1932

Abstract

This review summarizes progress in understanding electron transfer from photoexcited nanocrystals to redox enzymes. The combination of the light-harvesting properties of nanocrystals and the catalytic properties of redox enzymes has emerged as a versatile platform to drive a variety of enzyme-catalyzed reactions with light. Transfer of a photoexcited charge from a nanocrystal to an enzyme is a critical first step for these reactions. This process has been studied in depth in systems that combine Cd-chalcogenide nanocrystals with hydrogenases. The two components can be assembled in close proximity to enable direct interfacial electron transfer or integrated with redox mediators to transport charges. Time-resolved spectroscopy and kinetic modeling have been used to measure the rates and efficiencies of the electron transfer. Electron transfer has been described within the framework of Marcus theory, providing insights into the factors that can be used to control the photochemical activity of these biohybrid systems. The range of potential applications and reactions that can be achieved using nanocrystal–enzyme systems is expanding, and numerous fundamental and practical questions remain to be addressed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-050317-014232
2020-04-20
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/physchem/71/1/annurev-physchem-050317-014232.html?itemId=/content/journals/10.1146/annurev-physchem-050317-014232&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Woolerton TW, Sheard S, Chaudhary YS, Armstrong FA 2012. Enzymes and bio-inspired electrocatalysts in solar fuel devices. Energy Environ. Sci. 5:67470–90
    [Google Scholar]
  2. 2. 
    Evans RM, Siritanaratkul B, Megarity CF, Pandey K, Esterle TF et al. 2019. The value of enzymes in solar fuels research—efficient electrocatalysts through evolution. Chem. Soc. Rev. 48:72039–52
    [Google Scholar]
  3. 3. 
    King PW. 2013. Designing interfaces of hydrogenase-nanomaterial hybrids for efficient solar conversion. Biochim. Biophys. Acta 1827:8–9949–57
    [Google Scholar]
  4. 4. 
    Lee SH, Choi DS, Kuk SK, Park CB 2018. Photobiocatalysis: activating redox enzymes by direct or indirect transfer of photoinduced electrons. Angew. Chem. Int. Ed. 57:277958–85
    [Google Scholar]
  5. 5. 
    Greene BL, Vansuch GE, Chica BC, Adams MWW, Dyer RB 2017. Applications of photogating and time resolved spectroscopy to mechanistic studies of hydrogenases. Acc. Chem. Res. 50:112718–26
    [Google Scholar]
  6. 6. 
    Albery WJ, Knowles JR. 1976. Evolution of enzyme function and development of catalytic efficiency. Biochemistry 15:255631–40
    [Google Scholar]
  7. 7. 
    Lewis K. 1966. Symposium on bioelectrochemistry of microorganisms. IV. Biochemical fuel cells. Bacteriol. Rev. 30:1101–13
    [Google Scholar]
  8. 8. 
    Parkinson BA, Weaver PF. 1984. Photoelectrochemical pumping of enzymatic CO2 reduction. Nature 309:5964148–49
    [Google Scholar]
  9. 9. 
    Lubner CE, Grimme R, Bryant DA, Golbeck JH 2010. Wiring Photosystem I for direct solar hydrogen production. Biochemistry 49:3404–14
    [Google Scholar]
  10. 10. 
    Kornienko N, Zhang JZ, Sakimoto KK, Yang PD, Reisner E 2018. Interfacing nature's catalytic machinery with synthetic materials for semi-artificial photosynthesis. Nat. Nanotechnol. 13:10890–99
    [Google Scholar]
  11. 11. 
    Ipe BI, Niemeyer CM. 2006. Nanohybrids composed of quantum dots and cytochrome P450 as photocatalysts. Angew. Chem. Int. Ed. 45:3504–7
    [Google Scholar]
  12. 12. 
    Katz E, Zayats M, Willner I, Lisdat F 2006. Controlling the direction of photocurrents by means of CdS nanoparticles and cytochrome c-mediated biocatalytic cascades. Chem. Commun. 2006. 13:1395–97
    [Google Scholar]
  13. 13. 
    Stoll C, Gehring C, Schubert K, Zanella M, Parak WJ, Lisdat F 2008. Photoelectrochemical signal chain based on quantum dots on gold—sensitive to superoxide radicals in solution. Biosens. Bioelectron. 24:2260–65
    [Google Scholar]
  14. 14. 
    Brown KA, Dayal S, Ai X, Rumbles G, King PW 2010. Controlled assembly of hydrogenase-CdTe nanocrystal hybrids for solar hydrogen production. J. Am. Chem. Soc. 132:289672–80
    [Google Scholar]
  15. 15. 
    Schubert K, Khalid W, Yue Z, Parak WJ, Lisdat F 2010. Quantum-dot-modified electrode in combination with NADH-dependent dehydrogenase reactions for substrate analysis. Langmuir 26:21395–400
    [Google Scholar]
  16. 16. 
    Brown KA, Wilker MB, Boehm M, Dukovic G, King PW 2012. Characterization of photochemical processes for H2 production by CdS nanorod-[FeFe] hydrogenase complexes. J. Am. Chem. Soc. 134:125627–36
    [Google Scholar]
  17. 17. 
    Greene BL, Joseph CA, Maroney MJ, Dyer RB 2012. Direct evidence of active-site reduction and photodriven catalysis in sensitized hydrogenase assemblies. J. Am. Chem. Soc. 134:11108–11
    [Google Scholar]
  18. 18. 
    Burai TN, Panay AJ, Zhu HM, Lian TQ, Lutz S 2012. Light-driven, quantum dot-mediated regeneration of FMN to drive reduction of ketoisophorone by old yellow enzyme. ACS Catal 2:4667–70
    [Google Scholar]
  19. 19. 
    Chaudhary YS, Woolerton TW, Allen CS, Warner JH, Pierce E et al. 2012. Visible light-driven CO2 reduction by enzyme coupled CdS nanocrystals. Chem. Commun. 48:158–60
    [Google Scholar]
  20. 20. 
    Wilker MB, Shinopoulos KE, Brown KA, Mulder DW, King PW, Dukovic G 2014. Electron transfer kinetics in CdS nanorod–[FeFe]-hydrogenase complexes and implications for photochemical H2 generation. J. Am. Chem. Soc. 136:114316–24
    [Google Scholar]
  21. 21. 
    Brown KA, Song Q, Mulder DW, King PW 2014. Diameter dependent electron transfer kinetics in semiconductor-enzyme complexes. ACS Nano 8:1010790–98
    [Google Scholar]
  22. 22. 
    Utterback JK, Wilker MB, Brown KA, King PW, Eaves JD, Dukovic G 2015. Competition between electron transfer, trapping, and recombination in CdS nanorod-hydrogenase complexes. Phys. Chem. Chem. Phys. 17:85538–42
    [Google Scholar]
  23. 23. 
    Sabir N, Khan N, Volkner J, Widdascheck F, del Pino P et al. 2015. Photo-electrochemical bioanalysis of guanosine monophosphate using coupled enzymatic reactions at a CdS/ZnS quantum dot electrode. Small 11:435844–50
    [Google Scholar]
  24. 24. 
    Hamby H, Li B, Shinopoulos KE, Keller HR, Elliott SJ, Dukovic G 2020. Light-driven carbon−carbon bond formation via CO2 reduction catalyzed by complexes of CdS nanorods and a 2-oxoacid oxidoreductase. PNAS 117:1135–40
    [Google Scholar]
  25. 25. 
    Brown KA, Harris DF, Wilker MB, Rasmussen A, Khadka N et al. 2016. Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid. Science 352:6284448–50
    [Google Scholar]
  26. 26. 
    Brown KA, Wilker MB, Boehm M, Hamby H, Dukovic G, King PW 2016. Photocatalytic regeneration of nicotinamide cofactors by quantum dot-enzyme biohybrid complexes. ACS Catal 6:42201–4
    [Google Scholar]
  27. 27. 
    Zeng T, Leimkuhler S, Koetz J, Wollenberger U 2015. Effective electrochemistry of human sulfite oxidase immobilized on quantum-dots-modified indium tin oxide electrode. ACS Appl. Mater. Interfaces 7:3821487–94
    [Google Scholar]
  28. 28. 
    Chica B, Wu CH, Liu Y, Adams MWW, Lian TQ, Dyer RB 2017. Balancing electron transfer rate and driving force for efficient photocatalytic hydrogen production in CdSe/CdS nanorod-[NiFe] hydrogenase assemblies. Energy Environ. Sci. 10:102245–55
    [Google Scholar]
  29. 29. 
    Riedel M, Sabir N, Scheller FW, Parak WJ, Lisdat F 2017. Connecting quantum dots with enzymes: mediator-based approaches for the light-directed read-out of glucose and fructose oxidation. Nanoscale 9:82814–23
    [Google Scholar]
  30. 30. 
    Wilker MB, Utterback JK, Greene S, Brown KA, Mulder DW et al. 2018. Role of surface-capping ligands in photoexcited electron transfer between CdS nanorods and [FeFe] hydrogenase and the subsequent H2 generation. J. Phys. Chem. C 122:1741–50
    [Google Scholar]
  31. 31. 
    Sanchez MLK, Wu CH, Adams MWW, Dyer RB 2019. Optimizing electron transfer from CdSe QDs to hydrogenase for photocatalytic H2 production. Chem. Commun. 55:395579–82
    [Google Scholar]
  32. 32. 
    Utterback JK, Wilker MB, Mulder DW, King PW, Eaves JD, Dukovic G 2019. Quantum efficiency of charge transfer competing against nonexponential processes: the case of electron transfer from CdS nanorods to hydrogenase. J. Phys. Chem. C 123:1886–96
    [Google Scholar]
  33. 33. 
    Riedel M, Parak WJ, Ruff A, Schuhmann W, Lisdat F 2018. Light as trigger for biocatalysis: photonic wiring of flavin adenine dinucleotide-dependent glucose dehydrogenase to quantum dot-sensitized inverse opal TiO2 architectures via redox polymers. ACS Catal 8:65212–20
    [Google Scholar]
  34. 34. 
    Hutton GAM, Reuillard B, Martindale BCM, Caputo CA, Lockwood CWJ et al. 2016. Carbon dots as versatile photosensitizers for solar-driven catalysis with redox enzymes. J. Am. Chem. Soc. 138:5116722–30
    [Google Scholar]
  35. 35. 
    Kim J, Lee SH, Tieves F, Choi DS, Hollmann F et al. 2018. Biocatalytic C=C bond reduction through carbon nanodot-sensitized regeneration of NADH analogues. Angew. Chem. Int. Ed. 57:4213825–28
    [Google Scholar]
  36. 36. 
    Liu J, Huang JH, Zhou H, Antonietti M 2014. Uniform graphitic carbon nitride nanorod for efficient photocatalytic hydrogen evolution and sustained photoenzymatic catalysis. ACS Appl. Mater. Interfaces 6:118434–40
    [Google Scholar]
  37. 37. 
    Selvaggi A, Tosi C, Barberini U, Franchi E, Rodriguez F, Pedroni P 1999. In vitro hydrogen photoproduction using Pyrococcus furiosus sulfhydrogenase and TiO2. J. Photochem. Photobiol. 125:1–3107–12
    [Google Scholar]
  38. 38. 
    Reisner E, Fontecilla-Camps JC, Armstrong FA 2009. Catalytic electrochemistry of a [NiFeSe]-hydrogenase on TiO2 and demonstration of its suitability for visible-light driven H2 production. Chem. Commun. 2009:5550–52
    [Google Scholar]
  39. 39. 
    Reisner E, Powell DJ, Cavazza C, Fontecilla-Camps JC, Armstrong FA 2009. Visible light-driven H2 production by hydrogenases attached to dye-sensitized TiO2 nanoparticles. J. Am. Chem. Soc. 131:5118457–66
    [Google Scholar]
  40. 40. 
    Woolerton TW, Sheard S, Reisner E, Pierce E, Ragsdale SW, Armstrong FA 2010. Efficient and clean photoreduction of CO2 to CO by enzyme-modified TiO2 nanoparticles using visible light. J. Am. Chem. Soc. 132:72132–33
    [Google Scholar]
  41. 41. 
    Mifsud M, Gargiulo S, Iborra S, Arends IWCE, Hollmann F, Corma A 2014. Photobiocatalytic chemistry of oxidoreductases using water as the electron donor. Nat. Commun. 5:3145
    [Google Scholar]
  42. 42. 
    Caputo CA, Wang LD, Beranek R, Reisner E 2015. Carbon nitride-TiO2 hybrid modified with hydrogenase for visible light driven hydrogen production. Chem. Sci. 6:105690–94
    [Google Scholar]
  43. 43. 
    Siritanaratkul B, Islam STA, Schubert T, Kunze C, Goris T et al. 2016. Selective, light-driven enzymatic dehalogenations of organic compounds. RSC Adv 6:8884882–86
    [Google Scholar]
  44. 44. 
    Zhang LY, Can M, Ragsdale SW, Armstrong FA 2018. Fast and selective photoreduction of CO2 to CO catalyzed by a complex of carbon monoxide dehydrogenase, TiO2, and Ag nanoclusters. ACS Catal 8:42789–95
    [Google Scholar]
  45. 45. 
    Allakhverdiev SI, Kreslavski VD, Thavasi V, Zharmukhamedov SK, Klimov VV et al. 2009. Hydrogen photoproduction by use of photosynthetic organisms and biomimetic systems. Photochem. Photobiol. Sci. 8:2148–56
    [Google Scholar]
  46. 46. 
    Hambourger M, Kodis G, Vaughn MD, Moore GF, Gust D et al. 2009. Solar energy conversion in a photoelectrochemical biofuel cell. Dalton Trans 2009:459979–89
    [Google Scholar]
  47. 47. 
    Reisner E. 2011. Solar hydrogen evolution with hydrogenases: from natural to hybrid systems. Eur. J. Inorg. Chem. 2011:71005–16
    [Google Scholar]
  48. 48. 
    Tran PD, Barber J. 2012. Proton reduction to hydrogen in biological and chemical systems. Phys. Chem. Chem. Phys. 14:4013772–84
    [Google Scholar]
  49. 49. 
    Tran PD, Wong LH, Barber J, Loo JSC 2012. Recent advances in hybrid photocatalysts for solar fuel production. Energy Environ. Sci. 5:35902–18
    [Google Scholar]
  50. 50. 
    Wilker MB, Schnitzenbaumer KJ, Dukovic G 2012. Recent progress in photocatalysis mediated by colloidal II-VI nanocrystals. Isr. J. Chem. 52:11–121002–15
    [Google Scholar]
  51. 51. 
    Zadvornyy OA, Lucon JE, Gerlach R, Zorin NA, Douglas T et al. 2012. Photo-induced H2 production by [NiFe]-hydrogenase from T. roseopersicina covalently linked to a Ru(II) photosensitizer. J. Inorg. Biochem. 106:1151–55
    [Google Scholar]
  52. 52. 
    Lee SH, Ryu J, Nam DH, Park CB 2011. Photoenzymatic synthesis through sustainable NADH regeneration by SiO2-supported quantum dots. Chem. Commun. 47:164643–45
    [Google Scholar]
  53. 53. 
    Yu WW, Qu L, Guo W, Peng X 2003. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15:142854–60
    [Google Scholar]
  54. 54. 
    Burda C, Chen XB, Narayanan R, El-Sayed MA 2005. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105:41025–102
    [Google Scholar]
  55. 55. 
    Knowles KE, Peterson MD, McPhail MR, Weiss EA 2013. Exciton dissociation within quantum dot-organic complexes: mechanisms, use as a probe of interfacial structure, and applications. J. Phys. Chem. C 117:2010229–43
    [Google Scholar]
  56. 56. 
    Bawendi MG, Steigerwald ML, Brus LE 1990. The quantum mechanics of larger semiconductor clusters (“quantum dots”). Annu. Rev. Phys. Chem. 41:477–96
    [Google Scholar]
  57. 57. 
    Peng XG, Manna L, Yang WD, Wickham J, Scher E et al. 2000. Shape control of CdSe nanocrystals. Nature 404:677359–61
    [Google Scholar]
  58. 58. 
    Peterson MD, Cass LC, Harris RD, Edme K, Sung K, Weiss EA 2014. The role of ligands in determining the exciton relaxation dynamics in semiconductor quantum dots. Annu. Rev. Phys. Chem. 65:317–39
    [Google Scholar]
  59. 59. 
    Zhu HM, Song NH, Lian TQ 2010. Controlling charge separation and recombination rates in CdSe/ZnS type I core-shell quantum dots by shell thicknesses. J. Am. Chem. Soc. 132:4215038–45
    [Google Scholar]
  60. 60. 
    Tisdale WA, Zhu XY. 2011. Artificial atoms on semiconductor surfaces. PNAS 108:3965–70
    [Google Scholar]
  61. 61. 
    Xiong W, Hickstein DD, Schnitzenbaumer KJ, Ellis JL, Palm BB et al. 2013. Photoelectron spectroscopy of CdSe nanocrystals in the gas phase: a direct measure of the evanescent electron wave function of quantum dots. Nano Lett 13:62924–30
    [Google Scholar]
  62. 62. 
    Ekimov AI, Onushchenko AA. 1981. Quantum size effect in three-dimensional microscopic semiconductor crystals. J. Exp. Theor. Phys. Lett. 34:345–49
    [Google Scholar]
  63. 63. 
    Vincent KA, Parkin A, Armstrong FA 2007. Investigating and exploiting the electrocatalytic properties of hydrogenases. Chem. Rev. 107:104366–413
    [Google Scholar]
  64. 64. 
    Ratzloff MW, Wilker MB, Mulder DW, Lubner CE, Hamby H et al. 2017. Activation thermodynamics and H/D kinetic isotope effect of the Hox to HredH+ transition in [FeFe] hydrogenase. J. Am. Chem. Soc. 139:3712879–82
    [Google Scholar]
  65. 65. 
    Macia-Agullo JA, Corma A, Garcia H 2015. Photobiocatalysis: the power of combining photocatalysis and enzymes. Chem. Eur. J. 21:3110940–59
    [Google Scholar]
  66. 66. 
    Hutton GAM, Martindale BCM, Reisner E 2017. Carbon dots as photosensitisers for solar-driven catalysis. Chem. Soc. Rev. 46:206111–23
    [Google Scholar]
  67. 67. 
    Sakimoto KK, Kornienko N, Cestellos-Blanco S, Lim J, Liu C, Yang PD 2018. Physical biology of the materials-microorganism interface. J. Am. Chem. Soc. 140:61978–85
    [Google Scholar]
  68. 68. 
    Valentine RC. 1964. Bacterial ferredoxin. Bacteriol. Rev. 28:4497–517
    [Google Scholar]
  69. 69. 
    Pieulle L, Nouailler M, Morelli X, Cavazza C, Gallice P et al. 2004. Multiple orientations in a physiological complex: the pyruvate-ferredoxin oxidoreductase-ferredoxin system. Biochemistry 43:4915480–93
    [Google Scholar]
  70. 70. 
    Demuez M, Cournac L, Guerrini O, Soucaille P, Girbal L 2007. Complete activity profile of Clostridium acetobutylicum [FeFe]-hydrogenase and kinetic parameters for endogenous redox partners. FEMS Microbiol. Lett. 275:1113–21
    [Google Scholar]
  71. 71. 
    Long H, Chang CH, King PW, Ghirardi ML, Kim K 2008. Brownian dynamics and molecular dynamics study of the association between hydrogenase and ferredoxin from Chlamydomonas reinhardtii. Biophys. J. 95:83753–66
    [Google Scholar]
  72. 72. 
    Hamon C, Ciaccafava A, Infossi P, Puppo R, Even-Hernandez P et al. 2014. Synthesis and enzymatic photo-activity of an O2 tolerant hydrogenase–CdSe@CdS quantum rod bioconjugate. Chem. Commun. 50:394989–92
    [Google Scholar]
  73. 73. 
    Zhang LY, Beaton SE, Carr SB, Armstrong FA 2018. Direct visible light activation of a surface cysteine-engineered [NiFe]-hydrogenase by silver nanoclusters. Energy Environ. Sci. 11:123342–48
    [Google Scholar]
  74. 74. 
    Ding TX, Olshansky JH, Leone SR, Alivisatos AP 2015. Efficiency of hole transfer from photoexcited quantum dots to covalently linked molecular species. J. Am. Chem. Soc. 137:52021–29
    [Google Scholar]
  75. 75. 
    Tachiya M. 1975. Application of a generating function to reaction-kinetics in micelles: kinetics of quenching of luminescent probes in micelles. Chem. Phys. Lett. 33:2289–92
    [Google Scholar]
  76. 76. 
    Tachiya M. 1982. Kinetics of quenching of luminescent probes in micellar systems. II. J. Phys. Chem. 76:1340–48
    [Google Scholar]
  77. 77. 
    Sadhu S, Tachiya M, Patra A 2009. A stochastic model for energy transfer from CdS quantum dots/rods (donors) to Nile Red dye (acceptors). J. Phys. Chem. C 113:4519488–92
    [Google Scholar]
  78. 78. 
    Song NH, Zhu HM, Jin SY, Zhan W, Lian TQ 2011. Poisson-distributed electron-transfer dynamics from single quantum dots to C60 molecules. ACS Nano 5:1613–21
    [Google Scholar]
  79. 79. 
    Morris-Cohen AJ, Frederick MT, Cass LC, Weiss EA 2011. Simultaneous determination of the adsorption constant and the photoinduced electron transfer rate for a CdS quantum dot-viologen complex. J. Am. Chem. Soc. 133:2610146–54
    [Google Scholar]
  80. 80. 
    Morris-Cohen AJ, Vasilenko V, Amin VA, Reuter MG, Weiss EA 2012. Model for adsorption of ligands to colloidal quantum dots with concentration-dependent surface structure. ACS Nano 6:1557–65
    [Google Scholar]
  81. 81. 
    Anderson NA, Lian TQ. 2005. Ultrafast electron transfer at the molecule-semiconductor nanoparticle interface. Annu. Rev. Phys. Chem. 56:491–519
    [Google Scholar]
  82. 82. 
    McArthur EA, Morris-Cohen AJ, Knowles KE, Weiss EA 2010. Charge carrier resolved relaxation of the first excitonic state in CdSe quantum dots probed with near-infrared transient absorption spectroscopy. J. Phys. Chem. B 114:4514514–20
    [Google Scholar]
  83. 83. 
    Tvrdy K, Frantsuzov PA, Kamat PV 2011. Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles. PNAS 108:129–34
    [Google Scholar]
  84. 84. 
    Wu K, Zhu H, Liu Z, Rodriguez-Cordoba W, Lian T 2012. Ultrafast charge separation and long-lived charge separated state in photocatalytic CdS–Pt nanorod heterostructures. J. Am. Chem. Soc. 134:2510337–40
    [Google Scholar]
  85. 85. 
    Baxter JB, Richter C, Schmuttenmaer CA 2014. Ultrafast carrier dynamics in nanostructures for solar fuels. Annu. Rev. Phys. Chem. 65:423–47
    [Google Scholar]
  86. 86. 
    Wu KF, Lian TQ. 2016. Quantum confined colloidal nanorod heterostructures for solar-to-fuel conversion. Chem. Soc. Rev. 45:143781–810
    [Google Scholar]
  87. 87. 
    Zhu HM, Yang Y, Wu KF, Lian TQ 2016. Charge transfer dynamics from photoexcited semiconductor quantum dots. Annu. Rev. Phys. Chem. 67:259–81
    [Google Scholar]
  88. 88. 
    Klimov VI. 2007. Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals. Annu. Rev. Phys. Chem. 58:635–73
    [Google Scholar]
  89. 89. 
    Nozik AJ, Beard MC, Luther JM, Law M, Ellingson RJ, Johnson JC 2010. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem. Rev. 110:116873–90
    [Google Scholar]
  90. 90. 
    Zhu HM, Song NH, Lian TQ 2011. Wave function engineering for ultrafast charge separation and slow charge recombination in type II core/shell quantum dots. J. Am. Chem. Soc. 133:228762–71
    [Google Scholar]
  91. 91. 
    Grimaldi G, Geuchies JJ, van der Stam W, du Fossé I, Brynjarsson B et al. 2019. Spectroscopic evidence for the contribution of holes to the bleach of Cd-chalcogenide quantum dots. Nano Lett 19:53002–10
    [Google Scholar]
  92. 92. 
    Jones M, Scholes GD. 2010. On the use of time-resolved photoluminescence as a probe of nanocrystal photoexcitation dynamics. J. Mater. Chem. 20:183533–38
    [Google Scholar]
  93. 93. 
    Knowles KE, McArthur EA, Weiss EA 2011. A multi-timescale map of radiative and nonradiative decay pathways for excitons in CdSe quantum dots. ACS Nano 5:32026–35
    [Google Scholar]
  94. 94. 
    Utterback JK, Grennell AN, Wilker MB, Pearce O, Eaves JD, Dukovic G 2016. Observation of trapped-hole diffusion on the surfaces of CdS nanorods. Nat. Chem. 8:111061–66
    [Google Scholar]
  95. 95. 
    Lakowicz JR. 2006. Principles of Fluorescence Spectroscopy New York: Springer
  96. 96. 
    Berberan-Santos MN, Bodunov EN, Valeur B 2005. Mathematical functions for the analysis of luminescence decays with underlying distributions 1. Kohlrausch decay function (stretched exponential). Chem. Phys. 315:1–2171–82
    [Google Scholar]
  97. 97. 
    Aldeek F, Safi M, Zhan NQ, Palui G, Mattoussi H 2013. Understanding the self-assembly of proteins onto gold nanoparticles and quantum dots driven by metal-histidine coordination. ACS Nano 7:1110197–210
    [Google Scholar]
  98. 98. 
    Peterson MD, Jensen SC, Weinberg DJ, Weiss EA 2014. Mechanisms for adsorption of methyl viologen on CdS quantum dots. ACS Nano 8:32826–37
    [Google Scholar]
  99. 99. 
    Milton RD, Abdellaoui S, Khadka N, Dean DR, Leech D et al. 2016. Nitrogenase bioelectrocatalysis: heterogeneous ammonia and hydrogen production by MoFe protein. Energy Environ. Sci. 9:82550–54
    [Google Scholar]
  100. 100. 
    Marcus RA, Sutin N. 1985. Electron transfers in chemistry and biology. Biochim. Biophys. Acta 811:3265–322
    [Google Scholar]
  101. 101. 
    Newton MD. 1991. Quantum chemical probes of electron-transfer kinetics: the nature of donor-acceptor interactions. Chem. Rev. 91:5767–92
    [Google Scholar]
  102. 102. 
    Dibbell RS, Watson DF. 2009. Distance-dependent electron transfer in tethered assemblies of CdS quantum dots and TiO2 nanoparticles. J. Phys. Chem. C 113:83139–49
    [Google Scholar]
  103. 103. 
    Tagliazucchi M, Tice DB, Sweeney CM, Morris-Cohen AJ, Weiss EA 2011. Ligand-controlled rates of photoinduced electron transfer in hybrid CdSe nanocrystal/poly(viologen) films. ACS Nano 5:129907–17
    [Google Scholar]
  104. 104. 
    Hyun BR, Bartnik AC, Sun LF, Hanrath T, Wise FW 2011. Control of electron transfer from lead-salt nanocrystals to TiO2. Nano Lett 11:52126–32
    [Google Scholar]
  105. 105. 
    Wang H, McNellis ER, Kinge S, Bonn M, Canovas E 2013. Tuning electron transfer rates through molecular bridges in quantum dot sensitized oxides. Nano Lett 13:115311–15
    [Google Scholar]
  106. 106. 
    Hines DA, Forrest RP, Corcelli SA, Kamat PV 2015. Predicting the rate constant of electron tunneling reactions at the CdSe–TiO2 interface. J. Phys. Chem. B 119:247439–46
    [Google Scholar]
  107. 107. 
    Madden C, Vaughn MD, Díez-Pérez I, Brown KA, King PW et al. 2012. Catalytic turnover of [FeFe]-hydrogenase based on single-molecule imaging. J. Am. Chem. Soc. 134:31577–82
    [Google Scholar]
  108. 108. 
    Kroupa DM, Vörös M, Brawand NP, McNichols BW, Miller EM et al. 2017. Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification. Nat. Commun. 8:15257
    [Google Scholar]
  109. 109. 
    Brown PR, Kim D, Lunt RR, Zhao N, Bawendi MG et al. 2014. Energy level modification in lead sulfide quantum dot thin films through ligand exchange. ACS Nano 8:65863–72
    [Google Scholar]
  110. 110. 
    Zhu HM, Yang Y, Hyeon-Deuk K, Califano M, Song NH et al. 2014. Auger-assisted electron transfer from photoexcited semiconductor quantum dots. Nano Lett 14:31263–69
    [Google Scholar]
  111. 111. 
    Olshansky JH, Ding TX, Lee YV, Leone SR, Alivisatos AP 2015. Hole transfer from photoexcited quantum dots: the relationship between driving force and rate. J. Am. Chem. Soc. 137:4915567–75
    [Google Scholar]
  112. 112. 
    Jones M, Lo SS, Scholes GD 2009. Quantitative modeling of the role of surface traps in CdSe/CdS/ZnS nanocrystal photoluminescence decay dynamics. PNAS 106:93011–16
    [Google Scholar]
  113. 113. 
    Tarafder K, Surendranath Y, Olshansky JH, Alivisatos AP, Wang LW 2014. Hole transfer dynamics from a CdSe/CdS quantum rod to a tethered ferrocene derivative. J. Am. Chem. Soc. 136:135121–31
    [Google Scholar]
  114. 114. 
    Moser CC, Keske JM, Warncke K, Farid RS, Dutton PL 1992. Nature of biological electron transfer. Nature 355:6363796–802
    [Google Scholar]
  115. 115. 
    Gray HB, Winkler JR. 1996. Electron transfer in proteins. Annu. Rev. Biochem. 65:537–61
    [Google Scholar]
  116. 116. 
    Mulder DW, Ratzloff MW, Shepard EM, Byer AS, Noone SM et al. 2013. EPR and FTIR analysis of the mechanism of H2 activation by [FeFe]-hydrogenase HydA1 from Chlamydomonas reinhardtii. J. Am. Chem. Soc 135:6921–29
    [Google Scholar]
  117. 117. 
    Nakibli Y, Kalisman P, Amirav L 2015. Less is more: the case of metal cocatalysts. J. Phys. Chem. Lett. 6:122265–68
    [Google Scholar]
  118. 118. 
    Williams TJ, Zhang CL, Scott JH, Bazylinski DA 2006. Evidence for autotrophy via the reverse tricarboxylic acid cycle in the marine magnetotactic coccus strain MC-1. Appl. Environ. Microbiol. 72:21322–29
    [Google Scholar]
  119. 119. 
    Fuchs G. 2011. Alternative pathways of carbon dioxide fixation: insights into the early evolution of life?. Annu. Rev. Microbiol. 65:631–58
    [Google Scholar]
  120. 120. 
    Chen PY-T, Li B, Drennan CL, Elliott SJ 2019. A reverse TCA cycle 2-oxoacid:ferredoxin oxidoreductase that makes C-C bonds from CO2. Joule 3:2595–611
    [Google Scholar]
  121. 121. 
    Wu K, Chen Z, Lv H, Zhu H, Hill CL, Lian T 2014. Hole removal rate limits photodriven H2 generation efficiency in CdS-Pt and CdSe/CdS-Pt semiconductor nanorod–metal tip heterostructures. J. Am. Chem. Soc. 136:217708–16
    [Google Scholar]
  122. 122. 
    Berr MJ, Wagner P, Fischbach S, Vaneski A, Schneider J et al. 2012. Hole scavenger redox potentials determine quantum efficiency and stability of Pt-decorated CdS nanorods for photocatalytic hydrogen generation. Appl. Phys. Lett. 100:22223903
    [Google Scholar]
  123. 123. 
    Sakimoto KK, Wong AB, Yang P 2016. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 351:626874–77
    [Google Scholar]
  124. 124. 
    Kornienko N, Sakimoto KK, Herlihy DM, Nguyen SC, Alivisatos AP et al. 2016. Spectroscopic elucidation of energy transfer in hybrid inorganic–biological organisms for solar-to-chemical production. PNAS 113:4211750–55
    [Google Scholar]
  125. 125. 
    Ainsworth EV, Lockwood CWJ, White GF, Hwang ET, Sakai T et al. 2016. Photoreduction of Shewanella oneidensis extracellular cytochromes by organic chromophores and dye-sensitized TiO2. ChemBioChem 17:242324–33
    [Google Scholar]
  126. 126. 
    Honda Y, Watanabe M, Hagiwara H, Ida S, Ishihara T 2017. Inorganic/whole-cell biohybrid photocatalyst for highly efficient hydrogen production from water. Appl. Catal. B Environ. 210:400–6
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-050317-014232
Loading
/content/journals/10.1146/annurev-physchem-050317-014232
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error