1932

Abstract

Intriguing properties of photoemission from free, unsupported particles and droplets were predicted nearly 50 years ago, though experiments were a technical challenge. The last few decades have seen a surge of research in the field, due to advances in aerosol technology (generation, characterization, and transfer into vacuum), the development of photoelectron imaging spectrometers, and advances in vacuum ultraviolet and ultrafast light sources. Particles and droplets offer several advantages for photoemission studies. For example, photoemission spectra are dependent on the particle's size, shape, and composition, providing a wealth of information that allows for the retrieval of genuine electronic properties of condensed phase. In this review, with a focus on submicrometer-sized, dielectric particles and droplets, we explain the utility of photoemission from such systems, summarize several applications from the literature, and present some thoughts on future research directions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-071719-022655
2020-04-20
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/physchem/71/1/annurev-physchem-071719-022655.html?itemId=/content/journals/10.1146/annurev-physchem-071719-022655&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Signorell R, Reid JP 2011. Fundamentals and Applications in Aerosol Spectroscopy Boca Raton, FL: Taylor & Francis/CRC
  2. 2. 
    Sigurbjörnsson ÓF, Firanescu G, Signorell R 2009. Intrinsic particle properties from vibrational spectra of aerosols. Annu. Rev. Phys. Chem. 60127–46
  3. 3. 
    Watson WD. 1972. Heating of interstellar Hi clouds by ultraviolet photoelectron emission from grains. Astrophys. J. 176103–10
  4. 4. 
    Bohren CF, Huffman DR. 1998. Absorption and Scattering of Light by Small Particles New York: Wiley
  5. 5. 
    Shu JN, Wilson KR, Ahmed M, Leone SR 2006. Coupling a versatile aerosol apparatus to a synchrotron: vacuum ultraviolet light scattering, photoelectron imaging, and fragment free mass spectrometry. Rev. Sci. Instrum. 77043106
  6. 6. 
    Wilson KR, Zou SL, Shu JN, Ruhl E, Leone SR et al. 2007. Size-dependent angular distributions of low-energy photoelectrons emitted from NaCl nanoparticles. Nano Lett 72014–19
  7. 7. 
    Signorell R, Goldmann M, Yoder BL, Bodi A, Chasovskikh E et al. 2016. Nanofocusing, shadowing, and electron mean free path in the photoemission from aerosol droplets. Chem. Phys. Lett. 6581–6
  8. 8. 
    Hickstein DD, Dollar F, Ellis JL, Schnitzenbaumer KJ, Keister KE et al. 2014. Mapping nanoscale absorption of femtosecond laser pulses using plasma explosion imaging. ACS Nano 88810–18
  9. 9. 
    Antonsson E, Gerke F, Merkel L, Halfpap I, Langer B, Rühl E 2019. Size-dependent ion emission asymmetry of free NaCl nanoparticles excited by intense femtosecond laser pulses. Phys. Chem. Chem. Phys. 2112130–38
  10. 10. 
    Seiffert L, Liu Q, Zherebtsov S, Trabattoni A, Rupp P et al. 2017. Attosecond chronoscopy of electron scattering in dielectric nanoparticles. Nat. Phys. 13766–70
  11. 11. 
    Cremer JW, Thaler KM, Haisch C, Signorell R 2016. Photoacoustics of single laser-trapped nanodroplets for the direct observation of nanofocusing in aerosol photokinetics. Nat. Commun. 710941
  12. 12. 
    Berg MJ, Wilson KR, Sorensen CM, Chakrabarti A, Ahmed M 2012. Discrete dipole approximation for low-energy photoelectron emission from NaCl nanoparticles. J. Quant. Spectrosc. Radiat. Transf. 113259–65
  13. 13. 
    Amanatidis S, Yoder BL, Signorell R 2017. Low-energy photoelectron transmission through aerosol overlayers. J. Chem. Phys. 146224204
  14. 14. 
    Young RM, Neumark DM. 2012. Dynamics of solvated electrons in clusters. Chem. Rev. 1125553–77
  15. 15. 
    Schorb S, Rupp D, Swiggers ML, Coffee RN, Messerschmidt M et al. 2012. Size-dependent ultrafast ionization dynamics of nanoscale samples in intense femtosecond X-ray free-electron-laser pulses. Phys. Rev. Lett. 108233401
  16. 16. 
    Signorell R, Yoder BL, West AHC, Ferreiro JJ, Saak C-M 2014. Angle-resolved valence shell photoelectron spectroscopy of neutral nanosized molecular aggregates. Chem. Sci. 51283–95
  17. 17. 
    Ziemkiewicz MP, Neumark DM, Gessner O 2015. Ultrafast electronic dynamics in helium nanodroplets. Int. Rev. Phys. Chem. 34239–67
  18. 18. 
    Mudrich M, Stienkemeier F. 2014. Photoionisaton of pure and doped helium nanodroplets. Int. Rev. Phys. Chem. 33301–39
  19. 19. 
    Watson WD. 1973. Photoelectron emission from small spherical particles. J. Opt. Soc. Am. 63164–65
  20. 20. 
    Arnold S, Hessel N. 1985. Photoemission from single electrodynamically levitated microparticles. Rev. Sci. Instrum. 562066–69
  21. 21. 
    Burtscher H, Scherrer L, Siegmann HC, Schmidt-Ott A, Federer B 1982. Probing aerosols by photoelectric charging. J. Appl. Phys. 533787–91
  22. 22. 
    Burtscher H, Schmidt-Ott A, Siegmann HC 1988. Monitoring particulate emissions from combustions by photoemission. Aerosol Sci. Technol. 8125–32
  23. 23. 
    Niessner R, Robers W, Wilbring P 1989. Laboratory experiments on the determination of polycyclic aromatic hydrocarbon coverage of submicrometer particles by laser-induced aerosol photoemission. Anal. Chem. 61320–25
  24. 24. 
    Niessner R, Hemmerich B, Wilbring P 1990. Aerosol photoemission for quantification of polycyclic aromatic hydrocarbons in simple mixtures adsorbed on carbonaceous and sodium chloride aerosols. Anal. Chem. 622071–74
  25. 25. 
    Hall TD, Beeman WW. 1976. Secondary electron emission from beams of polystyrene latex spheres. J. Appl. Phys. 475222–25
  26. 26. 
    Ziemann PJ, McMurry PH. 1998. Secondary electron yield measurements as a means for probing organic films on aerosol particles. Aerosol Sci. Technol. 2877–90
  27. 27. 
    Wilson KR, Peterka DS, Jimenez-Cruz M, Leone SR, Ahmed M 2006. VUV photoelectron imaging of biological nanoparticles: ionization energy determination of nanophase glycine and phenylalanine-glycine-glycine. Phys. Chem. Chem. Phys. 81884–90
  28. 28. 
    Antonsson E, Bresch H, Lewinski R, Wassermann B, Leisner T et al. 2013. Free nanoparticles studied by soft X-rays. Chem. Phys. Lett. 5591–11
  29. 29. 
    Paul J, Dörzbach A, Siegmann K 1997. Circular dichroism in the photoionization of nanoparticles from chiral compounds. Phys. Rev. Lett. 792947–50
  30. 30. 
    Grimm M, Langer B, Schlemmer S, Lischke T, Becker U et al. 2006. Charging mechanisms of trapped element-selectively excited nanoparticles exposed to soft X rays. Phys. Rev. Lett. 96066801
  31. 31. 
    Starr DE, Wong EK, Worsnop DR, Wilson KR, Bluhm H 2008. A combined droplet train and ambient pressure photoemission spectrometer for the investigation of liquid/vapor interfaces. Phys. Chem. Chem. Phys. 103093–98
  32. 32. 
    Jacobs MI, Xu B, Kostko O, Heine N, Ahmed M, Wilson KR 2016. Probing the heterogeneous ozonolysis of squalene nanoparticles by photoemission. J. Phys. Chem. A 1208645–56
  33. 33. 
    Antonsson E, Patanen M, Nicolas C, Neville JJ, Benkoula S et al. 2015. Complete bromide surface segregation in mixed NaCl/NaBr aerosols grown from droplets. Phys. Rev. X 5011025
  34. 34. 
    Su C-C, Yu Y, Chang P-C, Chen Y-W, Chen IY et al. 2015. VUV photoelectron spectroscopy of cysteine aqueous aerosols: a microscopic view of its nucleophilicity at varying pH conditions. J. Phys. Chem. Lett. 6817–23
  35. 35. 
    Kostko O, Xu B, Jacobs MI, Ahmed M 2017. Soft X-ray spectroscopy of nanoparticles by velocity map imaging. J. Chem. Phys. 147013931
  36. 36. 
    Antonsson E, Langer B, Halfpap I, Gottwald J, Rühl E 2017. Photoelectron angular distribution from free SiO2 nanoparticles as a probe of elastic electron scattering. J. Chem. Phys. 146244301
  37. 37. 
    Tigrine S, Carrasco N, Bozanic DK, Garcia GA, Nahon L 2018. FUV photoionization of Titan atmospheric aerosols. Astrophys. J. 867164
  38. 38. 
    Zherebtsov S, Fennel T, Plenge J, Antonsson E, Znakovskaya I et al. 2011. Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields. Nat. Phys. 7656–62
  39. 39. 
    Antonsson E, Peltz C, Plenge J, Langer B, Fennel T, Rühl E 2015. Signatures of transient resonance heating in photoemission from free NaCl nanoparticles in intense femtosecond laser pulses. J. Electron. Spectrosc. Relat. Phenom. 200216–21
  40. 40. 
    Ellis JL, Hickstein DD, Xiong W, Dollar F, Palm BB et al. 2016. Materials properties and solvated electron dynamics of isolated nanoparticles and nanodroplets probed with ultrafast extreme ultraviolet beams. J. Phys. Chem. Lett. 7609–15
  41. 41. 
    Cooper J, Zare RN. 1968. Angular distribution of photoelectrons. J. Chem. Phys. 48942–43
  42. 42. 
    Reid KL. 2003. Photoelectron angular distributions. Annu. Rev. Phys. Chem. 54397–424
  43. 43. 
    Yoder BL, West AHC, Schläppi B, Chasovskikh E, Signorell R 2013. A velocity map imaging photoelectron spectrometer for the study of ultrafine aerosols with a table-top VUV laser and Na-doping for particle sizing applied to dimethyl ether condensation. J. Chem. Phys. 138044202
  44. 44. 
    Goldmann M, Miguel-Sánchez J, West AHC, Yoder BL, Signorell R 2015. Electron mean free path from angle-dependent photoelectron spectroscopy of aerosol particles. J. Chem. Phys. 142224304
  45. 45. 
    Meinen J, Khasminskaya S, Eritt M, Leisner T, Antonsson E et al. 2010. Core level photoionization on free sub-10-nm nanoparticles using synchrotron radiation. Rev. Sci. Instrum. 81085107
  46. 46. 
    Gaie-Levrel F, Garcia GA, Schwell M, Nahon L 2011. VUV state-selected photoionization of thermally-desorbed biomolecules by coupling an aerosol source to an imaging photoelectron/photoion coincidence spectrometer: case of the amino acids tryptophan and phenylalanine. Phys. Chem. Chem. Phys. 137024–36
  47. 47. 
    Sublemontier O, Nicolas C, Aureau D, Patanen M, Kintz H et al. 2014. X-ray photoelectron spectroscopy of isolated nanoparticles. J. Phys. Chem. Lett. 53399–403
  48. 48. 
    Seiffert L, Süßmann F, Zherebtsov S, Rupp P, Peltz C et al. 2016. Competition of single and double rescattering in the strong-field photoemission from dielectric nanospheres. Appl. Phys. B 122101
  49. 49. 
    Biskos G, Vons V, Yurteri CU, Schmidt-Ott A 2008. Generation and sizing of particles for aerosol-based nanotechnology. KONA Powder Part. J. 2613–35
  50. 50. 
    Liu P, Ziemann PJ, Kittelson DB, McMurry PH 1995. Generating particle beams of controlled dimensions and divergence. I. Theory of particle motion in aerodynamic lenses and nozzle expansions. Aerosol Sci. Technol. 22293–313
  51. 51. 
    Liu P, Ziemann PJ, Kittelson DB, McMurry PH 1995. Generating particle beams of controlled dimensions and divergence. II. Experimental evaluation of particle motion in aerodynamic lenses and nozzle expansions. Aerosol Sci. Technol. 22314–24
  52. 52. 
    Wang X, Kruis FE, McMurry PH 2005. Aerodynamic focusing of nanoparticles. I. Guidelines for designing aerodynamic lenses for nanoparticles. Aerosol Sci. Technol. 39611–23
  53. 53. 
    DePonte DP, Weierstall U, Schmidt K, Warner J, Starodub D et al. 2008. Gas dynamic virtual nozzle for generation of microscopic droplet streams. J. Phys. D 41195505
  54. 54. 
    Kirian RA, Awel S, Eckerskorn N, Fleckenstein H, Wiedorn M et al. 2015. Simple convergent-nozzle aerosol injector for single-particle diffractive imaging with X-ray free-electron lasers. Struct. Dyn. 2041717
  55. 55. 
    Poletto L, Villoresi P. 2006. Time-delay compensated monochromator in the off-plane mount for extreme-ultraviolet ultrashort pulses. Appl. Opt. 458577–85
  56. 56. 
    Poletto L, Villoresi P, Frassetto F, Calegari F, Ferrari F et al. 2009. Time-delay compensated monochromator for the spectral selection of extreme-ultraviolet high-order laser harmonics. Rev. Sci. Instrum. 80123109
  57. 57. 
    Eppink ATJB, Parker DH. 1997. Velocity map imaging of ions and electrons using electrostatic lenses: application in photoelectron and photofragment ion imaging of molecular oxygen. Rev. Sci. Instrum. 683477–84
  58. 58. 
    Heck AJR, Chandler DW. 1995. Imaging techniques for the study of chemical reaction dynamics. Annu. Rev. Phys. Chem. 46335–72
  59. 59. 
    Whitaker BJ. 2003. Imaging in Molecular Dynamics Technology and Applications: A User's Guide Cambridge, UK: Cambridge Univ. Press
  60. 60. 
    Dribinski V, Ossadtchi A, Mandelshtam VA, Reisler H 2002. Reconstruction of Abel-transformable images: the Gaussian basis-set expansion Abel transform method. Rev. Sci. Instrum. 732634–42
  61. 61. 
    Garcia GA, Nahon L, Powis I 2004. Two-dimensional charged particle image inversion using a polar basis function expansion. Rev. Sci. Instrum. 754989–96
  62. 62. 
    Dick B. 2014. Inverting ion images without Abel inversion: maximum entropy reconstruction of velocity maps. Phys. Chem. Chem. Phys. 16570–80
  63. 63. 
    Gerber T, Liu Y, Knopp G, Hemberger P, Bodi A et al. 2013. Charged particle velocity map image reconstruction with one-dimensional projections of spherical functions. Rev. Sci. Instrum. 84033101
  64. 64. 
    Harrison GR, Vaughan JC, Hidle B, Laurent GM 2018. DAVIS: a direct algorithm for velocity-map imaging system. J. Chem. Phys. 148194101
  65. 65. 
    Winter B, Faubel M. 2006. Photoemission from liquid aqueous solutions. Chem. Rev. 1061176–211
  66. 66. 
    Chang P-C, Yu Y, Wu Z-H, Lin P-C, Chen W-R et al. 2016. Molecular basis of the antioxidant capability of glutathione unraveled via aerosol VUV photoelectron spectroscopy. J. Phys. Chem. B 12010181–91
  67. 67. 
    Weingartner JC, Draine BT. 2001. Forces on dust grains exposed to anisotropic interstellar radiation fields. Astrophys. J. 553581–94
  68. 68. 
    Paul J, Siegmann K. 1999. Large natural circular dichroism in photoionization. Chem. Phys. Lett. 30423–27
  69. 69. 
    Zhiqiang Q, Siegmann K, Keller A, Matter U, Scherrer L, Siegmann HC 2000. Nanoparticle air pollution in major cities and its origin. Atmos. Environ. 34443–51
  70. 70. 
    Graf C, Langer B, Grimm M, Lewinski R, Grom M, Rühl E 2008. Investigation of trapped metallo-dielectric core–shell colloidal particles using soft X-rays. J. Electron. Spectrosc. Relat. Phenom. 166/16774–80
  71. 71. 
    Ziemann PJ, Liu P, Kittelson DB, McMurry PH 1995. Electron impact charging properties of size-selected, submicrometer organic particles. J. Chem. Phys. 995126–38
  72. 72. 
    Ban L, Gartmann TE, Yoder BL, Signorell R 2020. Phys. Rev. Lett. 124013402
  73. 73. 
    Steiner D, Burtscher HK. 1994. Desorption of perylene from combustion, NaCl, and carbon particles. Environ. Sci. Technol. 281254–59
  74. 74. 
    Hueglin C, Paul J, Scherrer L, Siegmann K 1997. Direct observation of desorption kinetics with perylene at ultrafine aerosol particle surfaces. J. Phys. Chem. B 1019335–41
  75. 75. 
    Kasper M, Keller A, Paul J, Siegmann K, Siegmann HC 1999. Photoelectron spectroscopy without vacuum: nanoparticles in gas suspension. J. Electron. Spectrosc. Relat. Phenom. 98/9983–93
  76. 76. 
    Antonsson E, Raschpichler C, Langer B, Marchenko D, Rühl E 2018. Surface composition of free mixed NaCl/Na2SO4 nanoscale aerosols probed by X-ray photoelectron spectroscopy. J. Phys. Chem. A 1222695–702
  77. 77. 
    Woods E, Konys CA, Rossi SR 2019. Photoemission of iodide from aqueous aerosol particle surfaces. J. Phys. Chem. A 1232901–7
  78. 78. 
    Lin P-C, Wu Z-H, Chen M-S, Li Y-L, Chen W-R et al. 2017. Interfacial solvation and surface pH of phenol and dihydroxybenzene aqueous nanoaerosols unveiled by aerosol VUV photoelectron spectroscopy. J. Phys. Chem. B 1211054–67
  79. 79. 
    Manka A, Pathak H, Tanimura S, Wölk J, Strey R, Wyslouzil BE 2012. Freezing water in no-man's land. Phys. Chem. Chem. Phys. 144505–16
  80. 80. 
    Seidel R, Winter B, Bradforth SE 2016. Valence electronic structure of aqueous solutions: insights from photoelectron spectroscopy. Annu. Rev. Phys. Chem. 67283–305
  81. 81. 
    Chen X, Bradforth SE. 2008. The ultrafast dynamics of photodetachment. Annu. Rev. Phys. Chem. 59203–31
  82. 82. 
    Suzuki T. 2012. Time-resolved photoelectron spectroscopy of non-adiabatic electronic dynamics in gas and liquid phases. Int. Rev. Phys. Chem. 31265–318
  83. 83. 
    Abel B. 2013. Hydrated interfacial ions and electrons. Annu. Rev. Phys. Chem. 64533–52
  84. 84. 
    Riley JW, Wang B, Woodhouse JL, Assmann M, Worth GA, Fielding HH 2018. Unravelling the role of an aqueous environment on the electronic structure and ionization of phenol using photoelectron spectroscopy. J. Phys. Chem. Lett. 9678–82
  85. 85. 
    Elkins MH, Williams HL, Shreve AT, Neumark DM 2013. Relaxation mechanism of the hydrated electron. Science 3421496–99
  86. 86. 
    Arrell CA, Ojeda J, Sabbar M, Okell WA, Witting T et al. 2014. A simple electron time-of-flight spectrometer for ultrafast vacuum ultraviolet photoelectron spectroscopy of liquid solutions. Rev. Sci. Instrum. 85103117
  87. 87. 
    Liu Q, Seiffert L, Trabattoni A, Castrovilli MC, Galli M et al. 2018. Attosecond streaking metrology with isolated nanotargets. J. Opt. 20024002
  88. 88. 
    Jacobs MI, Kostko O, Ahmed M, Wilson KR 2017. Low energy electron attenuation lengths in core–shell nanoparticles. Phys. Chem. Chem. Phys. 1913372–78
  89. 89. 
    Naaman R, Sanche L. 2007. Low-energy electron transmission through thin-film molecular and biomolecular solids. Chem. Rev. 1071553–79
  90. 90. 
    Ferradini C, Jay-Gerin J-P 1991. Excess Electrons in Dielectric Media Boca Raton, FL: CRC
  91. 91. 
    Powell CJ. 1988. The quest for universal curves to describe the surface sensitivity of electron spectroscopies. J. Electron. Spectrosc. Relat. Phenom. 47197–214
  92. 92. 
    Seah MP. 2012. An accurate and simple universal curve for the energy-dependent electron inelastic mean free path. Surf. Interface Anal. 44497–503
  93. 93. 
    Shinotsuka H, Da B, Tanuma S, Yoshikawa H, Powell CJ, Penn DR 2017. Calculations of electron inelastic mean free paths. XI. Data for liquid water for energies from 50eV to 30keV. Surf. Interface Anal. 49238–52
  94. 94. 
    Olivieri G, Parry KM, Powell CJ, Tobias DJ, Brown MA 2016. Quantitative interpretation of molecular dynamics simulations for X-ray photoelectron spectroscopy of aqueous solutions. J. Chem. Phys. 144154704
  95. 95. 
    Sanche L. 2009. Beyond radical thinking. Nature 461358–59
  96. 96. 
    Alizadeh E, Sanche L. 2012. Precursors of solvated electrons in radiobiological physics and chemistry. Chem. Rev. 1125578–602
  97. 97. 
    Herbert JM, Coons MP. 2017. The hydrated electron. Annu. Rev. Phys. Chem. 68447–72
  98. 98. 
    Suzuki Y-I, Nishizawa K, Kurahashi N, Suzuki T 2014. Effective attenuation length of an electron in liquid water between 10 and 600 eV. Phys. Rev. E 90010302
  99. 99. 
    Thürmer S, Seidel R, Faubel M, Eberhardt W, Hemminger JC et al. 2013. Photoelectron angular distributions from liquid water: effects of electron scattering. Phys. Rev. Lett. 111173005
  100. 100. 
    Michaud M, Wen A, Sanche L 2003. Cross sections for low-energy (1–100 eV) electron elastic and inelastic scattering in amorphous ice. Radiat. Res. 1593–22
  101. 101. 
    Turi L, Rossky PJ. 2012. Theoretical studies of spectroscopy and dynamics of hydrated electrons. Chem. Rev. 1125641–74
  102. 102. 
    Luckhaus D, Yamamoto Y-I, Suzuki T, Signorell R 2017. Genuine binding energy of the hydrated electron. Sci. Adv. 3e1603224
  103. 103. 
    Yamamoto Y, Karashima S, Adachi S, Suzuki T 2016. Wavelength dependence of UV photoemission from solvated electrons in bulk water, methanol, and ethanol. J. Phys. Chem. A 1201153–59
  104. 104. 
    Stähler J, Deinert J-C, Wegkamp D, Hagen S, Wolf M 2015. Real-time measurement of the vertical binding energy during the birth of a solvated electron. J. Am. Chem. Soc. 1373520–24
  105. 105. 
    Itikawa Y, Mason N. 2005. Cross sections for electron collisions with water molecules. J. Phys. Chem. Ref. Data 341–22
  106. 106. 
    Michaud M, Sanche L. 1987. Total cross sections for slow-electron (1–20 eV) scattering in solid H2O. Phys. Rev. A 364672–83
  107. 107. 
    Ottosson N, Faubel M, Bradforth SE, Jungwirth P, Winter B 2010. Photoelectron spectroscopy of liquid water and aqueous solution: electron effective attenuation lengths and emission-angle anisotropy. J. Electron. Spectrosc. Relat. Phenom. 17760–70
  108. 108. 
    Hartweg S, Yoder BL, Garcia GA, Nahon L, Signorell R 2017. Size-resolved photoelectron anisotropy of gas phase water clusters and predictions for liquid water. Phys. Rev. Lett. 118103402
  109. 109. 
    Gartmann TE, Hartweg S, Ban L, Chasovskikh E, Yoder BL, Signorell R 2018. Electron scattering in large water clusters from photoelectron imaging with high harmonic radiation. Phys. Chem. Chem. Phys. 2016364–71
  110. 110. 
    West AHC, Yoder BL, Signorell R 2013. Size-dependent velocity map photoelectron imaging of nanosized ammonia aerosol particles. J. Phys. Chem. A 11713326–35
  111. 111. 
    Nishitani J, West CW, Suzuki T 2017. Angle-resolved photoemission spectroscopy of liquid water at 29.5eV. Struct. Dyn. 4044014
  112. 112. 
    Süßmann F, Zherebtsov S, Plenge J, Johnson NG, Kübel M et al. 2011. Single-shot velocity-map imaging of attosecond light-field control at kilohertz rate. Rev. Sci. Instrum. 82093109
  113. 113. 
    Zherebtsov S, Süßmann F, Peltz C, Plenge J, Betsch KJ et al. 2012. Carrier–envelope phase-tagged imaging of the controlled electron acceleration from SiO2 nanospheres in intense few-cycle laser fields. New J. Phys. 14075010
  114. 114. 
    Süßmann F, Seiffert L, Zherebtsov S, Mondes V, Stierle J et al. 2015. Field propagation-induced directionality of carrier-envelope phase-controlled photoemission from nanospheres. Nat. Commun. 67944
  115. 115. 
    Hickstein DD, Dollar F, Gaffney JA, Foord ME, Petrov GM et al. 2014. Observation and control of shock waves in individual nanoplasmas. Phys. Rev. Lett. 112115004
  116. 116. 
    Gaiduk AP, Pham TA, Govoni M, Paesani F, Galli G 2018. Electron affinity of liquid water. Nat. Commun. 9247
  117. 117. 
    Coe JV, Earhart AD, Cohen MH, Hoffman GJ, Sarkas HW, Bowen KH 1997. Using cluster studies to approach the electronic structure of bulk water: reassessing the vacuum level, conduction band edge, and band gap of water. J. Chem. Phys. 1076023–31
/content/journals/10.1146/annurev-physchem-071719-022655
Loading
/content/journals/10.1146/annurev-physchem-071719-022655
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error