1932

Abstract

Entanglement of states is one of the most surprising and counterintuitive consequences of quantum mechanics, with potent applications in cryptography and computing. In organic semiconductor materials, one particularly significant manifestation is the spin-entangled triplet-pair state, which consists of a pair of localized triplet excitons coupled into an overall spin-0, -1, or -2 configuration. The most widely analyzed of these is the spin-0 pair, denoted 1(TT), which was initially invoked in the 1960s to explain delayed fluorescence in acene films. It is considered an essential gateway state for triplet-triplet annihilation and the reverse process, singlet fission, enabling interconversion between one singlet and two triplet excitons without any change in overall spin. This state has returned to the forefront of organic materials research in recent years, thanks both to its central role in the resurgent field of singlet fission and to its implication in a host of exotic new photophysical behaviors. Here we review the properties of triplet-pair states, from first principles to recent experimental results.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-042018-052435
2019-06-14
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/physchem/70/1/annurev-physchem-042018-052435.html?itemId=/content/journals/10.1146/annurev-physchem-042018-052435&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Rao A, Friend RH 2017. Harnessing singlet exciton fission to break the Shockley-Queisser limit. Nat. Rev. 2:17063
    [Google Scholar]
  2. 2.
    Scholes GD 2015. Correlated pair states formed by singlet fission and exciton-exciton annihilation. J. Phys. Chem. A 119:12699–705
    [Google Scholar]
  3. 3.
    Casanova D 2018. Theoretical modeling of singlet fission. Chem. Rev. 118:7164–207
    [Google Scholar]
  4. 4.
    Smith MB, Michl J 2010. Singlet fission. Chem. Rev. 110:6891–936
    [Google Scholar]
  5. 5.
    Smith MB, Michl J 2013. Recent advances in singlet fission. Annu. Rev. Phys. Chem. 64:361–86
    [Google Scholar]
  6. 6.
    Monahan NR, Sun D, Tamura H, Williams KW, Xu B et al. 2017. Dynamics of the triplet pair state reveals the likely co-existence of coherent and incoherent singlet fission in crystalline hexacene. Nat. Chem. 9:341–46
    [Google Scholar]
  7. 7.
    Piland GB, Burdett JJ, Dillon RJ, Bardeen CJ 2014. Singlet fission: from coherences to kinetics. J. Phys. Chem. Lett. 5:2312–19
    [Google Scholar]
  8. 8.
    Johnson JC, Nozik AJ, Michl J 2013. The role of chromophore coupling in singlet fission. Acc. Chem. Res. 46:1290–99
    [Google Scholar]
  9. 9.
    Chan WL, Berkelbach TC, Provorse MR, Monahan NR, Tritsch JR et al. 2013. The quantum coherent mechanism for singlet fission: experiment and theory. Acc. Chem. Res. 46:1321–29
    [Google Scholar]
  10. 10.
    Burdett JJ, Bardeen CJ 2013. The dynamics of singlet fission in crystalline tetracene and covalent analogs. Acc. Chem. Res. 46:1312–20
    [Google Scholar]
  11. 11.
    Wilson MWB, Rao A, Ehrler B, Friend RH 2013. Singlet exciton fission in polycrystalline pentacene: from photophysics toward devices. Acc. Chem. Res. 46:1330–38
    [Google Scholar]
  12. 12.
    Trinh MT, Pinkard A, Pun AB, Sanders SN, Kumarasamy E et al. 2017. Distinct properties of the triplet pair state from singlet fission. Sci. Adv. 3:e1700241
    [Google Scholar]
  13. 13.
    Pensack RD, Tilley A, Grieco C, Purdum G, Ostroumov E et al. 2018. Striking the right balance of intermolecular coupling for high-efficiency singlet fission. Chem. Sci. 9:6240–59
    [Google Scholar]
  14. 14.
    Burdett JJ, Piland GB, Bardeen CJ 2013. Magnetic field effects and the role of spin states in singlet fission. Chem. Phys. Lett. 585:1–10
    [Google Scholar]
  15. 15.
    Spano FC, Silva C 2014. H- and J-aggregate behavior in polymeric semiconductors. Annu. Rev. Phys. Chem. 65:477–500
    [Google Scholar]
  16. 16.
    Bardeen CJ 2014. The structure and dynamics of molecular excitons. Annu. Rev. Phys. Chem. 65:127–48
    [Google Scholar]
  17. 17.
    Köhler A, Bässler H 2009. Triplet states in organic semiconductors. Mater. Sci. Eng. R 66:71–109
    [Google Scholar]
  18. 18.
    Penfold TJ, Gindensperger E, Daniel C, Marian CM 2018. Spin-vibronic mechanism for intersystem crossing. Chem. Rev. 118:6975–7025
    [Google Scholar]
  19. 19.
    Bencini A, Gatteschi D 1990. The exchange interaction. EPR of Exchange Coupled Systems119 Berlin: Springer-Verlag
    [Google Scholar]
  20. 20.
    Richert S, Tait CE, Timmel CR 2017. Delocalisation of photoexcited triplet states probed by transient EPR and hyperfine spectroscopy. J. Magn. Reson. 280:103–16
    [Google Scholar]
  21. 21.
    Bayliss SL, Chepelianskii AD, Sepe A, Walker BJ, Ehrler B et al. 2014. Geminate and nongeminate recombination of triplet excitons formed by singlet fission. Phys. Rev. Lett. 112:238701
    [Google Scholar]
  22. 22.
    Kollmar C 1993. Electronic structure of diradical and dicarbene intermediates in short-chain polydiacetylene oligomers. J. Chem. Phys. 98:7210–28
    [Google Scholar]
  23. 23.
    Yago T, Wakasa M 2018. A spin exchange model for singlet fission. Chem. Phys. Lett. 695:240–44
    [Google Scholar]
  24. 24.
    Bardeen CJ 2013. Excitonic processes in molecular crystalline materials. MRS Bull. 38:65–71
    [Google Scholar]
  25. 25.
    Merrifield RE 1971. Magnetic effects on triplet exciton interactions. Pure Appl. Chem. 27:481–98
    [Google Scholar]
  26. 26.
    Kollmar C, Sixl H, Benk H, Denner V, Mahler G 1982. Theory of two coupled triplet states—electrostatic energy splittings. Chem. Phys. Lett. 87:266–70
    [Google Scholar]
  27. 27.
    Bayliss SL, Weiss LR, Rao A, Friend RH, Chepelianskii AD, Greenham NC 2016. Spin signatures of exchange-coupled triplet pairs formed by singlet fission. Phys. Rev. B 94:045204
    [Google Scholar]
  28. 28.
    Bayliss SL, Weiss LR, Mitioglu A, Galkowski K, Yang Z et al. 2018. Site-selective measurement of coupled spin pairs in an organic semiconductor. PNAS 115:5077–82
    [Google Scholar]
  29. 29.
    Yago T, Ishikawa K, Katoh R, Wakasa M 2016. Magnetic field effects on triplet pair generated by singlet fission in an organic crystal: application of radical pair model to triplet pair. J. Phys. Chem. C 120:27858–70
    [Google Scholar]
  30. 30.
    Wakasa M, Kaise M, Yago T, Katoh R, Wakikawa Y, Ikoma T 2015. What can be learned from magnetic field effects on singlet fission: role of exchange interaction in excited triplet pairs. J. Phys. Chem. C 119:25840–44
    [Google Scholar]
  31. 31.
    Ishikawa K, Yago T, Wakasa M 2018. Exploring the structure of an exchange-coupled triplet pair generated by singlet fission in crystalline diphenylhexatriene: anisotropic magnetic field effects on fluorescence in high fields. J. Phys. Chem. C 122:22264–72
    [Google Scholar]
  32. 32.
    Keevers TL, McCamey DR 2016. Theory of triplet-triplet annihilation in optically detected magnetic resonance. Phys. Rev. B 93:045210
    [Google Scholar]
  33. 33.
    Wang R, Zhang C, Zhang B, Liu Y, Wang X, Xiao M 2015. Magnetic dipolar interaction between correlated triplets created by singlet fission in tetracene crystals. Nat. Commun. 6:8602
    [Google Scholar]
  34. 34.
    Snaathorst D, Keijzers C 1984. Triplet-triplet interactions between dimers of a copper maleonitriledithiolate complex. Mol. Phys. 51:509–24
    [Google Scholar]
  35. 35.
    Benk H, Sixl H 1981. Theory of triplet-triplet annihilation in optically detected magnetic resonance. Mol. Phys. 42:779–801
    [Google Scholar]
  36. 36.
    Weiss LR, Bayliss SL, Kraffert F, Thorley KJ, Anthony JE et al. 2016. Strongly exchange-coupled triplet pairs in an organic semiconductor. Nat. Phys. 13:176–81
    [Google Scholar]
  37. 37.
    Tayebjee MJY, Sanders SN, Kumarasamy E, Campos LM, Sfeir MY, McCamey DR 2016. Quintet multiexciton dynamics in singlet fission. Nat. Phys. 13:182–88
    [Google Scholar]
  38. 38.
    Barford W, Bursill JR, Yu LM 2001. Density-matrix renormalization-group calculations of excited states of linear polyenes. Phys. Rev. B 65:195108
    [Google Scholar]
  39. 39.
    Hu W, Chan GKL 2015. Excited-state geometry optimization with the density matrix renormalization group, as applied to polyenes. J. Chem. Theory Comput. 11:3000–9
    [Google Scholar]
  40. 40.
    Feng X, Krylov AI 2016. On couplings and excimers: lessons from studies of singlet fission in covalently linked tetracene dimers. Phys. Chem. Chem. Phys. 18:7751–61
    [Google Scholar]
  41. 41.
    Suna A 1970. Kinematics of exciton-exciton annihilation in molecular crystals. Phys. Rev. B 1:1716–39
    [Google Scholar]
  42. 42.
    Tavan P, Schulten K 1987. Electronic excitations in finite and infinite polyenes. Phys. Rev. B 36:4337–58
    [Google Scholar]
  43. 43.
    Barford W 2005.Electronic and Optical Properties of Conjugated Polymers New York: Oxford Univ. Press 1st ed.
  44. 44.
    Josue JS, Frank HA 2002. Direct determination of the S1 excited-state energies of xanthophylls by low-temperature fluorescence spectroscopy. J. Phys. Chem. A 106:4815–24
    [Google Scholar]
  45. 45.
    Petek H, Bell AJ, Choi YS, Yoshihara K, Tounge BA, Christensen RL 1993. The state of trans, trans-1,3,5,7-octatetraene in free jet expansions. J. Chem. Phys. 98:3777–94
    [Google Scholar]
  46. 46.
    Merrifield RE 1968. Diffusion and mutual annihilation of triplet excitons in organic crystals. Acc. Chem. Res. 1:129–35
    [Google Scholar]
  47. 47.
    Zimmerman PM, Zhang Z, Musgrave CB 2010. Singlet fission in pentacene through multi-exciton quantum states. Nat. Chem. 2:648–52
    [Google Scholar]
  48. 48.
    Chan WL, Ligges M, Jailaubekov A, Kaake L, Miaja-Avila L, Zhu XY 2011. Observing the multiexciton state in singlet fission and ensuing ultrafast multielectron transfer. Science 334:1541–45
    [Google Scholar]
  49. 49.
    Zeng T, Ananth N, Hoffmann R 2014. Seeking small molecules for singlet fission: a heteroatom substitution strategy. J. Am. Chem. Soc. 136:12638–47
    [Google Scholar]
  50. 50.
    Yost SR, Lee J, Wilson MWB, Wu T, McMahon DP et al. 2014. A transferable model for singlet-fission kinetics. Nat. Chem. 6:492–97
    [Google Scholar]
  51. 51.
    Burdett JJ, Gosztola D, Bardeen CJ 2011. The dependence of singlet exciton relaxation on excitation density and temperature in polycrystalline tetracene thin films: kinetic evidence for a dark intermediate state and implications for singlet fission. J. Chem. Phys. 135:214508
    [Google Scholar]
  52. 52.
    Tayebjee MJY, Clady RGCR, Schmidts TW 2013. The exciton dynamics in tetracene thin films. Phys. Chem. Chem. Phys. 15:14797805
    [Google Scholar]
  53. 53.
    Stern HL, Musser AJ, Gelinas S, Parkinson P, Herz LM et al. 2015. Identification of a triplet pair intermediate in singlet exciton fission in solution. PNAS 112:7656–61
    [Google Scholar]
  54. 54.
    Walker BJ, Musser AJ, Beljonne D, Friend RH 2013. Singlet exciton fission in solution. Nat. Chem. 5:1019–24
    [Google Scholar]
  55. 55.
    Dover CB, Gallaher JK, Frazer L, Tapping PC, Petty AJ II et al. 2018. Endothermic singlet fission is hindered by excimer formation. Nat. Chem. 10:305–10
    [Google Scholar]
  56. 56.
    Musser AJ, Liebel M, Schnedermann C, Wende T, Kehoe TB et al. 2015. Evidence for conical intersection dynamics mediating ultrafast singlet exciton fission. Nat. Phys. 11:352–57
    [Google Scholar]
  57. 57.
    Bakulin AA, Morgan SE, Kehoe TB, Wilson MWB, Chin AW et al. 2016. Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy. Nat. Chem. 8:16–23
    [Google Scholar]
  58. 58.
    Korovina NV, Das S, Nett Z, Feng X, Joy J et al. 2016. Singlet fission in a covalently linked cofacial alkynyltetracene dimer. J. Am. Chem. Soc. 138:617–27
    [Google Scholar]
  59. 59.
    Pensack RD, Tilley AJ, Parkin SR, Lee TS, Payne MM et al. 2015. Exciton delocalization drives rapid singlet fission in nanoparticles of acene derivatives. J. Am. Chem. Soc. 137:6790–803
    [Google Scholar]
  60. 60.
    Pensack RD, Ostroumov EE, Tilley AJ, Mazza S, Grieco C et al. 2016. Observation of two triplet-pair intermediates in singlet exciton fission. J. Phys. Chem. Lett. 7:2370–75
    [Google Scholar]
  61. 61.
    Herz J, Buckup T, Paulus F, Engelhart JU, Bunz UHF, Motzkus M 2015. Unveiling singlet fission mediating states in TIPS-pentacene and its aza derivatives. J. Phys. Chem. A 119:6602–10
    [Google Scholar]
  62. 62.
    Mauck CM, Hartnett PE, Margulies EA, Ma L, Miller CE et al. 2016. Singlet fission via an excimer-like intermediate in 3,6-bis(thiophen-2-yl)diketopyrrolopyrrole derivatives. J. Am. Chem. Soc. 138:11749–61
    [Google Scholar]
  63. 63.
    Stern HL, Cheminal A, Yost SR, Broch K, Bayliss SL et al. 2017. Vibronically coherent ultrafast triplet-pair formation and subsequent thermally activated dissociation control efficient endothermic singlet fission. Nat. Chem. 9:1205–12
    [Google Scholar]
  64. 64.
    Lukman S, Richter JM, Yang L, Hu P, Wu J et al. 2017. Efficient singlet fission and triplet-pair emission in a family of zethrene diradicaloids. J. Am. Chem. Soc. 139:18376–85
    [Google Scholar]
  65. 65.
    Yong CK, Musser AJ, Bayliss SL, Lukman S, Tamura H et al. 2017. The entangled triplet pair state in acene and heteroacene materials. Nat. Commun. 8:15953
    [Google Scholar]
  66. 66.
    Aoki-Matsumoto T, Furuta K, Yamada T, Moriya H, Mizuno K 2001. Exciton photoluminescence in pentacene single crystal. Int. J. Mod. Phys. B 15:3753–56
    [Google Scholar]
  67. 67.
    Wilson MW, Rao A, Johnson K, Gelinas S, Di Pietro R et al. 2013. Temperature-independent singlet exciton fission in tetracene. J. Am. Chem. Soc. 135:16680–88
    [Google Scholar]
  68. 68.
    Chabr M, Wild UP, Fünfschilling J, Zschokke-Gränacher I 1981. Quantum beats of prompt fluorescence in tetracene crystals. Chem. Phys. 57:425–30
    [Google Scholar]
  69. 69.
    Burdett JJ, Bardeen CJ 2012. Quantum beats in crystalline tetracene delayed fluorescence due to triplet pair coherences produced by direct singlet fission. J. Am. Chem. Soc. 134:8597–607
    [Google Scholar]
  70. 70.
    Müller HP, Thoma P, Vaubel G 1967. The phosphorescence of anthracene single crystals and its spectrum. Phys. Status Solidi 23:253–62
    [Google Scholar]
  71. 71.
    Anger F, Oss JO, Heinemeyer U, Broch K, Scholz R et al. 2012. Photoluminescence spectroscopy of pure pentacene, perfluoropentacene, and mixed thin films. J. Chem. Phys. 136:054701
    [Google Scholar]
  72. 72.
    Lim SH, Bjorklund TG, Spano FC, Bardeen CJ 2004. Exciton delocalization and superradiance in tetracene thin films and nanoaggregates. Phys. Rev. Lett. 92:107402
    [Google Scholar]
  73. 73.
    Sprafke JK, Kondratuk DV, Wykes M, Thompson AL, Ho M et al. 2011. Belt-shaped π-systems: relating geometry to electronic structure in a six-porphyrin nanoring. J. Am. Chem. Soc. 133:17262–73
    [Google Scholar]
  74. 74.
    Greco JA, LaFountain AM, Kinashi N, Shinada T, Sakaguchi K et al. 2016. Spectroscopic investigation of the carotenoid deoxyperidinin: direct observation of the forbidden S S1 transition. J. Phys. Chem. B 120:2731–44
    [Google Scholar]
  75. 75.
    Niedzwiedzki DM, Blankenship RE 2018. Excited-state properties of the central-cis isomer of the carotenoid peridinin. Arch. Biochem. Biophys. 649:29–36
    [Google Scholar]
  76. 76.
    Josue JS, Frank HA 2002. Direct determination of the S1 excited-state energies of xanthophylls by low-temperature fluorescence spectroscopy. J. Phys. Chem. A 106:4815–24
    [Google Scholar]
  77. 77.
    Polívka T, Sundström V 2004. Ultrafast dynamics of carotenoid excited states—from solution to natural and artificial systems. Chem. Rev. 104:2021–71
    [Google Scholar]
  78. 78.
    Herkstroeter WG 1975. Triplet energies of azulene, beta-carotene and ferrocene. J. Am. Phys. Soc. 97:4161–67
    [Google Scholar]
  79. 79.
    Piland GB, Bardeen CJ 2015. How morphology affects singlet fission in crystalline tetracene. J. Phys. Chem. Lett. 6:1841–46
    [Google Scholar]
  80. 80.
    Busby E, Xia J, Wu Q, Low JZ, Song R et al. 2015. A design strategy for intramolecular singlet fission mediated by charge-transfer states in donor-acceptor organic materials. Nat. Mater. 14:426–33
    [Google Scholar]
  81. 81.
    Hu J, Xu K, Shen L, Wu Q, He G et al. 2018. New insights into the design of conjugated polymers for intramolecular singlet fission. Nat. Commun. 9:2999
    [Google Scholar]
  82. 82.
    Aryanpour K, Shukla A, Mazumdar S 2015. Theory of singlet fission in polyenes, acene crystals, and covalently linked acene dimers. J. Phys. Chem. C 119:6966–79
    [Google Scholar]
  83. 83.
    Margulies EA, Logsdon JL, Miller CE, Ma L, Simonoff E et al. 2017. Direct observation of a charge-transfer state preceding high-yield singlet fission in terrylenediimide thin films. J. Am. Chem. Soc. 139:663–71
    [Google Scholar]
  84. 84.
    Breen I, Tempelaar R, Bizimana LA, Kloss B, Reichman DR, Turner DB 2017. Triplet separation drives singlet fission after femtosecond correlated triplet pair production in rubrene. J. Am. Chem. Soc. 139:11745–51
    [Google Scholar]
  85. 85.
    Grieco C, Kennehan ER, Rimshaw A, Payne MM, Anthony JE, Asbury JB 2017. Harnessing molecular vibrations to probe triplet dynamics during singlet fission. J. Phys. Chem. Lett. 8:5700–6
    [Google Scholar]
  86. 86.
    Folie BD, Haber JB, Refaely-Abramson S, Neaton JB, Ginsberg NS 2018. Long-lived correlated triplet pairs in a π-stacked crystalline pentacene derivative. J. Am. Chem. Soc. 140:2326–35
    [Google Scholar]
  87. 87.
    Feng X, Luzanov AV, Krylov AI 2013. Fission of entangled spins: an electronic structure perspective. J. Phys. Chem. Lett. 4:3845–52
    [Google Scholar]
  88. 88.
    Chien AD, Zimmerman PM 2017. Recovering dynamic correlation in spin flip configuration interaction through a difference dedicated approach. J. Chem. Phys. 146:014103
    [Google Scholar]
  89. 89.
    Khan S, Mazumdar S 2017. Diagrammatic exciton basis theory of the photophysics of pentacene dimers. J. Phys. Chem. Lett. 8:4468–78
    [Google Scholar]
  90. 90.
    Khan S, Mazumdar S 2017. Theory of transient excited state absorptions in pentacene and derivatives: triplet-triplet biexciton versus free triplets. J. Phys. Chem. Lett. 8:5943–48
    [Google Scholar]
  91. 91.
    Sanders SN, Kumarasamy E, Pun AB, Trinh MT, Choi B et al. 2015. Quantitative intramolecular singlet fission in bipentacenes. J. Am. Chem. Soc. 137:8965–72
    [Google Scholar]
  92. 92.
    Wilson MWB, Rao A, Clark J, Kumar RSS, Brida D et al. 2011. Ultrafast dynamics of exciton fission in polycrystalline pentacene. J. Am. Chem. Soc. 133:11830–33
    [Google Scholar]
  93. 93.
    Rao A, Wilson MWB, Hodgkiss JM, Albert-Seifried S, Bässler H, Friend RH 2010. Exciton fission and charge generation via triplet excitons in pentacene/C60 bilayers. J. Am. Chem. Soc. 132:12698–703
    [Google Scholar]
  94. 94.
    Sanders SN, Kumarasamy E, Pun AB, Steigerwald ML, Sfeir MY, Campos LM 2016. Intramolecular singlet fission in oligoacene heterodimers. Angew. Chem. Int. Ed. 55:3373–77
    [Google Scholar]
  95. 95.
    Sanders SN, Kumarasamy E, Pun AB, Steigerwald ML, Sfeir MY, Campos LM 2016. Singlet fission in polypentacene. Chemistry 1:505–11
    [Google Scholar]
  96. 96.
    Zirzlmeier J, Lehnherr D, Coto PB, Chernick ET, Casillas R et al. 2015. Singlet fission in pentacene dimers. PNAS 112:5325–30
    [Google Scholar]
  97. 97.
    Wang X, Wang R, Shen L, Tang Z, Wen CY et al. 2018. Intramolecular singlet fission in a face-to-face stacked tetracene trimer. Phys. Chem. Chem. Phys. 20:6330–36
    [Google Scholar]
  98. 98.
    Sakuma T, Sakai H, Araki Y, Mori T, Wada T et al. 2016. Long-lived triplet excited states of bent-shaped pentacene dimers by intramolecular singlet fission. J. Phys. Chem. A 120:1867–75
    [Google Scholar]
  99. 99.
    Yamakado T, Takahashi S, Watanabe K, Matsumoto Y, Osuka A, Saito S 2018. Conformational planarization versus singlet fission: distinct excited-state dynamics of cyclooctatetraene-fused acene dimers. Angew. Chem. Int. Ed. 57:5438–43
    [Google Scholar]
  100. 100.
    Lukman S, Musser AJ, Chen K, Athanasopoulos S, Yong CK et al. 2015. Tuneable singlet exciton fission and triplet-triplet annihilation in an orthogonal pentacene dimer. Adv. Funct. Mater. 25:5452–61
    [Google Scholar]
  101. 101.
    Lukman S, Chen K, Hodgkiss JM, Turban DH, Hine ND et al. 2016. Tuning the role of charge-transfer states in intramolecular singlet exciton fission through side-group engineering. Nat. Commun. 7:13622
    [Google Scholar]
  102. 102.
    Basel BS, Zirzlmeier J, Hetzer C, Phelan BT, Krzyaniak MD et al. 2017. Unified model for singlet fission within a non-conjugated covalent pentacene dimer. Nat. Commun. 8:15171
    [Google Scholar]
  103. 103.
    Kumarasamy E, Sanders SN, Tayebjee MJY, Asadpoordarvish A, Hele TJH et al. 2017. Tuning singlet fission in π-bridge-π chromophores. J. Am. Chem. Soc. 139:12488–94
    [Google Scholar]
  104. 104.
    Polak D, Musser AJ, Sutherland GA, Auty A, Branchi F et al. 2019. Band-edge excitation of carotenoids removes S* revealing triplet-pair contributions to the S1 absorption spectrum. arXiv:1901.04900 [physics.chem-ph]
  105. 105.
    Dillon RJ, Piland GB, Bardeen CJ 2013. Different rates of singlet fission in monoclinic versus orthorhombic crystal forms of diphenylhexatriene. J. Am. Chem. Soc. 135:17278–81
    [Google Scholar]
  106. 106.
    Cheveigne S, Klejn J, Leger A, Belin M, Defourneau D 1977. Molecular electronic transitions observed by inelastic tunneling spectroscopy. Phys. Rev. B 15:750–54
    [Google Scholar]
  107. 107.
    Nijegorodov N, Ramachandran V, Winkoun DP 1997. The dependence of the absorption and fluorescence parameters, the intersystem crossing and internal conversion rate constants on the number of rings in polyacene molecules. Spectrochim. Acta A 53:1813–24
    [Google Scholar]
  108. 108.
    Mcglynn SP, Padhye MR, Kasha M 1955. Lowest triplet levels of the polyacenes. J. Chem. Phys. 23:593–94
    [Google Scholar]
  109. 109.
    Reineke S, Baldo MA 2013. Room temperature triplet state spectroscopy of organic semiconductors. Sci. Rep. 4:3797
    [Google Scholar]
  110. 110.
    Nijegorodov N, Ramachandran V, Winkoun D 1997. The dependence of the absorption and fluorescence parameters, the intersystem crossing and internal conversion rate constants on the number of rings in polyacene molecules. Spectrochim. Acta A 53:1813–24
    [Google Scholar]
  111. 111.
    Vilar MR, Heyman M, Schott M 1983. Spectroscopy of low-energy electrons backscattered from an organic solid surface: pentacene. Chem. Phys. Lett. 94:522–26
    [Google Scholar]
  112. 112.
    Burgos J, Pope M, Swenberg CE, Alfano RR 1977. Heterofission in pentacene doped tetracene single crystals. Phys. Status Solidi B 83:249–56
    [Google Scholar]
  113. 113.
    Tomkiewicz Y, Groff RP, Avakian P 1971. Spectroscopic approach to energetics of exciton fission and fusion in tetracene crystals. J. Chem. Phys. 54:4504–7
    [Google Scholar]
  114. 114.
    Yarmus L, Rosenthal J, Chopp M 1972. EPR of triplet excitions in tetracene crystals: spin polarization and the role of singlet exciton fission. Chem. Phys. Lett. 16:477–81
    [Google Scholar]
  115. 115.
    Klenina IB, Makhneva ZK, Moskalenko AA, Kuzmin ANProskuryakov II 2013. Singlet-triplet excitation fission in light-harvesting complexes of photosynthetic bacteria and in isolated carotenoids. Biophysics 58:43–50
    [Google Scholar]
  116. 116.
    Klenina IB, Makhneva ZK, Moskalenko AA, Gudkov ND, Bolshakov MA et al. 2014. Singlet-triplet fission of carotenoid excitation in light-harvesting LH2 complexes of purple phototrophic bacteria. Biochemistry (Moscow) 79:235–41
    [Google Scholar]
  117. 117.
    Lubert-Perquel D, Salvadori E, Dyson M, Stavrinou PN, Montis R et al. 2018. Identifying triplet pathways in dilute pentacene films. Nat. Commun. 9:4222
    [Google Scholar]
  118. 118.
    Pensack RD, Grieco C, Purdum GE, Mazza SM, Tilley AJ et al. 2017. Solution-processable, crystalline material for quantitative singlet fission. Mater. Horiz. 4:915–23
    [Google Scholar]
  119. 119.
    Grieco C, Doucette GS, Munro JM, Kennehan ER, Lee Y et al. 2017. Triplet transfer mediates triplet pair separation during singlet fission in 6,13-bis(triisopropylsilylethynyl)-pentacene. Adv. Funct. Mater. 27:1703929
    [Google Scholar]
  120. 120.
    Grieco C, Kennehan ER, Kim H, Pensack RD, Brigeman AN et al. 2018. Direct observation of correlated triplet pair dynamics during singlet fission using ultrafast mid-IR spectroscopy. J. Phys. Chem. C 122:2012–22
    [Google Scholar]
  121. 121.
    Pun AB, Sanders SN, Kumarasamy E, Sfeir MY, Congreve DN, Campos LM 2017. Triplet harvesting from intramolecular singlet fission in polytetracene. Adv. Mater. 29:1701416
    [Google Scholar]
  122. 122.
    Lee TS, Lin YL, Kim H, Pensack RD, Rand BP, Scholes GD 2018. Triplet energy transfer governs the dissociation of the correlated triplet pair in exothermic singlet fission. J. Phys. Chem. Lett. 9:4087–95
    [Google Scholar]
  123. 123.
    Pace NA, Arias DH, Granger DB, Christensen S, Anthony JE, Johnson JC 2018. Dynamics of singlet fission and electron injection in self-assembled acene monolayers on titanium dioxide. Chem. Sci. 9:3004–13
    [Google Scholar]
  124. 124.
    Le AK, Bender JA, Arias DH, Cotton DE, Johnson JC, Roberts ST 2018. Singlet fission involves an interplay between energetic driving force and electronic coupling in perylenediimide films. J. Am. Chem. Soc. 140:814–26
    [Google Scholar]
  125. 125.
    Chan WL, Ligges M, Zhu XY 2012. The energy barrier in singlet fission can be overcome through coherent coupling and entropic gain. Nat. Chem. 4:840–45
    [Google Scholar]
  126. 126.
    Lanzani G, Stagira S, Cerullo G, De Silvestri S, Comoretto D et al. 1999. Triplet exciton generation and decay in a red polydiacetylene studied by femtosecond spectroscopy. Chem. Phys. Lett. 313:525–32
    [Google Scholar]
  127. 127.
    Musser AJ, Al-Hashimi M, Maiuri M, Brida D, Heeney M et al. 2013. Activated singlet exciton fission in a semiconducting polymer. J. Am. Chem. Soc. 135:12747–54
    [Google Scholar]
  128. 128.
    Lanzani G, Cerullo G, Zavelani-Rossi M, De Silvestri S, Comoretto D et al. 2001. Triplet-exciton generation mechanism in a new soluble (red-phase) polydiacetylene. Phys. Rev. Lett. 87:187402
    [Google Scholar]
  129. 129.
    Musser AJ, Maiuri M, Brida D, Cerullo G, Friend RH, Clark J 2015. The nature of singlet exciton fission in carotenoid aggregates. J. Am. Chem. Soc. 137:5130–39
    [Google Scholar]
  130. 130.
    Fünfschilling J 1985. Quantum beats in the fluorescence decay of tetracene crystals. J. Phys. Colloq. 46:377–80
    [Google Scholar]
  131. 131.
    Polak D, Jayaprakash R, Leventis A, Fallon KJ, Coulthard H et al. 2018. Manipulating matter with strong coupling: harvesting triplet excitons in organic exciton microcavities. arXiv:1806.09990 [cond-mat.mtrl-sci]
  132. 132.
    Aragó J, Troisi A 2015. Dynamics of the excitonic coupling in organic crystals. Phys. Rev. Lett. 114:026402
    [Google Scholar]
  133. 133.
    Wakasa M, Yago T, Sonoda Y, Katoh R 2018. Structure and dynamics of triplet-exciton pairs generated from singlet fission studied via magnetic field effects. Commun. Chem. 1:9
    [Google Scholar]
  134. 134.
    Huynh UNV, Basel TP, Ehrenfreund E, Li G, Yang Y et al. 2017. Transient magnetophotoinduced absorption studies of photoexcitations in π-conjugated donor-acceptor copolymers. Phys. Rev. Lett. 119:017401
    [Google Scholar]
  135. 135.
    Teichen PE, Eaves JD 2015. Collective aspects of singlet fission in molecular crystals. J. Chem. Phys. 143:044118
    [Google Scholar]
  136. 136.
    Yamagata H, Norton J, Hontz E, Olivier Y, Beljonne D et al. 2011. The nature of singlet excitons in oligoacene molecular crystals. J. Chem. Phys. 134:204703
    [Google Scholar]
  137. 137.
    Chynwat V, Frank HA 1995. The application of the energy gap law to the S1 energies and dynamics of carotenoids. Chem. Phys. 194:237–44
    [Google Scholar]
  138. 138.
    Wang F, Dukovic G, Brus LE, Heinz TF 2004. Time-resolved fluorescence of carbon nanotubes and its implication for radiative lifetimes. Phys. Rev. Lett. 92:177401
    [Google Scholar]
  139. 139.
    Clarke RH, Frank HA 1976. Triplet state radiationless transitions in polycyclic hydrocarbons. J. Chem. Phys. 65:39–47
    [Google Scholar]
  140. 140.
    Yu HL, Lin TS, Weissman SI, Sloop DJ 1984. Time resolved studies of pentacene triplets by electron spin echo spectroscopy. J. Chem. Phys. 80:102–7
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-042018-052435
Loading
/content/journals/10.1146/annurev-physchem-042018-052435
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error