1932

Abstract

Mass spectrometry imaging (MSI) is a powerful, label-free technique that provides detailed maps of hundreds of molecules in complex samples with high sensitivity and subcellular spatial resolution. Accurate quantification in MSI relies on a detailed understanding of matrix effects associated with the ionization process along with evaluation of the extraction efficiency and mass-dependent ion losses occurring in the analysis step. We present a critical summary of approaches developed for quantitative MSI of metabolites, lipids, and proteins in biological tissues and discuss their current and future applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-061020-053416
2021-04-20
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/physchem/72/1/annurev-physchem-061020-053416.html?itemId=/content/journals/10.1146/annurev-physchem-061020-053416&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. 1990. Electrospray ionization–principles and practice. Mass Spectrom. Rev. 9:137–70
    [Google Scholar]
  2. 2. 
    Hillenkamp F, Karas M, Beavis RC, Chait BT. 1991. Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Anal. Chem. 63:241193A–203A
    [Google Scholar]
  3. 3. 
    Norris JL, Caprioli RM. 2013. Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem. Rev. 113:42309–42
    [Google Scholar]
  4. 4. 
    Wu C, Dill AL, Eberlin LS, Cooks RG, Ifa DR. 2013. Mass spectrometry imaging under ambient conditions. Mass Spectrom. Rev. 32:3218–43
    [Google Scholar]
  5. 5. 
    Watrous JD, Dorrestein PC. 2011. Imaging mass spectrometry in microbiology. Nat. Rev. Microbiol. 9:9683–94
    [Google Scholar]
  6. 6. 
    Swales JG, Hamm G, Clench MR, Goodwin RJA. 2019. Mass spectrometry imaging and its application in pharmaceutical research and development: a concise review. Int. J. Mass Spectrom. 437:99–112
    [Google Scholar]
  7. 7. 
    Buchberger AR, DeLaney K, Johnson J, Li L 2018. Mass spectrometry imaging: a review of emerging advancements and future insights. Anal. Chem. 90:1240–65
    [Google Scholar]
  8. 8. 
    Rubakhin SS, Jurchen JC, Monroe EB, Sweedler JV. 2005. Imaging mass spectrometry: fundamentals and applications to drug discovery. Drug Discov. Today 10:12823–37
    [Google Scholar]
  9. 9. 
    McDonnell LA, Heeren RMA. 2007. Imaging mass spectrometry. Mass Spectrom. Rev. 26:4606–43
    [Google Scholar]
  10. 10. 
    Trufelli H, Palma P, Famiglini G, Cappiello A. 2011. An overview of matrix effects in liquid chromatography–mass spectrometry. Mass Spectrom. Rev. 30:3491–509
    [Google Scholar]
  11. 11. 
    Taylor PJ. 2005. Matrix effects: the Achilles heel of quantitative high-performance liquid chromatography–electrospray–tandem mass spectrometry. Clin. Biochem. 38:4328–34
    [Google Scholar]
  12. 12. 
    Nagana Gowda GA, Djukovic D 2014. Overview of mass spectrometry-based metabolomics: opportunities and challenges. Methods Mol. Biol. 1198:3–12
    [Google Scholar]
  13. 13. 
    Lei Z, Huhman DV, Sumner LW. 2011. Mass spectrometry strategies in metabolomics. J. Biol. Chem. 286:2925435–42
    [Google Scholar]
  14. 14. 
    Khoury S, Canlet C, Lacroix MZ, Berdeaux O, Jouhet J, Bertrand-Michel J. 2018. Quantification of lipids: model, reality, and compromise. Biomolecules 8:4174
    [Google Scholar]
  15. 15. 
    Koivusalo M, Haimi P, Heikinheimo L, Kostiainen R, Somerharju P. 2001. Quantitative determination of phospholipid compositions by ESI-MS: effects of acyl chain length, unsaturation, and lipid concentration on instrument response. J. Lipid Res. 42:663–72
    [Google Scholar]
  16. 16. 
    Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B 2007. Quantitative mass spectrometry in proteomics: a critical review. Anal. Bioanal. Chem. 389:1017–31
    [Google Scholar]
  17. 17. 
    Ong SE, Mann M. 2005. Mass spectrometry-based proteomics turns quantitative. Nat. Chem. Biol. 1:252–62
    [Google Scholar]
  18. 18. 
    Caprioli RM, Farmer TB, Gile J. 1997. Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal. Chem. 69:234751–60
    [Google Scholar]
  19. 19. 
    Cornett DS, Reyzer ML, Chaurand P, Caprioli RM. 2007. MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat. Methods 4:828–33
    [Google Scholar]
  20. 20. 
    Walch A, Rauser S, Deininger SO, Höfler H. 2008. MALDI imaging mass spectrometry for direct tissue analysis: a new frontier for molecular histology. Histochem. Cell Biol. 130:3421–34
    [Google Scholar]
  21. 21. 
    Chen H, Gamez G, Zenobi R. 2009. What can we learn from ambient ionization techniques?. J. Am. Soc. Mass Spectrom. 20:111947–63
    [Google Scholar]
  22. 22. 
    Laskin J, Lanekoff I. 2016. Ambient mass spectrometry imaging using direct liquid extraction techniques. Anal. Chem. 88:152–73
    [Google Scholar]
  23. 23. 
    Ifa DR, Wu C, Ouyang Z, Cooks RG. 2010. Desorption electrospray ionization and other ambient ionization methods: current progress and preview. Analyst 135:4669–81
    [Google Scholar]
  24. 24. 
    Venter AR, Douglass KA, Shelley JT, Hasman G, Honarvar E. 2014. Mechanisms of real-time, proximal sample processing during ambient ionization mass spectrometry. Anal. Chem. 86:1233–49
    [Google Scholar]
  25. 25. 
    Nemes P, Vertes A. 2007. Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal. Chem. 79:218098–106
    [Google Scholar]
  26. 26. 
    Sampson JS, Hawkridge AM, Muddiman DC. 2006. Generation and detection of multiply-charged peptides and proteins by matrix-assisted laser desorption electrospray ionization (MALDESI) Fourier transform ion cyclotron resonance mass spectrometry. J. Am. Soc. Mass Spectrom. 17:121712–16
    [Google Scholar]
  27. 27. 
    Takáts Z, Wiseman JM, Gologan B, Cooks RG. 2004. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306:5695471–73
    [Google Scholar]
  28. 28. 
    Wiseman JM, Ifa DR, Zhu Y, Kissinger CB, Manicke NE et al. 2008. Desorption electrospray ionization mass spectrometry: imaging drugs and metabolites in tissues. PNAS 105:4718120–25
    [Google Scholar]
  29. 29. 
    Roach PJ, Laskin J, Laskin A. 2010. Nanospray desorption electrospray ionization: an ambient method for liquid-extraction surface sampling in mass spectrometry. Analyst 135:2233–36
    [Google Scholar]
  30. 30. 
    Van Berkel GJ, Sanchez AD, Quirke JME. 2002. Thin-layer chromatography and electrospray mass spectrometry coupled using a surface sampling probe. Anal. Chem. 74:246216–23
    [Google Scholar]
  31. 31. 
    Kertesz V, Van Berkel GJ. 2010. Fully automated liquid extraction-based surface sampling and ionization using a chip-based robotic nanoelectrospray platform. J. Mass Spectrom. 45:3252–60
    [Google Scholar]
  32. 32. 
    Lietz CB, Gemperline E, Li L. 2013. Qualitative and quantitative mass spectrometry imaging of drugs and metabolites. Adv. Drug Deliv. Rev. 65:81074–85
    [Google Scholar]
  33. 33. 
    Lanekoff I, Laskin J 2018. Quantitative mass spectrometry imaging of molecules in biological systems. Advances in Chromatography, Vol. 54 E Grushka, N Grinberg 43–72 Boca Raton, FL: CRC Press
    [Google Scholar]
  34. 34. 
    Porta T, Lesur A, Varesio E, Hopfgartner G. 2015. Quantification in MALDI-MS imaging: What can we learn from MALDI-selected reaction monitoring and what can we expect for imaging?. Anal. Bioanal. Chem. 407:82177–87
    [Google Scholar]
  35. 35. 
    Ellis SR, Bruinen AL, Heeren RMA. 2014. A critical evaluation of the current state-of-the-art in quantitative imaging mass spectrometry. Anal. Bioanal. Chem. 406:51275–89
    [Google Scholar]
  36. 36. 
    Lanekoff I, Stevens SL, Stenzel-Poore MP, Laskin J 2014. Matrix effects in biological mass spectrometry imaging: identification and compensation. Analyst 139:143528–32
    [Google Scholar]
  37. 37. 
    Rohner TC, Staab D, Stoeckli M. 2005. MALDI mass spectrometric imaging of biological tissue sections. Mech. Ageing Dev. 126:1177–85
    [Google Scholar]
  38. 38. 
    Lanekoff I, Thomas M, Carson JP, Smith JN, Timchalk C, Laskin J. 2013. Imaging nicotine in rat brain tissue by use of nanospray desorption electrospray ionization mass spectrometry. Anal. Chem. 85:2882–89
    [Google Scholar]
  39. 39. 
    Bergman HM, Lundin E, Andersson M, Lanekoff I. 2016. Quantitative mass spectrometry imaging of small-molecule neurotransmitters in rat brain tissue sections using nanospray desorption electrospray ionization. Analyst 141:123686–95
    [Google Scholar]
  40. 40. 
    Taylor AJ, Dexter A, Bunch J. 2018. Exploring ion suppression in mass spectrometry imaging of a heterogeneous tissue. Anal. Chem. 90:95637–45
    [Google Scholar]
  41. 41. 
    Perry WJ, Patterson NH, Prentice BM, Neumann EK, Caprioli RM, Spraggins JM. 2019. Uncovering matrix effects on lipid analyses in MALDI imaging mass spectrometry experiments. J. Mass Spectrom. 55:4e4491
    [Google Scholar]
  42. 42. 
    Yang C, Lee HK, Zhang Y, Jiang LL, Chen ZF et al. 2019. In situ detection and imaging of PFOS in mouse kidney by matrix-assisted laser desorption/ionization imaging mass spectrometry. Anal. Chem. 91:148783–88
    [Google Scholar]
  43. 43. 
    Rzagalinski I, Kovačević B, Hainz N, Meier C, Tschernig T, Volmer DA. 2018. Toward higher sensitivity in quantitative MALDI imaging mass spectrometry of CNS drugs using a nonpolar matrix. Anal. Chem. 90:2112592–600
    [Google Scholar]
  44. 44. 
    Sugiyama E, Masaki N, Matsushita S, Setou M. 2015. Ammonium sulfate improves detection of hydrophilic quaternary ammonium compounds through decreased ion suppression in matrix-assisted laser desorption/ionization imaging mass spectrometry. Anal. Chem. 87:2211176–81
    [Google Scholar]
  45. 45. 
    Barré FPY, Flinders B, Garcia JP, Jansen I, Huizing LRS et al. 2016. Derivatization strategies for the detection of triamcinolone acetonide in cartilage by using matrix-assisted laser desorption/ionization mass spectrometry imaging. Anal. Chem. 88:2412051–59
    [Google Scholar]
  46. 46. 
    Unsihuay D, Qiu J, Swaroop S, Nagornov KO, Kozhinov AN et al. 2020. Imaging of triglycerides in tissues using nanospray desorption electrospray ionization (nano-DESI) mass spectrometry. Int. J. Mass Spectrom. 448:116269
    [Google Scholar]
  47. 47. 
    Eberlin LS, Ferreira CR, Dill AL, Ifa DR, Cheng L, Cooks RG. 2011. Nondestructive, histologically compatible tissue imaging by desorption electrospray ionization mass spectrometry. ChemBioChem 12:142129–32
    [Google Scholar]
  48. 48. 
    Duncan KD, Fang R, Yuan J, Chu RK, Dey SK et al. 2018. Quantitative mass spectrometry imaging of prostaglandins as silver ion adducts with nanospray desorption electrospray ionization. Anal. Chem. 90:127246–52
    [Google Scholar]
  49. 49. 
    Lostun D, Perez CJ, Licence P, Barrett DA, Ifa DR. 2015. Reactive DESI-MS imaging of biological tissues with dicationic ion-pairing compounds. Anal. Chem. 87:63286–93
    [Google Scholar]
  50. 50. 
    Wu C, Ifa DR, Manicke NE, Cooks RG. 2009. Rapid, direct analysis of cholesterol by charge labeling in reactive desorption electrospray ionization. Anal. Chem. 81:187618–24
    [Google Scholar]
  51. 51. 
    Rzagalinski I, Volmer DA. 2017. Quantification of low molecular weight compounds by MALDI imaging mass spectrometry–a tutorial review. Biochim. Biophys. Acta Proteins Proteom. 1865:7726–39
    [Google Scholar]
  52. 52. 
    Chumbley CW, Reyzer ML, Allen JL, Marriner GA, Via LE et al. 2016. Absolute quantitative MALDI imaging mass spectrometry: a case of rifampicin in liver tissues. Anal. Chem. 88:42392–98
    [Google Scholar]
  53. 53. 
    Hansen HT, Janfelt C. 2016. Aspects of quantitation in mass spectrometry imaging investigated on cryo-sections of spiked tissue homogenates. Anal. Chem. 88:2311513–20
    [Google Scholar]
  54. 54. 
    Barry JA, Groseclose MR, Castellino S. 2019. Quantification and assessment of detection capability in imaging mass spectrometry using a revised mimetic tissue model. Bioanalysis 11:111099–116
    [Google Scholar]
  55. 55. 
    Song X, He J, Li C, Sun C, Pang X et al. 2019. Fabrication of homogenous three-dimensional biomimetic tissue for mass spectrometry imaging. J. Mass Spectrom. 54:5378–88
    [Google Scholar]
  56. 56. 
    Giordano S, Morosi L, Veglianese P, Licandro SA, Frapolli R et al. 2016. 3D mass spectrometry imaging reveals a very heterogeneous drug distribution in tumors. Sci. Rep. 6:37027
    [Google Scholar]
  57. 57. 
    Nazari M, Bokhart MT, Loziuk PL, Muddiman DC. 2018. Quantitative mass spectrometry imaging of glutathione in healthy and cancerous hen ovarian tissue sections by infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI). Analyst 143:654–61
    [Google Scholar]
  58. 58. 
    Grey AC, Demarais NJ, West BJ, Donaldson PJ. 2019. A quantitative map of glutathione in the aging human lens. Int. J. Mass Spectrom. 437:58–68
    [Google Scholar]
  59. 59. 
    Barry JA, Ait-Belkacem R, Hardesty WM, Benakli L, Andonian C et al. 2019. Multicenter validation study of quantitative imaging mass spectrometry. Anal. Chem. 91:96266–74
    [Google Scholar]
  60. 60. 
    Prentice BM, Chumbley CW, Hachey BC, Norris JL, Caprioli RM. 2016. Multiple time-of-flight/time-of-flight events in a single laser shot for improved matrix-assisted laser desorption/ionization tandem mass spectrometry quantification. Anal. Chem. 88:199780–88
    [Google Scholar]
  61. 61. 
    Prentice BM, Chumbley CW, Caprioli RM. 2017. Absolute quantification of rifampicin by MALDI imaging mass spectrometry using multiple TOF/TOF events in a single laser shot. J. Am. Soc. Mass Spectrom. 28:1136–44
    [Google Scholar]
  62. 62. 
    Deepaisarn S, Tar PD, Thacker NA, Seepujak A, McMahon AW. 2018. Quantifying biological samples using linear Poisson independent component analysis for MALDI-ToF mass spectra. Bioinformatics 34:61001–8
    [Google Scholar]
  63. 63. 
    Kertesz V, Weiskittel TM, Vavrek M, Freddo C, Van Berkel GJ. 2016. Extraction efficiency and implications for absolute quantitation of propranolol in mouse brain, liver and kidney tissue sections using droplet-based liquid microjunction surface sampling high-performance liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 30:141705–12
    [Google Scholar]
  64. 64. 
    Lanekoff I, Thomas M, Laskin J. 2014. Shotgun approach for quantitative imaging of phospholipids using nanospray desorption electrospray ionization mass spectrometry. Anal. Chem. 86:31872–80
    [Google Scholar]
  65. 65. 
    Chen X, Hatsis P, Judge J, Argikar UA, Ren X et al. 2016. Compound property optimization in drug discovery using quantitative surface sampling micro liquid chromatography with tandem mass spectrometry. Anal. Chem. 88:2311813–20
    [Google Scholar]
  66. 66. 
    Cahill JF, Kertesz V, Weiskittel TM, Vavrek M, Freddo C, Van Berkel GJ. 2016. Online, absolute quantitation of propranolol from spatially distinct 20- and 40-μm dissections of brain, liver, and kidney thin tissue sections by laser microdissection–liquid vortex capture–mass spectrometry. Anal. Chem. 88:116026–34
    [Google Scholar]
  67. 67. 
    Wu Q, Huang Z, Wang Y, Zhang Z, Lu H. 2020. Absolute quantitative imaging of sphingolipids in brain tissue by exhaustive liquid microjunction surface sampling–liquid chromatography–mass spectrometry. J. Chromatogr. A 1609:460436
    [Google Scholar]
  68. 68. 
    Swales JG, Strittmatter N, Tucker JW, Clench MR, Webborn PJH, Goodwin RJA. 2016. Spatial quantitation of drugs in tissues using liquid extraction surface analysis mass spectrometry imaging. Sci. Rep. 6:37648
    [Google Scholar]
  69. 69. 
    Luo Z, He J, He J, Huang L, Song X et al. 2018. Quantitative analysis of drug distribution by ambient mass spectrometry imaging method with signal extinction normalization strategy and inkjet-printing technology. Talanta 179:230–37
    [Google Scholar]
  70. 70. 
    Shariatgorji M, Strittmatter N, Nilsson A, Källback P, Alvarsson A et al. 2016. Simultaneous imaging of multiple neurotransmitters and neuroactive substances in the brain by desorption electrospray ionization mass spectrometry. NeuroImage 136:129–38
    [Google Scholar]
  71. 71. 
    Song X, He J, Pang X, Zhang J, Sun C et al. 2019. Virtual calibration quantitative mass spectrometry imaging for accurately mapping analytes across heterogenous biotissue. Anal. Chem. 91:42838–46
    [Google Scholar]
  72. 72. 
    Stoeckli M, Chaurand P, Hallahan DE, Caprioli RM. 2001. Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. Nat. Med. 7:493–96
    [Google Scholar]
  73. 73. 
    Groseclose MR, Andersson M, Hardesty WM, Caprioli RM. 2007. Identification of proteins directly from tissue: in situ tryptic digestions coupled with imaging mass spectrometry. J. Mass Spectrom. 42:2254–62
    [Google Scholar]
  74. 74. 
    Crecelius A, Caprioli R, Williams B, Dawant B, Bodenheimer B. 2005. Three-dimensional visualization of protein expression in mouse brain structures using imaging mass spectrometry. J. Am. Soc. Mass Spectrom. 16:71093–99
    [Google Scholar]
  75. 75. 
    Havlikova J, Randall EC, Griffiths RL, Swales JG, Goodwin RJA et al. 2019. Quantitative imaging of proteins in tissue by stable isotope labeled mimetic liquid extraction surface analysis mass spectrometry. Anal. Chem. 91:2214198–202
    [Google Scholar]
  76. 76. 
    Zhu Y, Dou M, Piehowski PD, Liang Y, Wang F et al. 2018. Spatially resolved proteome mapping of laser capture microdissected tissue with automated sample transfer to nanodroplets. Mol. Cell. Proteom. 17:91864–74
    [Google Scholar]
  77. 77. 
    Piehowski PD, Zhu Y, Bramer LM, Stratton KG, Zhao R et al. 2020. Automated mass spectrometry imaging of over 2000 proteins from tissue sections at 100-μm spatial resolution. Nat. Commun. 11:8
    [Google Scholar]
  78. 78. 
    Beauchemin D. 2008. Inductively coupled plasma mass spectrometry. Anal. Chem. 80:124455–86
    [Google Scholar]
  79. 79. 
    Hare D, Austin C, Doble P. 2012. Quantification strategies for elemental imaging of biological samples using laser ablation-inductively coupled plasma-mass spectrometry. Analyst 137:71527–37
    [Google Scholar]
  80. 80. 
    Durrant SF, Ward NI. 1994. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) for the multielemental analysis of biological materials: a feasibility study. Food Chem 49:3317–23
    [Google Scholar]
  81. 81. 
    Gray AL. 1985. Solid sample introduction by laser ablation for inductively coupled plasma source mass spectrometry. Analyst 110:5551–56
    [Google Scholar]
  82. 82. 
    Sussulini A, Becker JS, Becker JS. 2017. Laser ablation ICP-MS: application in biomedical research. Mass Spectrom. Rev. 36:147–57
    [Google Scholar]
  83. 83. 
    Pozebon D, Scheffler GL, Dressler VL, Nunes MAG. 2014. Review of the applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to the analysis of biological samples. J. Anal. At. Spectrom. 29:122204–28
    [Google Scholar]
  84. 84. 
    Giesen C, Mairinger T, Khoury L, Waentig L, Jakubowski N, Panne U. 2011. Multiplexed immunohistochemical detection of tumor markers in breast cancer tissue using laser ablation inductively coupled plasma mass spectrometry. Anal. Chem. 83:218177–83
    [Google Scholar]
  85. 85. 
    Todoli JL, Mermet JM. 1998. Study of polymer ablation products obtained by ultraviolet laser ablation—inductively coupled plasma atomic emission spectrometry. Spectrochim. Acta B At. Spectrosc. 53:121645–56
    [Google Scholar]
  86. 86. 
    Chen B, Lum JT-S, Huang Y, Hu B, Leung KS-Y. 2019. Integration of sub-organ quantitative imaging LA-ICP-MS and fractionation reveals differences in translocation and transformation of CeO2 and Ce3+ in mice. Anal. Chim. Acta 1082:18–29
    [Google Scholar]
  87. 87. 
    Westerhausen MT, Bishop DP, Dowd A, Wanagat J, Cole N, Doble PA 2019. Super-resolution reconstruction for two- and three-dimensional LA-ICP-MS bioimaging. Anal. Chem. 91:2314879–86
    [Google Scholar]
  88. 88. 
    Cruz-Alonso M, Fernandez B, García M, González-Iglesias H, Pereiro R. 2018. Quantitative imaging of specific proteins in the human retina by laser ablation ICPMS using bioconjugated metal nanoclusters as labels. Anal. Chem. 90:2012145–51
    [Google Scholar]
  89. 89. 
    Cruz-Alonso M, Fernandez B, Navarro A, Junceda S, Astudillo A, Pereiro R. 2019. Laser ablation ICP-MS for simultaneous quantitative imaging of iron and ferroportin in hippocampus of human brain tissues with Alzheimer's disease. Talanta 197:413–21
    [Google Scholar]
  90. 90. 
    Cid-Barrio L, Calderón-Celis F, Abásolo-Linares P, Fernández-Sánchez ML, Costa-Fernández JM et al. 2018. Advances in absolute protein quantification and quantitative protein mapping using ICP-MS. Trends Anal. Chem. 104:148–59
    [Google Scholar]
  91. 91. 
    Han J, Huang X, Liu H, Wang J, Xiong C, Nie Z. 2019. Laser cleavable probes for in situ multiplexed glycan detection by single cell mass spectrometry. Chem. Sci. 10:4710958–62 Corrigendum. 2020. Chem. Sci. 11:1176
    [Google Scholar]
  92. 92. 
    Muthu M, Gopal J, Chun S. 2017. Nanopost array laser desorption ionization mass spectrometry (NAPA-LDI MS): gathering moss?. Trends Anal. Chem. 97:96–103
    [Google Scholar]
  93. 93. 
    Korte AR, Morris NJ, Vertes A. 2019. High throughput complementary analysis and quantitation of metabolites by MALDI- and silicon nanopost array-laser desorption/ionization-mass spectrometry. Anal. Chem. 91:63951–58
    [Google Scholar]
  94. 94. 
    Sans M, Feider CL, Eberlin LS. 2018. Advances in mass spectrometry imaging coupled to ion mobility spectrometry for enhanced imaging of biological tissues. Curr. Opin. Chem. Biol. 42:138–46
    [Google Scholar]
  95. 95. 
    Woods AS, Jackson SN. 2010. The application and potential of ion mobility mass spectrometry in imaging MS with a focus on lipids. Methods Mol. Biol. 656:99–111
    [Google Scholar]
  96. 96. 
    Kiss A, Heeren RMA. 2011. Size, weight and position: ion mobility spectrometry and imaging MS combined. Anal. Bioanal. Chem. 399:2623–34
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-061020-053416
Loading
/content/journals/10.1146/annurev-physchem-061020-053416
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error