1932

Abstract

The ability to predict and describe nonradiative processes in molecules via the identification and characterization of conical intersections is one of the greatest recent successes of theoretical chemistry. Only recently, however, has this concept been extended to materials science, where nonradiative recombination limits the efficiencies of materials for various optoelectronic applications. In this review, we present recent advances in the theoretical study of conical intersections in semiconductor nanomaterials. After briefly introducing conical intersections, we argue that specific defects in materials can induce conical intersections between the ground and first excited electronic states, thus introducing pathways for nonradiative recombination. We present recent developments in theoretical methods, computational tools, and chemical intuition for the prediction of such defect-induced conical intersections. Through examples in various nanomaterials, we illustrate the significance of conical intersections for nanoscience. We also discuss challenges facing research in this area and opportunities for progress.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-042018-052425
2019-06-14
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/physchem/70/1/annurev-physchem-042018-052425.html?itemId=/content/journals/10.1146/annurev-physchem-042018-052425&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Brus LE 1984. Electron-electron and electron-hole interactions in small semiconductor crystallites—the size dependence of the lowest excited electronic state. J. Chem. Phys. 80:4403–9
    [Google Scholar]
  2. 2.
    Ekimov AI, Efros AL, Onushchenko AA 1985. Quantum size effect in semiconductor microcrystals. Solid State Commun. 56921–24
  3. 3.
    Brus L 1986. Electronic wave functions in semiconductor clusters: experiment and theory. J. Phys. Chem. 90:2555–60
    [Google Scholar]
  4. 4.
    Canham LT 1990. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57:1046–48
    [Google Scholar]
  5. 5.
    Boles MA, Ling D, Hyeon T, Talapin DV 2016. The surface science of nanocrystals. Nat. Mater. 15:141–53
    [Google Scholar]
  6. 6.
    Klimov VI 2014. Multicarrier interactions in semiconductor nanocrystals in relation to the phenomena of Auger recombination and carrier multiplication. Annu. Rev. Condens. Matter Phys 5:285–316
    [Google Scholar]
  7. 7.
    Hall RN 1952. Electron-hole recombination in germanium. Phys. Rev. 87:387
    [Google Scholar]
  8. 8.
    Shockley W, Read WT Jr 1952. Statistics of the recombination of holes and electrons. Phys. Rev. 87:835–42
    [Google Scholar]
  9. 9.
    Henry CH, Lang DV 1977. Nonradiative capture and recombination by multiphonon emission in GaAs and GaP. Phys. Rev. B 15:989–1016
    [Google Scholar]
  10. 10.
    Yarkony DR 1996. Diabolical conical intersections. Rev. Mod. Phys. 68:985–1013
    [Google Scholar]
  11. 11.
    Bernardi F, Olivucci M, Robb MA 1996. Potential energy surface crossings in organic photochemistry. Chem. Soc. Rev. 25:321–28
    [Google Scholar]
  12. 12.
    Levine BG, Martínez TJ 2007. Isomerization through conical intersections. Ann. Rev. Phys. Chem. 58:613–34
    [Google Scholar]
  13. 13.
    Matsika S, Krause P 2011. Nonadiabatic events and conical intersections. Annu. Rev. Phys. Chem. 62:621–43
    [Google Scholar]
  14. 14.
    Domcke W, Yarkony DR 2012. Role of conical intersections in molecular spectroscopy and photoinduced chemical dynamics. Annu. Rev. Phys. Chem. 63:325–52
    [Google Scholar]
  15. 15.
    Schuurman MS, Stolow A 2018. Dynamics at conical intersections. Annu. Rev. Phys. Chem. 69:427–50
    [Google Scholar]
  16. 16.
    Yarkony DR 2012. Nonadiabatic quantum chemistry—past, present, and future. Chem. Rev. 112:481–98
    [Google Scholar]
  17. 17.
    Worth GA, Cederbaum LS 2004. Beyond Born-Oppenheimer: molecular dynamics through a conical intersection. Annu. Rev. Phys. Chem. 55:127–58
    [Google Scholar]
  18. 18.
    Truhlar DG 2001. Potential energy surfaces. Encyclopedia of Physical Science and Technology, Vol. 13 RA Meyers 9–17 New York: Academic. , 3rd ed..
    [Google Scholar]
  19. 19.
    Teller E 1937. The crossing of potential surfaces. J. Phys. Chem. 41:109–16
    [Google Scholar]
  20. 20.
    Atchity GJ, Xantheas SS, Ruedenberg K 1991. Potential energy surfaces near intersections. J. Chem. Phys. 95:1862–76
    [Google Scholar]
  21. 21.
    Yarkony DR 2001. Nuclear dynamics near conical intersections in the adiabatic representation: I. The effects of local topography on interstate transitions. J. Chem. Phys. 114:2601–13
    [Google Scholar]
  22. 22.
    Koga N, Morokuma K 1985. Determination of the lowest energy point on the crossing seam between two potential surfaces using the energy gradient. Chem. Phys. Lett. 119:371–74
    [Google Scholar]
  23. 23.
    Bearpark MJ, Robb MA, Schlegel HB 1994. A direct method for the location of the lowest energy point on a potential surface crossing. Chem. Phys. Lett. 223:269–74
    [Google Scholar]
  24. 24.
    Zilberg S, Haas Y 1999. Molecular photochemistry: a general method for localizing conical intersections using the phase-change rule. Chem. Eur. J. 5:1755–65
    [Google Scholar]
  25. 25.
    Yarkony DR 2004. Marching along ridges. Efficient location of energy-minimized conical intersections of two states using extrapolatable functions. J. Phys. Chem. A 108:3200–5
    [Google Scholar]
  26. 26.
    Ciminelli C, Granucci G, Persico M 2004. The photoisomerization mechanism of azobenzene: a semiclassical simulation of nonadiabatic dynamics. Chem. Eur. J. 10:2327–41
    [Google Scholar]
  27. 27.
    Levine BG, Coe JD, Martínez TJ 2008. Optimizing conical intersections without derivative coupling vectors: application to multistate multireference second-order perturbation theory (MS-CASPT2). J. Phys. Chem. B 112:405–13
    [Google Scholar]
  28. 28.
    Groenhof G, Bouxin-Cademartory M, Hess B, de Visser SP, Berendsen HJC et al. 2004. Photoactivation of the photoactive yellow protein: why photon absorption triggers a trans-to-cis isomerization of the chromophore in the protein. J. Am. Chem. Soc. 126:4228–33
    [Google Scholar]
  29. 29.
    Virshup AM, Punwong C, Pogorelov TV, Lindquist BA, Ko C, Martínez TJ 2009. Photodynamics in complex environments: ab initio multiple spawning quantum mechanical/molecular mechanical dynamics. J. Phys. Chem. B 113:3280–91
    [Google Scholar]
  30. 30.
    Hasan MZ, Kane CL 2010. Topological insulators. Rev. Mod. Phys. 82:3045–67
    [Google Scholar]
  31. 31.
    Batzill M 2012. The surface science of graphene: metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects. Surf. Sci. Rep. 67:83–115
    [Google Scholar]
  32. 32.
    Bersuker IB 2006. The Jahn-Teller Effect Cambridge, UK: Cambridge Univ. Press
  33. 33.
    Richter M, Marquetand P, González-Vázquez J, Sola I, González L 2012. Femtosecond intersystem crossing in the DNA nucleobase cytosine. J. Phys. Chem. Lett. 3:3090–95
    [Google Scholar]
  34. 34.
    Tischler MA, Collins RT, Stathis JH, Tsang JC 1992. Luminescence degradation in porous silicon. Appl. Phys. Lett. 60:639–41
    [Google Scholar]
  35. 35.
    Delerue C, Allan G, Lannoo M 1993. Theoretical aspects of the luminescence of porous silicon. Phys. Rev. B 48:11024–36
    [Google Scholar]
  36. 36.
    Schoisswohl M, Cantin JL, von Bardeleben HJ, Amato G 1995. Electron paramagnetic resonance study of luminescent stain etched porous silicon. Appl. Phys. Lett. 66:3660–62
    [Google Scholar]
  37. 37.
    Meyer BK, Petrova-Koch V, Muschik T, Linke H, Omling P, Lehmann V 1993. Electron spin resonance investigations of oxidized porous silicon. Appl. Phys. Lett. 63:1930–32
    [Google Scholar]
  38. 38.
    Garrido Fernandez B, López M, García C, Pérez-Rodríguez A, Morante JR et al. 2002. Influence of average size and interface passivation on the spectral emission of Si nanocrystals embedded in SiO2. J. Appl. Phys. 91:798–807
    [Google Scholar]
  39. 39.
    Pereira RN, Rowe DJ, Anthony RJ, Kortshagen U 2011. Oxidation of freestanding silicon nanocrystals probed with electron spin resonance of interfacial dangling bonds. Phys. Rev. B 83:155327
    [Google Scholar]
  40. 40.
    Brawand NP, Vörös M, Galli G 2015. Surface dangling bonds are a cause of B-type blinking in Si nanoparticles. Nanoscale 7:3737–44
    [Google Scholar]
  41. 41.
    Lannoo M, Delerue C, Allan G 1993. Nonradiative recombination on dangling bonds in silicon crystallites. J. Lumin. 57:243–47
    [Google Scholar]
  42. 42.
    Delerue C, Lannoo M 2004. Nanostructures: Theory and Modelling Berlin: Springer-Verlag
  43. 43.
    Peng WT, Fales BS, Shu YN, Levine BG 2018. Dynamics of recombination via conical intersection in a semiconductor nanocrystal. Chem. Sci. 9:681–87
    [Google Scholar]
  44. 44.
    Truhlar DG, Mead CA 2003. Relative likelihood of encountering conical intersections and avoided intersections on the potential energy surfaces of polyatomic molecules. Phys. Rev. A 68:032501
    [Google Scholar]
  45. 45.
    Shu Y, Fales BS, Levine BG 2015. Defect-induced conical intersections promote nonradiative recombination. Nano Lett 15:6247–53
    [Google Scholar]
  46. 46.
    Marcus RA 1956. On the theory of oxidation-reduction reactions involving electron transfer. I. J. Chem. Phys. 24:966–78
    [Google Scholar]
  47. 47.
    Barbara PF, Meyer TJ, Ratner MA 1996. Contemporary issues in electron transfer research. J. Phys. Chem. 100:13148–68
    [Google Scholar]
  48. 48.
    Zhu HM, Yang Y, Hyeon-Deuk K, Califano M, Song N et al. 2014. Auger-assisted electron transfer from photoexcited semiconductor quantum dots. Nano Lett 14:1263–69
    [Google Scholar]
  49. 49.
    Wolkin MV, Jorne J, Fauchet PM, Allan G, Delerue C 1999. Electronic states and luminescence in porous silicon quantum dots: the role of oxygen. Phys. Rev. Lett. 82:197–200
    [Google Scholar]
  50. 50.
    Garcia C, Garrido B, Pellegrino P, Ferre R, Moreno JA et al. 2003. Size dependence of lifetime and absorption cross section of Si nanocrystals embedded in SiO2. Appl. Phys. Lett. 82:1595–97
    [Google Scholar]
  51. 51.
    Sychugov I, Juhasz R, Valenta J, Linnros J 2005. Narrow luminescence linewidth of a silicon quantum dot. Phys. Rev. Lett. 94:087405
    [Google Scholar]
  52. 52.
    Schmidt T, Chizhik AI, Chizhik AM, Potrick K, Meixner AJ, Huisken F 2012. Radiative exciton recombination and defect luminescence observed in single silicon nanocrystals. Phys. Rev. B 86:125302
    [Google Scholar]
  53. 53.
    Shu Y, Fales BS, Peng WT, Levine BG 2017. Understanding nonradiative recombination through defect-induced conical intersections. J. Phys. Chem. Lett. 8:4091–99
    [Google Scholar]
  54. 54.
    Dauben WG, Salem L, Turro NJ 1975. Classification of photochemical reactions. Acc. Chem. Res. 8:41–54
    [Google Scholar]
  55. 55.
    Michl J 1977. Role of biradicaloid geometries in organic photochemistry. Photochem. Photobiol. 25:141–54
    [Google Scholar]
  56. 56.
    Michl J, Bonačić-Koutecký V 1988. Biradicals and biradicaloids: a unified view. Tetrahedron 44:7559–85
    [Google Scholar]
  57. 57.
    Klessinger M 1995. Conical intersections and the mechanism of singlet photoreactions. Angew. Chem. Int. Ed. 34:549–51
    [Google Scholar]
  58. 58.
    Michl J, Bonačić-Koutecký V 1990. Electronic Aspects of Organic Photochemistry New York: Wiley
  59. 59.
    Ben-Nun M, Martínez TJ 2000. Photodynamics of ethylene: ab initio studies of conical intersections. Chem. Phys. 259:237–48
    [Google Scholar]
  60. 60.
    Bonačić-Koutecký V, Schöffel K, Michl J 1987. Critically heterosymmetric biradicaloid geometries of protonated Schiff bases: possible consequences for photochemistry and photobiology. Theor. Chim. Acta 72:459–74
    [Google Scholar]
  61. 61.
    Warshel A, Chu ZT 2001. Nature of the surface crossing process in bacteriorhodopsin: computer simulations of the quantum dynamics of the primary photochemical event. J. Phys. Chem. B 105:9857–71
    [Google Scholar]
  62. 62.
    Polli D, Altoè P, Weingart O, Spillane KM, Manzoni C et al. 2010. Conical intersection dynamics of the primary photoisomerization event in vision. Nature 467:440–43
    [Google Scholar]
  63. 63.
    Schapiro I, Ryazantsev MN, Frutos LM, Ferré N, Lindh R, Olivucci M 2011. The ultrafast photoisomerizations of rhodopsin and bathorhodopsin are modulated by bond length alternation and HOOP driven electronic effects. J. Am. Chem. Soc. 133:3354–64
    [Google Scholar]
  64. 64.
    Perun S, Sobolewski AL, Domcke W 2005. Ab initio studies on the radiationless decay mechanisms of the lowest excited singlet states of 9H-adenine. J. Am. Chem. Soc. 127:6257–65
    [Google Scholar]
  65. 65.
    Serrano-Andrés L, Merchán M, Borin AC 2006. Adenine and 2-aminopurine: paradigms of modern theoretical photochemistry. PNAS 103:8691–96
    [Google Scholar]
  66. 66.
    Hudock HR, Levine BG, Thompson AL, Satzger H, Townsend D et al. 2007. Ab initio molecular dynamics and time-resolved photoelectron spectroscopy of electronically excited uracil and thymine. J. Phys. Chem. A 111:8500–8
    [Google Scholar]
  67. 67.
    Barbatti M, Aquino AJA, Szymczak JJ, Nachtigallová D, Hobza P, Lischka H 2010. Relaxation mechanisms of UV-photoexcited DNA and RNA nucleobases. PNAS 107:21453–58
    [Google Scholar]
  68. 68.
    Liang JX, Matsika S 2011. Pathways for fluorescence quenching in 2-aminopurine π-stacked with pyrimidine nucleobases. J. Am. Chem. Soc. 133:6799–808
    [Google Scholar]
  69. 69.
    Schultz T, Quenneville J, Levine B, Toniolo A, Martínez TJ et al. 2003. Mechanism and dynamics of azobenzene photoisomerization. J. Am. Chem. Soc. 125:8098–99
    [Google Scholar]
  70. 70.
    Cembran A, Bernardi F, Garavelli M, Gagliardi L, Orlandi G 2004. On the mechanism of the cis–trans isomerization in the lowest electronic states of azobenzene: S0, S1, and T1. J. Am. Chem. Soc. 126:3234–43
    [Google Scholar]
  71. 71.
    Kazaryan A, Lan ZG, Schäfer LV, Thiel W, Filatov M 2011. Surface hopping excited-state dynamics study of the photoisomerization of a light-driven fluorene molecular rotary motor. J. Chem. Theory Comput. 7:2189–99
    [Google Scholar]
  72. 72.
    Liu F, Morokuma K 2012. Computational study on the working mechanism of a stilbene light-driven molecular rotary motor: sloped minimal energy path and unidirectional nonadiabatic photoisomerization. J. Am. Chem. Soc. 134:4864–76
    [Google Scholar]
  73. 73.
    Stefanov BB, Gurevich AB, Weldon MK, Raghavachari K, Chabal YJ 1998. Silicon epoxide: unexpected intermediate during silicon oxide formation. Phys. Rev. Lett. 81:3908–11
    [Google Scholar]
  74. 74.
    Shu Y, Levine BG 2013. Non-radiative recombination via conical intersection at a semiconductor defect. J. Chem. Phys. 139:081102
    [Google Scholar]
  75. 75.
    Shu Y, Levine BG 2015. Nonradiative recombination via conical intersections arising at defects on the oxidized silicon surface. J. Phys. Chem. C 119:1737–47
    [Google Scholar]
  76. 76.
    Wadt WR, Hay PJ 1985. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys. 82:284–98
    [Google Scholar]
  77. 77.
    Saniepay M, Mi C, Liu Z, Abel EP, Beaulac R 2018. Insights into the structural complexity of colloidal CdSe nanocrystal surfaces: correlating the efficiency of nonradiative excited-state processes to specific defects. J. Am. Chem. Soc. 140:1725–36
    [Google Scholar]
  78. 78.
    Bonačić-Koutecký V, Michl J 1985. Charge-transfer-biradical excited states: relation to anomalous fluorescence. “Negative” S1-T1 splitting in twisted aminoborane. J. Am. Chem. Soc. 107:1765–66
    [Google Scholar]
  79. 79.
    Shu Y, Levine BG 2014. Do excited silicon–oxygen double bonds emit light?. J. Phys. Chem. C 118:7669–77
    [Google Scholar]
  80. 80.
    Car R, Parrinello M 1985. Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55:2471–74
    [Google Scholar]
  81. 81.
    Röthlisberger U, Klein ML 1995. Ab initio molecular dynamics investigation of singlet C2H2Li2: determination of the ground-state structure and observation of LiH intermediates. J. Am. Chem. Soc. 117:42–48
    [Google Scholar]
  82. 82.
    Ben-Nun M, Quenneville J, Martínez TJ 2000. Ab initio multiple spawning: photochemistry from first principles quantum molecular dynamics. J. Phys. Chem. A 104:5161–75
    [Google Scholar]
  83. 83.
    Stier W, Prezhdo OV 2002. Nonadiabatic molecular dynamics simulation of light-induced electron transfer from an anchored molecular electron donor to a semiconductor acceptor. J. Phys. Chem. B 106:8047–54
    [Google Scholar]
  84. 84.
    Rego LGC, Batista VS 2003. Quantum dynamics simulations of interfacial electron transfer in sensitized TiO2 semiconductors. J. Am. Chem. Soc. 125:7989–97
    [Google Scholar]
  85. 85.
    Abuabara SG, Rego LGC, Batista VS 2005. Influence of thermal fluctuations on interfacial electron transfer in functionalized TiO2 semiconductors. J. Am. Chem. Soc. 127:18234–42
    [Google Scholar]
  86. 86.
    Duncan WR, Stier WM, Prezhdo OV 2005. Ab initio nonadiabatic molecular dynamics of the ultrafast electron injection across the alizarin-TiO2 interface. J. Am. Chem. Soc. 127:7941–51
    [Google Scholar]
  87. 87.
    Li J, Nilsing M, Kondov I, Wang H, Persson P et al. 2008. Dynamical simulation of photoinduced electron transfer reactions in dye–semiconductor systems with different anchor groups. J. Phys. Chem. C 112:12326–33
    [Google Scholar]
  88. 88.
    Madrid AB, Hyeon-Deuk K, Habenicht BF, Prezhdo OV 2009. Phonon-induced dephasing of excitons in semiconductor quantum dots: multiple exciton generation, fission, and luminescence. ACS Nano 3:2487–94
    [Google Scholar]
  89. 89.
    Martsinovich N, Troisi A 2011. Theoretical studies of dye-sensitised solar cells: from electronic structure to elementary processes. Energy Environ. Sci. 4:4473–95
    [Google Scholar]
  90. 90.
    Long R, Prezhdo OV 2011. Ab initio nonadiabatic molecular dynamics of the ultrafast electron injection from a PbSe quantum dot into the TiO2 surface. J. Am. Chem. Soc. 133:19240–49
    [Google Scholar]
  91. 91.
    Huang SP, Kilin DS 2014. Charge transfer, luminescence, and phonon bottleneck in TiO2 nanowires computed by eigenvectors of Liouville superoperator. J. Chem. Theory Comput. 10:3996–4005
    [Google Scholar]
  92. 92.
    Pal S, Trivedi DJ, Akimov AV, Aradi B, Frauenheim T, Prezhdo OV 2016. Nonadiabatic molecular dynamics for thousand atom systems: a tight-binding approach toward PYXAID. J. Chem. Theory Comput. 12:1436–48
    [Google Scholar]
  93. 93.
    Li L, Kanai Y 2016. Excited electron dynamics at semiconductor–molecule type-II heterojunction interface: first-principles dynamics simulation. J. Phys. Chem. Lett. 7:1495–1500
    [Google Scholar]
  94. 94.
    Nelson T, Fernandez-Alberti S, Chernyak V, Roitberg AE, Tretiak S 2011. Nonadiabatic excited-state molecular dynamics modeling of photoinduced dynamics in conjugated molecules. J. Phys. Chem. B 115:5402–14
    [Google Scholar]
  95. 95.
    Shimojo F, Ohmura S, Mou W, Kalia RK, Nakano A, Vashishta P 2013. Large nonadiabatic quantum molecular dynamics simulations on parallel computers. Comput. Phys. Commun. 184:1–8
    [Google Scholar]
  96. 96.
    Nelson T, Fernandez-Alberti S, Roitberg AE, Tretiak S 2014. Nonadiabatic excited-state molecular dynamics: modeling photophysics in organic conjugated materials. Acc. Chem. Res. 47:1155–64
    [Google Scholar]
  97. 97.
    Tully JC 1990. Molecular dynamics with electronic transitions. J. Chem. Phys. 93:1061–71
    [Google Scholar]
  98. 98.
    Jasper AW, Nangia S, Zhu CY, Truhlar DG 2006. Non-Born–Oppenheimer molecular dynamics. Acc. Chem. Res. 39:101–8
    [Google Scholar]
  99. 99.
    Barbatti M 2011. Nonadiabatic dynamics with trajectory surface hopping method. Wiley Interdiscip. Rev. Comput. Mol. Sci. 1:620–33
    [Google Scholar]
  100. 100.
    Tavernelli I 2015. Nonadiabatic molecular dynamics simulations: synergies between theory and experiments. Acc. Chem. Res. 48:792–800
    [Google Scholar]
  101. 101.
    Wang L, Long R, Prezhdo OV 2015. Time-domain ab initio modeling of photoinduced dynamics at nanoscale interfaces. Annu. Rev. Phys. Chem. 66:549–79
    [Google Scholar]
  102. 102.
    Subotnik JE, Jain A, Landry B, Petit A, Ouyang W, Bellonzi N 2016. Understanding the surface hopping view of electronic transitions and decoherence. Annu. Rev. Phys. Chem. 67:387–417
    [Google Scholar]
  103. 103.
    Ryabinkin IG, Joubert-Doriol L, Izmaylov AF 2017. Geometric phase effects in nonadiabatic dynamics near conical intersections. Acc. Chem. Res. 50:1785–93
    [Google Scholar]
  104. 104.
    Curchod BFE, Martínez TJ 2018. Ab initio nonadiabatic quantum molecular dynamics. Chem. Rev. 118:3305–36
    [Google Scholar]
  105. 105.
    Shu Y, Kortshagen UR, Levine BG, Anthony RJ 2015. Surface structure and silicon nanocrystal photoluminescence: the role of hypervalent silyl groups. J. Phys. Chem. C 119:26683–91
    [Google Scholar]
  106. 106.
    Shu Y, Levine BG 2016. First-principles study of nonradiative recombination in silicon nanocrystals: the role of surface silanol. J. Phys. Chem. C 120:23246–53
    [Google Scholar]
  107. 107.
    Runge E, Gross EKU 1984. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52:997–1000
    [Google Scholar]
  108. 108.
    Marques MAL, Maitra NT, Nogueira FMS, Gross EKU, Rubio A, eds. 2012. Fundamentals of Time-Dependent Density Functional Theory Berlin: Springer Verlag
  109. 109.
    Petersilka M, Gossmann UJ, Gross EKU 1996. Excitation energies from time-dependent density-functional theory. Phys. Rev. Lett. 76:1212–15
    [Google Scholar]
  110. 110.
    Casida ME, Jamorski C, Casida KC, Salahub DR 1998. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold. J. Chem. Phys. 108:4439–49
    [Google Scholar]
  111. 111.
    Levine BG, Ko C, Quenneville J, Martínez TJ 2006. Conical intersections and double excitations in time-dependent density functional theory. Mol. Phys. 104:1039–51
    [Google Scholar]
  112. 112.
    Zwijnenburg MA 2013. Excited state localisation cascades in inorganic semiconductor nanoparticles. Phys. Chem. Chem. Phys. 15:11119–27
    [Google Scholar]
  113. 113.
    Minezawa N, Gordon MS 2009. Optimizing conical intersections by spin–flip density functional theory: application to ethylene. J. Phys. Chem. A 113:12749–53
    [Google Scholar]
  114. 114.
    Herbert JM, Zhang X, Morrison AF, Liu J 2016. Beyond time-dependent density functional theory using only single excitations: methods for computational studies of excited states in complex systems. Acc. Chem. Res. 49:931–41
    [Google Scholar]
  115. 115.
    Yang Y, Shen L, Zhang D, Yang W 2016. Conical intersections from particle–particle random phase and Tamm–Dancoff approximations. J. Phys. Chem. Lett. 7:2407–11
    [Google Scholar]
  116. 116.
    Shu Y, Parker KA, Truhlar DG 2017. Dual-functional Tamm–Dancoff approximation: a convenient density functional method that correctly describes S1/S0 conical intersections. J. Phys. Chem. Lett. 8:2107–12
    [Google Scholar]
  117. 117.
    Shu Y, Parker KA, Truhlar DG 2017. Dual-functional Tamm–Dancoff approximation with self-interaction-free orbitals: vertical excitation energies and potential energy surfaces near an intersection seam. J. Phys. Chem. A 121:9728–35
    [Google Scholar]
  118. 118.
    Roos BO, Taylor PR, Sigbahn PEM 1980. A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach. Chem. Phys. 48:157–73
    [Google Scholar]
  119. 119.
    Hirao K 1992. Multireference Møller–Plesset method. Chem. Phys. Lett. 190:374–80
    [Google Scholar]
  120. 120.
    Andersson K, Malmqvist PA, Roos BO 1992. Second-order perturbation theory with a complete active space self-consistent field reference function. J. Chem. Phys. 96:1218–26
    [Google Scholar]
  121. 121.
    Nakano H 1993. Quasidegenerate perturbation theory with multiconfigurational self-consistent-field reference functions. J. Chem. Phys. 99:7983–92
    [Google Scholar]
  122. 122.
    Ufimtsev IS, Martinez TJ 2009. Quantum chemistry on graphical processing units. 3. Analytical energy gradients, geometry optimization, and first principles molecular dynamics. J. Chem. Theory Comput. 5:2619–28
    [Google Scholar]
  123. 123.
    Sisto A, Glowacki DR, Martinez TJ 2014. Ab initio nonadiabatic dynamics of multichromophore complexes: a scalable graphical-processing-unit-accelerated exciton framework. Acc. Chem. Res. 47:2857–66
    [Google Scholar]
  124. 124.
    Wang LP, Titov A, McGibbon R, Liu F, Pande VS, Martínez TJ 2014. Discovering chemistry with an ab initio nanoreactor. Nat. Chem. 6:1044–48
    [Google Scholar]
  125. 125.
    Fales BS, Levine BG 2015. Nanoscale multireference quantum chemistry: full configuration interaction on graphical processing units. J. Chem. Theory Comput. 11:4708–16
    [Google Scholar]
  126. 126.
    Hohenstein EG, Luehr N, Ufimtsev IS, Martíinez TJ 2015. An atomic orbital-based formulation of the complete active space self-consistent field method on graphical processing units. J. Chem. Phys. 142:224103
    [Google Scholar]
  127. 127.
    Snyder JW Jr, Hohenstein EG, Luehr N, Martínez TJ 2015. An atomic orbital-based formulation of analytical gradients and nonadiabatic coupling vector elements for the state-averaged complete active space self-consistent field method on graphical processing units. J. Chem. Phys. 143:154107
    [Google Scholar]
  128. 128.
    Hohenstein EG 2016. Analytic formulation of derivative coupling vectors for complete active space configuration interaction wavefunctions with floating occupation molecular orbitals. J. Chem. Phys. 145:174110
    [Google Scholar]
  129. 129.
    Fales BS, Shu Y, Levine BG, Hohenstein EG 2017. Complete active space configuration interaction from state-averaged configuration interaction singles natural orbitals: analytic first derivatives and derivative coupling vectors. J. Chem. Phys. 147:094104
    [Google Scholar]
  130. 130.
    Snyder JW Jr, Fales BS, Hohenstein EG, Levine BG, Martínez TJ 2017. A direct-compatible formulation of the coupled perturbed complete active space self-consistent field equations on graphical processing units. J. Chem. Phys. 146:174113
    [Google Scholar]
  131. 131.
    Shu Y, Hohenstein EG, Levine BG 2015. Configuration interaction singles natural orbitals: an orbital basis for an efficient and size intensive multireference description of electronic excited states. J. Chem. Phys. 142:024102
    [Google Scholar]
  132. 132.
    Granucci G, Persico M, Toniolo A 2001. Direct semiclassical simulation of photochemical processes with semiempirical wave functions. J. Chem. Phys. 114:10608–15
    [Google Scholar]
  133. 133.
    Slaviček P, Martínez TJ 2010. Ab initio floating occupation molecular orbital-complete active space configuration interaction: an efficient approximation to CASSCF. J. Chem. Phys. 132:234102
    [Google Scholar]
  134. 134.
    Bauschlicher CW Jr, Langhoff SR 1988. Full configuration-interaction study of the ionic–neutral curve crossing in LiF. J. Chem. Phys. 89:4246–354
    [Google Scholar]
  135. 135.
    de Meras AS, Lepetit MB, Malrieu JP 1990. Discontinuity of valence CASSCF wave functions around weakly avoided crossing between valence configurations. Chem. Phys. Lett. 172:163–68
    [Google Scholar]
  136. 136.
    Shu Y, Levine BG 2013. Reducing the propensity for unphysical wavefunction symmetry breaking in multireference calculations of the excited states of semiconductor clusters. J. Chem. Phys. 139:074102
    [Google Scholar]
  137. 137.
    Finley JP, Malmqvist PA, Roos BO, Serrano-Andrés L 1998. The multi-state CASPT2 method. Chem. Phys. Lett. 288:299–306
    [Google Scholar]
  138. 138.
    Granovsky AA 2011. Extended multi-configuration quasi-degenerate perturbation theory: the new approach to multi-state multi-reference perturbation theory. J. Chem. Phys. 134:214113
    [Google Scholar]
  139. 139.
    Shiozaki T, Győrffy W, Celani P, Werner H-J 2011. Extended multi-state complete active space second-order perturbation theory: energy and nuclear gradients. J. Chem. Phys. 135:081106
    [Google Scholar]
  140. 140.
    Wu Q, Cheng CL, Van Voorhis T 2007. Configuration interaction based on constrained density functional theory: a multireference method. J. Chem. Phys. 127:164119
    [Google Scholar]
  141. 141.
    Li Manni G, Carlson RK, Luo S, Ma D, Olsen J et al. 2014. Multiconfiguration pair-density functional theory. J. Chem. Theory Comput. 10:3669–80
    [Google Scholar]
  142. 142.
    Pijeau S, Hohenstein EG 2017. Improved complete active space configuration interaction energies with a simple correction from density functional theory. J. Chem. Theory Comput. 13:1130–46
    [Google Scholar]
  143. 143.
    Snyder JW Jr, Parrish RM, Martínez TJ 2017. α-CASSCF: an efficient, empirical correction for SA-CASSCF to closely approximate MS-CASPT2 potential energy surfaces. J. Phys. Chem. Lett. 8:2432–37
    [Google Scholar]
  144. 144.
    Libisch F, Huang C, Carter EA 2014. Embedded correlated wavefunction schemes: theory and applications. Acc. Chem. Res. 47:2768–75
    [Google Scholar]
  145. 145.
    Hens Z, Martins JC 2013. A solution NMR toolbox for characterizing the surface chemistry of colloidal nanocrystals. Chem. Mater. 25:1211–21
    [Google Scholar]
  146. 146.
    Morris-Cohen AJ, Malicki M, Peterson MD, Slavin JWJ, Weiss EA 2013. Chemical, structural, and quantitative analysis of the ligand shells of colloidal quantum dots. Chem. Mater. 25:1155–65
    [Google Scholar]
  147. 147.
    Owen J 2015. The coordination chemistry of nanocrystal surfaces. Science 347:615–16
    [Google Scholar]
  148. 148.
    Tyo EC, Vajda S 2015. Catalysis by clusters with precise numbers of atoms. Nat. Nanotechnol. 10:577–88
    [Google Scholar]
  149. 149.
    Peng ZA, Peng X 2002. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. J. Am. Chem. Soc. 124:3343–53
    [Google Scholar]
  150. 150.
    Kim BH, Hackett MJ, Park J, Hyeon T 2014. Synthesis, characterization, and application of ultrasmall nanoparticles. Chem. Mater. 26:59–71
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-042018-052425
Loading
/content/journals/10.1146/annurev-physchem-042018-052425
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error