Phys. 89:5803–14
    [Google Scholar]
  15. 15.
    Szalay PG, Müller T, Gidofalvi G, Lischka H, Shepard R 2012. Multiconfiguration self-consistent field and multireference configuration interaction methods and applications. Chem. Rev. 112:108–81
    [Google Scholar]
  16. 16.
    Lyakh DI, Musiał M, Lotrich VF, Bartlett RJ 2012. Multireference nature of chemistry: the coupled-cluster view. Chem. Rev. 112:182243
    [Google Scholar]
  17. 17.
    Köhn A, Hanauer M, Mück LA, Jagau TC, Gauss J 2013. State-specific multireference coupled-cluster theory. WIREs Comput. Mol. Sci. 3:176–97
    [Google Scholar]
  18. 18.
    Evangelista FA 2018. Perspective: multireference coupled cluster theories of dynamical electron correlation. J. Chem. Phys. 149:030901
    [Google Scholar]
  19. 19.
    Jankowski K, Paldus J, Grabowski I, Kowalski K 1992. Applicability of valence-universal multireference coupled-cluster theories to quasidegenerate electronic states. I. Models involving at most two-body amplitudes. J. Chem. Phys. 97:7600–12
    [Google Scholar]
  20. 20.
    Paldus J, Piecuch P, Pylypow L, Jeziorski B 1993. Application of Hilbert-space coupled-cluster theory to simple (H2)2 model systems: planar models. Phys. Rev. A 47:2738–82
    [Google Scholar]
  21. 21.
    Evangelisti S, Daudey JP, Malrieu JP 1987. Qualitative intruder-state problems in effective Hamiltonian theory and their solution through intermediate Hamiltonians. Phys. Rev. A 35:4930–41
    [Google Scholar]
  22. 22.
    Roos BO, Andersson K 1995. Multiconfigurational perturbation theory with level shift—the Cr2 potential revisited. Chem. Phys. Lett. 245:215–23
    [Google Scholar]
  23. 23.
    Roos BO, Andersson K, Fülscher MP, Serrano-Andrés L, Pierloot K et al. 1996. Applications of level shift corrected perturbation theory in electronic spectroscopy. J. Mol. Struct. THEOCHEM 388:257–76
    [Google Scholar]
  24. 24.
    Malrieu JP, Durand P, Daudey JP 1985. Intermediate Hamiltonians as a new class of effective Hamiltonians. J. Phys. A 18:809–26
    [Google Scholar]
  25. 25.
    Dyall KG 1995. The choice of a zeroth-order Hamiltonian for second-order perturbation theory with a complete active space self-consistent-field reference function. J. Chem. Phys. 102:4909–18
    [Google Scholar]
  26. 26.
    Chaudhuri RK, Finley JP, Freed KF 1997. Comparison of the perturbative convergence with multireference Möller–Plesset, Epstein–Nesbet, forced degenerate and optimized zeroth order partitionings: the excited BeH2 surface. J. Chem. Phys. 106:4067–81
    [Google Scholar]
  27. 27.
    Wegner F 1994. Flow-equations for Hamiltonians. Ann. Phys. 506:77–91
    [Google Scholar]
  28. 28.
    Głazek SD, Wilson KG 1994. Perturbative renormalization group for Hamiltonians. Phys. Rev. D 49:4214–18
    [Google Scholar]
  29. 29.
    White SR 2002. Numerical canonical transformation approach to quantum many-body problems. J. Chem. Phys. 117:7472–82
    [Google Scholar]
  30. 30.
    Bogner SK, Furnstahl RJ, Perry RJ 2007. Similarity renormalization group for nucleon-nucleon interactions. Phys. Rev. C 75:061001
    [Google Scholar]
  31. 31.
    Tsukiyama K, Bogner SK, Schwenk A 2011. In-medium similarity renormalization group for nuclei. Phys. Rev. Lett. 106:222502
    [Google Scholar]
  32. 32.
    Tsukiyama K, Bogner SK, Schwenk A 2012. In-medium similarity renormalization group for open-shell nuclei. Phys. Rev. C 85:061304
    [Google Scholar]
  33. 33.
    Hergert H, Bogner SK, Binder S, Calci A, Langhammer J et al. 2013. In-medium similarity renormalization group with chiral two- plus three-nucleon interactions. Phys. Rev. C 87:034307
    [Google Scholar]
  34. 34.
    Hergert H, Bogner SK, Morris TD, Schwenk A, Tsukiyama K 2016. The in-medium similarity renormalization group: a novel ab initio method for nuclei. Phys. Rep. 621:165–222
    [Google Scholar]
  35. 35.
    Hergert H 2017. In-medium similarity renormalization group for closed and open-shell nuclei. Phys. Scr. 92:023002
    [Google Scholar]
  36. 36.
    Evangelista FA 2014. A driven similarity renormalization group approach to quantum many-body problems. J. Chem. Phys. 141:054109
    [Google Scholar]
  37. 37.
    Crawford TD, Schaefer HF 2000. An introduction to coupled cluster theory for computational chemists. Rev. Comp. Chem. 14:33–136
    [Google Scholar]
  38. 38.
    Bartlett RJ, Musiał M 2007. Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 79:291–352
    [Google Scholar]
  39. 39.
    Shavitt I, Bartlett RJ 2009. Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory Cambridge, UK: Cambridge Univ. Press
  40. 40.
    Piecuch P, Kowalski K, Pimienta ISO, McGuire MJ 2002. Recent advances in electronic structure theory: method of moments of coupled-cluster equations and renormalized coupled-cluster approaches. Int. Rev. Phys. Chem. 21:527–655
    [Google Scholar]
  41. 41.
    Krylov AI 2008. Equation-of-motion coupled-cluster methods for open-shell and electronically excited species: the Hitchhiker's guide to Fock space. Annu. Rev. Phys. Chem. 59:433–62
    [Google Scholar]
  42. 42.
    Piecuch P 2010. Active-space coupled-cluster methods. Mol. Phys. 108:2987–3015
    [Google Scholar]
  43. 43.
    Musiał M, Perera A, Bartlett RJ 2011. Multireference coupled-cluster theory: the easy way. J. Chem. Phys. 134:114108
    [Google Scholar]
  44. 44.
    Shen J, Piecuch P 2012. Merging active-space and renormalized coupled-cluster methods via the CC() formalism, with benchmark calculations for singlet-triplet gaps in biradical systems. J. Chem. Theory Comput. 8:496888
    [Google Scholar]
  45. 45.
    Small DW, Head-Gordon M 2009. Tractable spin-pure methods for bond breaking: local many-electron spin-vector sets and an approximate valence bond model. J. Chem. Phys. 130:084103
    [Google Scholar]
  46. 46.
    Parkhill JA, Head-Gordon M 2010. A tractable and accurate electronic structure method for static correlations: the perfect hextuples model. J. Chem. Phys 133:024103
    [Google Scholar]
  47. 47.
    Bulik IW, Henderson TM, Scuseria GE 2015. Can single-reference coupled cluster theory describe static correlation. J. Chem. Theory Comput. 11:317179
    [Google Scholar]
  48. 48.
    Qiu Y, Henderson TM, Zhao J, Scuseria GE 2017. Projected coupled cluster theory. J. Chem. Phys. 147:064111
    [Google Scholar]
  49. 49.
    Kehrein S 2006. The Flow Equation Approach to Many-Particle Systems Berlin: Springer-Verlag
  50. 50.
    Chu MT, Driessel KR 1990. The projected gradient method for least squares matrix approximations with spectral constraints. SIAM J. Numer. Anal. 27:1050–60
    [Google Scholar]
  51. 51.
    Brockett RW 1991. Dynamical systems that sort lists, diagonalize matrices, and solve linear programming problems. Linear Algebra Appl. 146:79–91
    [Google Scholar]
  52. 52.
    Bach V, Bru JB 2010. Rigorous foundations of the Brockett–Wegner flow for operators. J. Evol. Equ. 10:425–42
    [Google Scholar]
  53. 53.
    Anderson A 1993. Quantum canonical transformations: physical equivalence of quantum theories. Phys. Lett. B 305:67–70
    [Google Scholar]
  54. 54.
    Van Vleck J 1929. On -type doubling and electron spin in the spectra of diatomic molecules. Phys. Rev. 33:467–506
    [Google Scholar]
  55. 55.
    Kemble EC 2005. The Fundamental Principles of Quantum Mechanics: With Elementary Applications New York: Dover
  56. 56.
    Primas H 1963. Generalized perturbation theory in operator form. Rev. Mod. Phys. 35:710–11
    [Google Scholar]
  57. 57.
    Kutzelnigg W 1982. Quantum chemistry in Fock space. I. The universal wave and energy operators. J. Chem. Phys. 77:3081–97
    [Google Scholar]
  58. 58.
    Kutzelnigg W, Koch S 1983. Quantum chemistry in Fock space. II. Effective Hamiltonians in Fock space. J. Chem. Phys. 79:4315–35
    [Google Scholar]
  59. 59.
    Kutzelnigg W 1984. Quantum chemistry in Fock space. III. Particle-hole formalism. J. Chem. Phys. 80:822–30
    [Google Scholar]
  60. 60.
    Bartlett RJ, Kucharski SA, Noga J 1989. Alternative coupled-cluster Ansätze II: the unitary coupled-cluster method. Chem. Phys. Lett. 155:133–40
    [Google Scholar]
  61. 61.
    Watts JD, Trucks GW, Bartlett RJ 1989. The unitary coupled-cluster approach and molecular properties. Applications of the UCC(4) method. Chem. Phys. Lett. 157:359–66
    [Google Scholar]
  62. 62.
    Kutzelnigg W 1991. Error analysis and improvements of coupled-cluster theory. Theor. Chim. Acta 80:349–86
    [Google Scholar]
  63. 63.
    Taube AG, Bartlett RJ 2006. New perspectives on unitary coupled-cluster theory. Int. J. Quantum Chem. 106:3393
    [Google Scholar]
  64. 64.
    Yanai T, Chan GKL 2006. Canonical transformation theory for multireference problems. J. Chem. Phys. 124:194106
    [Google Scholar]
  65. 65.
    Yanai T, Chan GKL 2007. Canonical transformation theory from extended normal ordering. J. Chem. Phys. 127:104107
    [Google Scholar]
  66. 66.
    Neuscamman E, Yanai T, Chan GKL 2010. A review of canonical transformation theory. Int. Rev. Phys. Chem. 29:231–71
    [Google Scholar]
  67. 67.
    Mazziotti DA 2007. Anti-Hermitian part of the contracted Schrödinger equation for the direct calculation of two-electron reduced density matrices. Phys. Rev. A 75:022505
    [Google Scholar]
  68. 68.
    Mazziotti DA 2012. Two-electron reduced density matrix as the basic variable in many-electron quantum chemistry and physics. Chem. Rev. 112:244–62
    [Google Scholar]
  69. 69.
    Schrieffer JR, Wolff PA 1966. Relation between the Anderson and Kondo Hamiltonians. Phys. Rev. 149:491–92
    [Google Scholar]
  70. 70.
    Bravyi S, DiVincenzo DP, Loss D 2011. Schrieffer–Wolff transformation for quantum many-body systems. Ann. Phys. 326:2793–826
    [Google Scholar]
  71. 71.
    Kutzelnigg W 2010. Unconventional aspects of coupled-cluster theory. Recent Progress in Coupled Cluster Methods P Čársky, J Paldus, J Pittner299356 Chall. Adv. Comput. Chem. Phys. 11 Dordrecht, Neth.:: Springer
    [Google Scholar]
  72. 72.
    Mukherjee D 1995. A coupled cluster approach to the electron correlation problem using a correlated reference state. Recent Progress in Many-Body Theories E Schachinger, H Mitter, H Sormann12733 Boston: Springer
    [Google Scholar]
  73. 73.
    Kutzelnigg W, Mukherjee D 1997. Normal order and extended Wick theorem for a multiconfiguration reference wave function. J. Chem. Phys. 107:432–49
    [Google Scholar]
  74. 74.
    Mukherjee D 1997. Normal ordering and a Wick-like reduction theorem for fermions with respect to a multi-determinantal reference state. Chem. Phys. Lett. 274:561–66
    [Google Scholar]
  75. 75.
    Sinha D, Maitra R, Mukherjee D 2013. Generalized antisymmetric ordered products, generalized normal ordered products, ordered and ordinary cumulants and their use in many electron correlation problem. Comput. Theor. Chem. 1003:62–70
    [Google Scholar]
  76. 76.
    Mazziotti DA 1998. Approximate solution for electron correlation through the use of Schwinger probes. Chem. Phys. Lett. 289:419–27
    [Google Scholar]
  77. 77.
    Kutzelnigg W, Mukherjee D 1999. Cumulant expansion of the reduced density matrices. J. Chem. Phys. 110:2800–9
    [Google Scholar]
  78. 78.
    Hanauer M, Köhn A 2012. Meaning and magnitude of the reduced density matrix cumulants. Chem. Phys. 401:50–61
    [Google Scholar]
  79. 79.
    Werner HJ, Knowles PJ 1985. A second order multiconfiguration SCF procedure with optimum convergence. J. Chem. Phys. 82:5053
    [Google Scholar]
  80. 80.
    Kutzelnigg W 1998. Almost variational coupled cluster theory. Mol. Phys. 94:65–71
    [Google Scholar]
  81. 81.
    Cooper B, Knowles PJ 2010. Benchmark studies of variational, unitary and extended coupled cluster methods. J. Chem. Phys. 133:234102
    [Google Scholar]
  82. 82.
    Evangelista FA 2011. Alternative single-reference coupled cluster approaches for multireference problems: The simpler, the better. J. Chem. Phys. 134:224102
    [Google Scholar]
  83. 83.
    Li C, Evangelista FA 2016. Towards numerically robust multireference theories: the driven similarity renormalization group truncated to one- and two-body operators. J. Chem. Phys. 144:164114. Erratum. 2018. J. Chem. Phys. 148:079903
    [Google Scholar]
  84. 84.
    Evangelista FA, Gauss J 2012. On the approximation of the similarity-transformed Hamiltonian in single-reference and multireference coupled cluster theory. Chem. Phys. 401:27–35
    [Google Scholar]
  85. 85.
    Neuscamman E, Yanai T, Chan GKL 2009. Quadratic canonical transformation theory and higher order density matrices. J. Chem. Phys. 130:124102
    [Google Scholar]
  86. 86.
    Li C, Evangelista FA 2017. Driven similarity renormalization group: third-order multireference perturbation theory. J. Chem. Phys. 146:124132. Erratum. 2018. J. Chem. Phys. 148:079902
    [Google Scholar]
  87. 87.
    Li C, Evangelista FA 2015. Multireference driven similarity renormalization group: a second-order perturbative analysis. J. Chem. Theory Comput. 11:2097–108
    [Google Scholar]
  88. 88.
    Hannon KP, Li C, Evangelista FA 2016. An integral-factorized implementation of the driven similarity renormalization group second-order multireference perturbation theory. J. Chem. Phys. 144:204111
    [Google Scholar]
  89. 89.
    East ALL, Allen WD 1993. The heat of formation of NCO. J. Chem. Phys. 99:4638–50
    [Google Scholar]
  90. 90.
    Császár AG, Allen WD, Schaefer HF 1998. In pursuit of the ab initio limit for conformational energy prototypes. J. Chem. Phys. 108:9751–64
    [Google Scholar]
  91. 91.
    Tajti A, Szalay PG, Császár AG, Kállay M, Gauss J et al. 2004. HEAT: high accuracy extrapolated ab initio thermochemistry. J. Chem. Phys. 121:11599
    [Google Scholar]
  92. 92.
    White SR 1992. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69:286366
    [Google Scholar]
  93. 93.
    Schollwöck U 2011. The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 326:96–192
    [Google Scholar]
  94. 94.
    Chan GKL, Sharma S 2011. The density matrix renormalization group in quantum chemistry. Annu. Rev. Phys. Chem. 62:465–81
    [Google Scholar]
  95. 95.
    Nakano H 1993. Quasidegenerate perturbation theory with multiconfigurational self-consistent-field reference functions. J. Chem. Phys. 99:7983–92
    [Google Scholar]
  96. 96.
    Malrieu JP, Heully JL, Zaitsevskii A 1995. Multiconfigurational second-order perturbative methods: overview and comparison of basic properties. Theor. Chim. Acta 90:167–87
    [Google Scholar]
  97. 97.
    Li C, Evangelista FA 2018. Driven similarity renormalization group for excited states: a state-averaged perturbation theory. J. Chem. Phys. 148:124106
    [Google Scholar]
  98. 98.
    Evangelista FA, Gauss J 2011. An orbital-invariant internally contracted multireference coupled cluster approach. J. Chem. Phys. 134:114102
    [Google Scholar]
  99. 99.
    Hanauer M, Köhn A 2011. Pilot applications of internally contracted multireference coupled cluster theory, and how to choose the cluster operator properly. J. Chem. Phys. 134:204111
    [Google Scholar]
  100. 100.
    Jeziorski B, Monkhorst HJ 1981. Coupled-cluster method for multideterminantal reference states. Phys. Rev. A 24:1668–81
    [Google Scholar]
  101. 101.
    Evangelista FA, Allen WD, Schaefer HF 2007. Coupling term derivation and general implementation of state-specific multireference coupled cluster theories. J. Chem. Phys. 127:024102
    [Google Scholar]
  102. 102.
    Kong L 2010. Orbital invariance issue in multireference methods. Int. J. Quantum Chem. 110:2603–13
    [Google Scholar]
  103. 103.
    Evangelista FA, Gauss J 2010. Insights into the orbital invariance problem in state-specific multireference coupled cluster theory. J. Chem. Phys. 133:044101
    [Google Scholar]
  104. 104.
    Bartlett RJ 1981. Many-body perturbation theory and coupled cluster theory for electron correlation in molecules. Annu. Rev. Phys. Chem. 32:359–401
    [Google Scholar]
  105. 105.
    Hanrath M 2009. On the concepts of connectivity, separability, and consistency: an illustration by partitioned diagrams and numerical probing. Chem. Phys. 356:31–38
    [Google Scholar]
  106. 106.
    Li C, Verma P, Hannon KP, Evangelista FA 2017. A low-cost approach to electronic excitation energies based on the driven similarity renormalization group. J. Chem. Phys. 147:074107
    [Google Scholar]
  107. 107.
    Ghigo G, Roos BO, Malmqvist 2004. A modified definition of the zeroth-order Hamiltonian in multiconfigurational perturbation theory (CASPT2). Chem. Phys. Lett. 396:142–49
    [Google Scholar]
  108. 108.
    Datta D, Kong L, Nooijen M 2011. A state-specific partially internally contracted multireference coupled cluster approach. J. Chem. Phys. 134:214116
    [Google Scholar]
  109. 109.
    Yanai T, Kurashige Y, Neuscamman E, Chan GKL 2012. Extended implementation of canonical transformation theory: parallelization and a new level-shifted condition. Phys. Chem. Chem. Phys. 14:7809–20
    [Google Scholar]
  110. 110.
    Sivalingam K, Krupicka M, Auer AA, Neese F 2016. Comparison of fully internally and strongly contracted multireference configuration interaction procedures. J. Chem. Phys. 145:054104
    [Google Scholar]
  111. 111.
    Andersson K, Malmqvist , Roos BO 1992. Second-order perturbation theory with a complete active space self-consistent field reference function. J. Chem. Phys. 96:1218–26
    [Google Scholar]
  112. 112.
    Hanauer M, Köhn A 2012. Communication: restoring full size extensivity in internally contracted multireference coupled cluster theory. J. Chem. Phys. 137:131103
    [Google Scholar]
  113. 113.
    Datta D, Nooijen M 2012. Multireference equation-of-motion coupled cluster theory. J. Chem. Phys. 137:204107
    [Google Scholar]
  114. 114.
    Demel O, Datta D, Nooijen M 2013. Additional global internal contraction in variations of multireference equation of motion coupled cluster theory. J. Chem. Phys. 138:134108
    [Google Scholar]
  115. 115.
    Evangelista Lab. 2019. Forte: an open-source suite of quantum chemistry methods for strongly correlated electrons Psi4 Plugin Software. https://github.com/evangelistalab/forte
  116. 116.
    Parrish RM, Burns LA, Smith DGA, Simmonett AC, DePrince AE 2017. Psi4 1.1: an open-source electronic structure program emphasizing automation, advanced libraries, and interoperability. J. Chem. Theory Comput. 13:318597
    [Google Scholar]
  117. 117.
    Evangelista FA 2014. Adaptive multiconfigurational wave functions. J. Chem. Phys. 140:124114
    [Google Scholar]
  118. 118.
    Schriber JB, Evangelista FA 2016. Communication: an adaptive configuration interaction approach for strongly correlated electrons with tunable accuracy. J. Chem. Phys. 144:161106
    [Google Scholar]
  119. 119.
    Fosso-Tande J, Nguyen TS, Gidofalvi G, DePrince AE III 2016. Large-scale variational two-electron reduced-density-matrix-driven complete active space self-consistent field methods. J. Chem. Theory Comput. 12:2260–71
    [Google Scholar]
  120. 120.
    Knowles PJ, Werner HJ 1988. An efficient method for the evaluation of coupling coefficients in configuration interaction calculations. Chem. Phys. Lett. 145:514–22
    [Google Scholar]
  121. 121.
    Angeli C, Pastore M 2011. The lowest singlet states of octatetraene revisited. J. Chem. Phys. 134:184302
    [Google Scholar]
  122. 122.
    Urban M, Noga J, Cole S, Bartlett RJ 1985. Towards a full CCSDT model for electron correlation. J. Chem. Phys. 83:4041–46
    [Google Scholar]
  123. 123.
    Raghavachari K, Trucks GW, Pople JA, Head-Gordon M 1989. A fifth-order perturbation comparison of electron correlation theories. Chem. Phys. Lett. 157:479–83
    [Google Scholar]
  124. 124.
    Ohnishi Yy, Ishimura K, Ten-no S 2014. Interaction energy of large molecules from restrained denominator MP2-F12. J. Chem. Theory Comput. 10:4857–61
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-042018-052416
Loading
/content/journals/10.1146/annurev-physchem-042018-052416
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error