1932

Abstract

Advances in atomic, molecular, and optical physics techniques allowed the cooling of simple molecules down to the ultracold regime (1 mK) and opened opportunities to study chemical reactions with unprecedented levels of control. This review covers recent developments in studying bimolecular chemistry at ultralow temperatures. We begin with a brief overview of methods for producing, manipulating, and detecting ultracold molecules. We then survey experimental works that exploit the controllability of ultracold molecules to probe and modify their long-range interactions. Further combining the use of physical chemistry techniques such as mass spectrometry and ion imaging significantly improved the detection of ultracold reactions and enabled explorations of their dynamics in the short range. We discuss a series of studies on the reaction KRb + KRb → K + Rb initiated below 1 μK, including the direct observation of a long-lived complex, the demonstration of product rotational state control via conserved nuclear spins, and a test of the statistical model using the complete quantum state distribution of the products.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-090419-043244
2022-04-20
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/physchem/73/1/annurev-physchem-090419-043244.html?itemId=/content/journals/10.1146/annurev-physchem-090419-043244&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Yang X. 2007. State-to-state dynamics of elementary bimolecular reactions. Annu. Rev. Phys. Chem. 58:433–59
    [Google Scholar]
  2. 2. 
    Levine RD. 2009. Molecular Reaction Dynamics Cambridge, UK: Cambridge Univ. Press
  3. 3. 
    Herschbach DR. 1987. Molecular dynamics of elementary chemical reactions (Nobel lecture). Angew. Chem. Int. Ed. 26:121221–43
    [Google Scholar]
  4. 4. 
    Dai D, Wang CC, Harich SA, Wang X, Yang X et al. 2003. Interference of quantized transition-state pathways in the H + D2 → D + HD chemical reaction. Science 300:56261730–34
    [Google Scholar]
  5. 5. 
    Xie Y, Zhao H, Wang Y, Huang Y, Wang T et al. 2020. Quantum interference in H + HD → H2 + D between direct abstraction and roaming insertion pathways. Science 368:6492767–71
    [Google Scholar]
  6. 6. 
    Jankunas J, Osterwalder A. 2015. Cold and controlled molecular beams: production and applications. Annu. Rev. Phys. Chem. 66:241–62
    [Google Scholar]
  7. 7. 
    Lavert-Ofir E, Shagam Y, Henson AB, Gersten S, Kłos J et al. 2014. Observation of the isotope effect in sub-kelvin reactions. Nat. Chem. 6:4332–35
    [Google Scholar]
  8. 8. 
    de Jongh T, Besemer M, Shuai Q, Karman T, van der Avoird A et al. 2020. Imaging the onset of the resonance regime in low-energy NO-He collisions. Science 368:6491626–30
    [Google Scholar]
  9. 9. 
    Vitanov NV, Rangelov AA, Shore BW, Bergmann K. 2017. Stimulated Raman adiabatic passage in physics, chemistry, and beyond. Rev. Mod. Phys. 89:015006
    [Google Scholar]
  10. 10. 
    Mukherjee N, Zare RN. 2011. Stark-induced adiabatic Raman passage for preparing polarized molecules. J. Chem. Phys. 135:2024201
    [Google Scholar]
  11. 11. 
    Wang T, Chen J, Yang T, Xiao C, Sun Z et al. 2013. Dynamical resonances accessible only by reagent vibrational excitation in the F + HD → HF + D reaction. Science 342:61651499–502
    [Google Scholar]
  12. 12. 
    Perreault WE, Mukherjee N, Zare RN. 2017. Quantum control of molecular collisions at 1 kelvin. Science 358:6361356–59
    [Google Scholar]
  13. 13. 
    Smith IW. 2011. Laboratory astrochemistry: gas-phase processes. Annu. Rev. Astron. Astrophys. 49:29–66
    [Google Scholar]
  14. 14. 
    Żuchowski PS, Hutson JM. 2010. Reactions of ultracold alkali-metal dimers. Phys. Rev. A 81:6060703
    [Google Scholar]
  15. 15. 
    Liu Y. 2020. Bimolecular chemistry at sub-microkelvin temperatures PhD Diss. Harvard Univ. Cambridge, MA:
  16. 16. 
    Zhang D, Willitsch S. 2017. Cold ion chemistry. arXiv:1703.07133 [physics.chem-ph]
  17. 17. 
    Toscano J, Lewandowski H, Heazlewood BR. 2020. Cold and controlled chemical reaction dynamics. Phys. Chem. Chem. Phys. 22:179180–94
    [Google Scholar]
  18. 18. 
    Heazlewood BR, Softley TP. 2021. Towards chemistry at absolute zero. Nat. Rev. Chem. 5:125–40
    [Google Scholar]
  19. 19. 
    Liu Y, Grimes DD, Hu MG, Ni KK. 2020. Probing ultracold chemistry using ion spectrometry. Phys. Chem. Chem. Phys. 22:4861–74
    [Google Scholar]
  20. 20. 
    Liu Y, Hu MG, Nichols MA, Yang D, Xie D et al. 2021. Precision test of statistical dynamics with state-to-state ultracold chemistry. Nature 593:7859379–84
    [Google Scholar]
  21. 21. 
    Ni K-K, Ospelkaus S, Nesbitt DJ, Ye J, Jin DS 2009. A dipolar gas of ultracold molecules. Phys. Chem. Chem. Phys. 11:429626–39
    [Google Scholar]
  22. 22. 
    Micheli A, Brennen G, Zoller P. 2006. A toolbox for lattice-spin models with polar molecules. Nat. Phys. 2:5341–47
    [Google Scholar]
  23. 23. 
    Büchler HP, Demler E, Lukin M, Micheli A, Prokof'ev N et al. 2007. Strongly correlated 2D quantum phases with cold polar molecules: controlling the shape of the interaction potential. Phys. Rev. Lett. 98:6060404
    [Google Scholar]
  24. 24. 
    Cooper N, Shlyapnikov GV 2009. Stable topological superfluid phase of ultracold polar fermionic molecules. Phys. Rev. Lett. 103:15155302
    [Google Scholar]
  25. 25. 
    DeMille D. 2002. Quantum computation with trapped polar molecules. Phys. Rev. Lett. 88:6067901
    [Google Scholar]
  26. 26. 
    Yelin S, Kirby K, Côté R 2006. Schemes for robust quantum computation with polar molecules. Phys. Rev. A 74:5050301
    [Google Scholar]
  27. 27. 
    Ni K-K, Rosenband T, Grimes DD 2018. Dipolar exchange quantum logic gate with polar molecules. Chem. Sci. 9:336830–38
    [Google Scholar]
  28. 28. 
    Hudson ER, Campbell WC. 2018. Dipolar quantum logic for freely rotating trapped molecular ions. Phys. Rev. A 98:4040302
    [Google Scholar]
  29. 29. 
    Baron J, Campbell WC, DeMille D, Doyle JM, Gabrielse G et al. 2014. Order of magnitude smaller limit on the electric dipole moment of the electron. Science 343:6168269–72
    [Google Scholar]
  30. 30. 
    Cairncross WB, Gresh DN, Grau M, Cossel KC, Roussy TS et al. 2017. Precision measurement of the electron's electric dipole moment using trapped molecular ions. Phys. Rev. Lett. 119:15153001
    [Google Scholar]
  31. 31. 
    Andreev V, Hutzler N. 2018. Improved limit on the electric dipole moment of the electron. Nature 562:7727355–60
    [Google Scholar]
  32. 32. 
    Kokish MG, Stollenwerk PR, Kajita M, Odom BC. 2018. Prospects for a polar-molecular-ion optical probe of varying proton-electron mass ratio. Phys. Rev. A 98:5052513
    [Google Scholar]
  33. 33. 
    Kondov S, Lee CH, Leung K, Liedl C, Majewska I et al. 2019. Molecular lattice clock with long vibrational coherence. Nat. Phys. 15:111118–22
    [Google Scholar]
  34. 34. 
    Balakrishnan N. 2016. Ultracold molecules and the dawn of cold controlled chemistry. J. Chem. Phys. 145:15150901
    [Google Scholar]
  35. 35. 
    Chu S, Wieman C 1989. Laser cooling and trapping of atoms: introduction. J. Opt. Soc. Am. B 6:112020–22
    [Google Scholar]
  36. 36. 
    Gao Y, Gao T. 2014. Laser cooling of the alkaline-earth-metal monohydrides: insights from an ab initio theory study. Phys. Rev. A 90:5052506
    [Google Scholar]
  37. 37. 
    Shuman ES, Barry JF, DeMille D. 2010. Laser cooling of a diatomic molecule. Nature 467:7317820–23
    [Google Scholar]
  38. 38. 
    Zhelyazkova V, Cournol A, Wall TE, Matsushima A, Hudson JJ et al. 2014. Laser cooling and slowing of CaF molecules. Phys. Rev. A 89:5053416
    [Google Scholar]
  39. 39. 
    Anderegg L, Augenbraun BL, Bao Y, Burchesky S, Cheuk LW et al. 2018. Laser cooling of optically trapped molecules. Nat. Phys. 14:9890–93
    [Google Scholar]
  40. 40. 
    Ding S, Wu Y, Finneran IA, Burau JJ, Ye J. 2020. Sub-doppler cooling and compressed trapping of YO molecules at μK temperatures. Phys. Rev. X 10:2021049
    [Google Scholar]
  41. 41. 
    Kozyryev I, Baum L, Matsuda K, Augenbraun BL, Anderegg L et al. 2017. Sisyphus laser cooling of a polyatomic molecule. Phys. Rev. Lett. 118:17173201
    [Google Scholar]
  42. 42. 
    Baum L, Vilas NB, Hallas C, Augenbraun BL, Raval S et al. 2020. 1D magneto-optical trap of polyatomic molecules. Phys. Rev. Lett. 124:13133201
    [Google Scholar]
  43. 43. 
    Mitra D, Vilas NB, Hallas C, Anderegg L, Augenbraun BL et al. 2020. Direct laser cooling of a symmetric top molecule. Science 369:65091366–69
    [Google Scholar]
  44. 44. 
    Lang F, Winkler K, Strauss C, Grimm R, Denschlag JH. 2008. Ultracold triplet molecules in the rovibrational ground state. Phys. Rev. Lett. 101:13133005
    [Google Scholar]
  45. 45. 
    Danzl JG, Haller E, Gustavsson M, Mark MJ, Hart R et al. 2008. Quantum gas of deeply bound ground state molecules. Science 321:58921062–66
    [Google Scholar]
  46. 46. 
    Ni K-K, Ospelkaus S, De Miranda M, Pe'er A, Neyenhuis B et al. 2008. A high phase-space-density gas of polar molecules. Science 322:5899231–35
    [Google Scholar]
  47. 47. 
    Takekoshi T, Reichsöllner L, Schindewolf A, Hutson JM, Le Sueur CR et al. 2014. Ultracold dense samples of dipolar RbCs molecules in the rovibrational and hyperfine ground state. Phys. Rev. Lett. 113:20205301
    [Google Scholar]
  48. 48. 
    Molony PK, Gregory PD, Ji Z, Lu B, Köppinger MP et al. 2014. Creation of ultracold 87Rb133Cs molecules in the rovibrational ground state. Phys. Rev. Lett. 113:25255301
    [Google Scholar]
  49. 49. 
    Park JW, Will SA, Zwierlein MW 2015. Ultracold dipolar gas of fermionic 23Na40K molecules in their absolute ground state. Phys. Rev. Lett. 114:20205302
    [Google Scholar]
  50. 50. 
    Rui J, Yang H, Liu L, Zhang DC, Liu YX et al. 2017. Controlled state-to-state atom-exchange reaction in an ultracold atom–dimer mixture. Nat. Phys. 13:7699–703
    [Google Scholar]
  51. 51. 
    Voges KK, Gersema P, Meyer zum Alten Borgloh M, Schulze TA, Hartmann T et al. 2020. Ultracold gas of bosonic 23Na39K ground-state molecules. Phys. Rev. Lett. 125:8083401
    [Google Scholar]
  52. 52. 
    Bause R, Schindewolf A, Tao R, Duda M, Chen X-Y et al. 2021. Collisions of ultracold molecules in bright and dark optical dipole traps. Phys. Rev. Res. 3:033013
    [Google Scholar]
  53. 53. 
    Guo M, Zhu B, Lu B, Ye X, Wang F et al. 2016. Creation of an ultracold gas of ground-state dipolar 23Na87Rb molecules. Phys. Rev. Lett. 116:20205303
    [Google Scholar]
  54. 54. 
    Rvachov TM, Son H, Sommer AT, Ebadi S, Park JJ et al. 2017. Long-lived ultracold molecules with electric and magnetic dipole moments. Phys. Rev. Lett. 119:14143001
    [Google Scholar]
  55. 55. 
    Yang A, Botsi S, Kumar S, Pal SB, Lam MM et al. 2020. Singlet pathway to the ground state of ultracold polar molecules. Phys. Rev. Lett. 124:13133203
    [Google Scholar]
  56. 56. 
    Cairncross WB, Zhang JT, Picard LRB, Yu Y, Wang K, Ni K-K 2021. Assembly of a rovibrational ground state molecule in an optical tweezer. Phys. Rev. Lett. 126:12123402
    [Google Scholar]
  57. 57. 
    Tarbutt M. 2019. Laser cooling of molecules. Contemp. Phys. 59:4356–76
    [Google Scholar]
  58. 58. 
    Son H, Park JJ, Ketterle W, Jamison AO 2020. Collisional cooling of ultracold molecules. Nature 580:7802197–200
    [Google Scholar]
  59. 59. 
    Valtolina G, Matsuda K, Tobias WG, Li J-R, De Marco L, Ye J. 2020. Dipolar evaporation of reactive molecules to below the Fermi temperature. Nature 588:7837239–43
    [Google Scholar]
  60. 60. 
    Anderegg L, Cheuk LW, Bao Y, Burchesky S, Ketterle W et al. 2019. An optical tweezer array of ultracold molecules. Science 365:64581156–58
    [Google Scholar]
  61. 61. 
    Grimm R, Weidemüller M, Ovchinnikov YB. 2000. Optical dipole traps for neutral atoms. Adv. Atom. Mol. Opt. Phys. 42:95–170
    [Google Scholar]
  62. 62. 
    Ni K-K, Ospelkaus S, Wang D, Quéméner G, Neyenhuis B et al. 2010. Dipolar collisions of polar molecules in the quantum regime. Nature 464:72931324–28
    [Google Scholar]
  63. 63. 
    Danzl JG, Mark MJ, Haller E, Gustavsson M, Hart R et al. 2010. An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice. Nat. Phys. 6:4265–70
    [Google Scholar]
  64. 64. 
    Moses SA, Covey JP, Miecnikowski MT, Yan B, Gadway B et al. 2015. Creation of a low-entropy quantum gas of polar molecules in an optical lattice. Science 350:6261659–62
    [Google Scholar]
  65. 65. 
    Dumke R, Volk M, Müther T, Buchkremer F, Birkl G, Ertmer W. 2002. Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits. Phys. Rev. Lett. 89:9097903
    [Google Scholar]
  66. 66. 
    Liu L, Hood J, Yu Y, Zhang J, Hutzler N et al. 2018. Building one molecule from a reservoir of two atoms. Science 360:6391900–3
    [Google Scholar]
  67. 67. 
    Zhang JT, Yu Y, Cairncross WB, Wang K, Picard LR et al. 2020. Forming a single molecule by magnetoassociation in an optical tweezer. Phys. Rev. Lett. 124:25253401
    [Google Scholar]
  68. 68. 
    Yu Y, Wang K, Hood JD, Picard LR, Zhang JT et al. 2020. Coherent optical creation of a single molecule. Phys. Rev. X 11:031061
    [Google Scholar]
  69. 69. 
    He X, Wang K, Zhuang J, Xu P, Gao X et al. 2020. Coherently forming a single molecule in an optical trap. Science 370:6514331–35
    [Google Scholar]
  70. 70. 
    Cheuk LW, Anderegg L, Bao Y, Burchesky S, Yu S et al. 2020. Observation of collisions between two ultracold ground-state CaF molecules. Phys. Rev. Lett. 125:043401
    [Google Scholar]
  71. 71. 
    Sawyer BC, Lev BL, Hudson ER, Stuhl BK, Lara M et al. 2007. Magnetoelectrostatic trapping of ground state OH molecules. Phys. Rev. Lett. 98:25253002
    [Google Scholar]
  72. 72. 
    McCarron D, Steinecker M, Zhu Y, DeMille D. 2018. Magnetic trapping of an ultracold gas of polar molecules. Phys. Rev. Lett. 121:1013202
    [Google Scholar]
  73. 73. 
    Will SA, Park JW, Yan ZZ, Loh H, Zwierlein MW. 2016. Coherent microwave control of ultracold 23Na40K molecules. Phys. Rev. Lett. 116:22225306
    [Google Scholar]
  74. 74. 
    Ye X, Guo M, González-Martínez ML, Quéméner G, Wang D 2018. Collisions of ultracold 23Na87Rb molecules with controlled chemical reactivities. Sci. Adv. 4:1eaaq0083
    [Google Scholar]
  75. 75. 
    Hu M-G, Liu Y, Nichols MA, Zhu L, Quéméner G et al. 2020. Nuclear spin conservation enables state-to-state control of ultracold molecular reactions. Nat. Chem. 13:435–40
    [Google Scholar]
  76. 76. 
    Chou C, Collopy AL, Kurz C, Lin Y, Harding ME et al. 2020. Frequency-comb spectroscopy on pure quantum states of a single molecular ion. Science 367:64851458–61
    [Google Scholar]
  77. 77. 
    Ketterle W, Durfee DS, Stamper-Kurn D. 1999. Making, probing and understanding Bose-Einstein condensates. arXiv:cond-mat/9904034
  78. 78. 
    Weck PF, Balakrishnan N. 2006. Importance of long-range interactions in chemical reactions at cold and ultracold temperatures. Int. Rev. Phys. Chem. 25:3283–311
    [Google Scholar]
  79. 79. 
    Bell MT, Softley TP. 2009. Ultracold molecules and ultracold chemistry. Mol. Phys. 107:299–132
    [Google Scholar]
  80. 80. 
    Dulieu O, Gabbanini C. 2009. The formation and interactions of cold and ultracold molecules: new challenges for interdisciplinary physics. Rep. Prog. Phys. 72:8086401
    [Google Scholar]
  81. 81. 
    Nesbitt DJ. 2012. Toward state-to-state dynamics in ultracold collisions: lessons from high-resolution spectroscopy of weakly bound molecular complexes. Chem. Rev. 112:95062–72
    [Google Scholar]
  82. 82. 
    Quéméner G, Julienne PS 2012. Ultracold molecules under control!. Chem. Rev. 112:94949–5011
    [Google Scholar]
  83. 83. 
    Bohn JL, Rey AM, Ye J 2017. Cold molecules: progress in quantum engineering of chemistry and quantum matter. Science 357:63551002–10
    [Google Scholar]
  84. 84. 
    Ospelkaus S, Ni K-K, Wang D, De Miranda M, Neyenhuis B et al. 2010. Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules. Science 327:5967853–57
    [Google Scholar]
  85. 85. 
    De Miranda M, Chotia A, Neyenhuis B, Wang D, Quéméner G et al. 2011. Controlling the quantum stereodynamics of ultracold bimolecular reactions. Nat. Phys. 7:6502–7
    [Google Scholar]
  86. 86. 
    Guo M, Ye X, He J, González-Martínez ML, Vexiau R et al. 2018. Dipolar collisions of ultracold ground-state bosonic molecules. Phys. Rev. X 8:4041044
    [Google Scholar]
  87. 87. 
    Yan ZZ, Park JW, Ni Y, Loh H, Will S et al. 2020. Resonant dipolar collisions of ultracold molecules induced by microwave dressing. Phys. Rev. Lett. 125:6063401
    [Google Scholar]
  88. 88. 
    He J, Ye X, Lin J, Guo M, Quéméner G, Wang D 2021. Observation of resonant dipolar collisions in ultracold 23Na87Rb rotational mixtures. Phys. Rev. Res. 3:1013016
    [Google Scholar]
  89. 89. 
    Matsuda K, De Marco L, Li J-R, Tobias WG, Valtolina G et al. 2020. Resonant collisional shielding of reactive molecules using electric fields. Science 370:65221324–27
    [Google Scholar]
  90. 90. 
    Li J-R, Tobias WG, Matsuda K, Miller C, Valtolina G et al. 2021. Tuning of dipolar interactions and evaporative cooling in a three-dimensional molecular quantum gas. Nat. Phys 17:114448
    [Google Scholar]
  91. 91. 
    Anderegg L, Burchesky S, Bao Y, Yu SS, Karman T et al. 2021. Observation of microwave shielding of ultracold molecules. Science 373:779–82
    [Google Scholar]
  92. 92. 
    Chin C, Grimm R, Julienne P, Tiesinga E 2010. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82:2122586
    [Google Scholar]
  93. 93. 
    Yang H, Zhang DC, Liu L, Liu YX, Nan J et al. 2019. Observation of magnetically tunable Feshbach resonances in ultracold 23Na40K +40K collisions. Science 363:6424261–64
    [Google Scholar]
  94. 94. 
    Clary DC. 2008. Theoretical studies on bimolecular reaction dynamics. PNAS 105:3512649–53
    [Google Scholar]
  95. 95. 
    Zhang DH, Guo H. 2016. Recent advances in quantum dynamics of bimolecular reactions. Annu. Rev. Phys. Chem. 67:135–58
    [Google Scholar]
  96. 96. 
    Li J, Zhao B, Xie D, Guo H. 2020. Advances and new challenges to bimolecular reaction dynamics theory. J. Phys. Chem. Lett. 11:208844–60
    [Google Scholar]
  97. 97. 
    Greene CH, Zare RN. 1983. Determination of product population and alignment using laser-induced fluorescence. J. Chem. Phys. 78:116741–53
    [Google Scholar]
  98. 98. 
    Zhou J, Lin JJ, Liu K 2003. Mode-correlated product pairs in the F + CHD3→DF + CHD2 reaction. J. Chem. Phys. 119:168289–96
    [Google Scholar]
  99. 99. 
    Eppink AT, Parker DH. 1997. Velocity map imaging of ions and electrons using electrostatic lenses: application in photoelectron and photofragment ion imaging of molecular oxygen. Rev. Sci. Instrum. 68:93477–84
    [Google Scholar]
  100. 100. 
    Ashfold MN, Nahler NH, Orr-Ewing AJ, Vieuxmaire OP, Toomes RL et al. 2006. Imaging the dynamics of gas phase reactions. Phys. Chem. Chem. Phys. 8:126–53
    [Google Scholar]
  101. 101. 
    Zewail AH. 2000. Femtochemistry: atomic-scale dynamics of the chemical bond. J. Phys. Chem. A 104:245660–94
    [Google Scholar]
  102. 102. 
    Garand E, Zhou J, Manolopoulos DE, Alexander MH, Neumark DM 2008. Nonadiabatic interactions in the Cl + H2 reaction probed by ClH2 and ClD2 photoelectron imaging. Science 319:585972–75
    [Google Scholar]
  103. 103. 
    Continetti RE, Guo H. 2017. Dynamics of transient species via anion photodetachment. Chem. Soc. Rev. 46:247650–67
    [Google Scholar]
  104. 104. 
    Su Y-T, Huang Y-H, Witek HA, Lee Y-P. 2013. Infrared absorption spectrum of the simplest Criegee intermediate CH2OO. Science 340:6129174–76
    [Google Scholar]
  105. 105. 
    Sato H. 2001. Photodissociation of simple molecules in the gas phase. Chem. Rev. 101:92687–726
    [Google Scholar]
  106. 106. 
    Vager Z, Naaman R, Kanter E. 1989. Coulomb explosion imaging of small molecules. Science 244:4903426–31
    [Google Scholar]
  107. 107. 
    Hu M-G, Liu Y, Grimes D, Lin Y-W, Gheorghe A et al. 2019. Direct observation of bimolecular reactions of ultracold KRb molecules. Science 366:64691111–15
    [Google Scholar]
  108. 108. 
    Guo H. 2012. Quantum dynamics of complex-forming bimolecular reactions. Int. Rev. Phys. Chem. 31:11–68
    [Google Scholar]
  109. 109. 
    Osborn DL. 2017. Reaction mechanisms on multiwell potential energy surfaces in combustion (and atmospheric) chemistry. Annu. Rev. Phys. Chem. 68:233–60
    [Google Scholar]
  110. 110. 
    Light JC. 1967. Statistical theory of bimolecular exchange reactions. Discuss. Faraday Soc. 44:14–29
    [Google Scholar]
  111. 111. 
    Herschbach D. 1973. Reactive scattering. Faraday Discuss. Chem. Soc. 55:233–51
    [Google Scholar]
  112. 112. 
    Troe J. 1994. The Polanyi Lecture. The colourful world of complex-forming bimolecular reactions. J. Chem. Soc. Faraday Trans. 90:162303–17
    [Google Scholar]
  113. 113. 
    Bjork BJ, Bui TQ, Heckl OH, Changala PB, Spaun B et al. 2016. Direct frequency comb measurement of OD + CO→DOCO kinetics. Science 354:6311444–48
    [Google Scholar]
  114. 114. 
    Womack CC, Martin-Drumel MA, Brown GG, Field RW, McCarthy MC. 2015. Observation of the simplest Criegee intermediate CH2OO in the gas-phase ozonolysis of ethylene. Sci. Adv. 1:2e1400105
    [Google Scholar]
  115. 115. 
    Gregory PD, Frye MD, Blackmore JA, Bridge EM, Sawant R et al. 2019. Sticky collisions of ultracold RbCs molecules. Nat. Commun. 10:3104
    [Google Scholar]
  116. 116. 
    Mayle M, Quéméner G, Ruzic BP, Bohn JL. 2013. Scattering of ultracold molecules in the highly resonant regime. Phys. Rev. A 87:1012709
    [Google Scholar]
  117. 117. 
    Christianen A, Karman T, Groenenboom GC. 2019. Quasiclassical method for calculating the density of states of ultracold collision complexes. Phys. Rev. A 100:3032708
    [Google Scholar]
  118. 118. 
    Christianen A, Zwierlein MW, Groenenboom GC, Karman T. 2019. Photoinduced two-body loss of ultracold molecules. Phys. Rev. Lett. 123:12123402
    [Google Scholar]
  119. 119. 
    Liu Y, Hu MG, Nichols MA, Grimes DD, Karman T et al. 2020. Photo-excitation of long-lived transient intermediates in ultracold reactions. Nat. Phys. 16:111132–36
    [Google Scholar]
  120. 120. 
    Yang D, Zuo J, Huang J, Hu X, Dawes R et al. 2020. A global full-dimensional potential energy surface for the K2Rb2 complex and its lifetime. J. Phys. Chem. Lett. 11:2605–10
    [Google Scholar]
  121. 121. 
    Gregory PD, Blackmore JA, Bromley SL, Cornish SL. 2020. Loss of ultracold 87Rb133Cs molecules via optical excitation of long-lived two-body collision complexes. Phys. Rev. Lett. 124:16163402
    [Google Scholar]
  122. 122. 
    Byrd JN, Michels HH, Montgomery JA Jr., Côté R, Stwalley WC. 2012. Structure, energetics, and reactions of alkali tetramers. J. Chem. Phys. 136:1014306
    [Google Scholar]
  123. 123. 
    Christianen A, Karman T, Vargas-Hernández RA, Groenenboom GC, Krems RV. 2019. Six-dimensional potential energy surface for NaK–NaK collisions: Gaussian process representation with correct asymptotic form. J. Chem. Phys. 150:6064106
    [Google Scholar]
  124. 124. 
    Gersema P, Voges KK, Meyer zum Alten Borgloh M, Koch L, Hartmann T et al. 2021. Probing photoinduced two-body loss of ultracold non-reactive bosonic 23Na87Rb and 23Na39K molecules. Phys. Rev. Lett 127:163401
    [Google Scholar]
  125. 125. 
    Nichols MA, Liu YX, Zhu L, Hu MG, Liu Y, Ni K-K. 2021. Detection of long-lived complexes in ultracold atom-molecule collisions. arXiv:2105.14960 [physics.atom-ph]
  126. 126. 
    Dulieu O, Krems R, Weidemüller M, Willitsch S. 2011. Physics and chemistry of cold molecules. Phys. Chem. Chem. Phys. 13:4218703–4
    [Google Scholar]
  127. 127. 
    Hoffmann DK, Paintner T, Limmer W, Petrov DS, Denschlag JH. 2018. Reaction kinetics of ultracold molecule-molecule collisions. Nat. Commun. 9:15244
    [Google Scholar]
  128. 128. 
    Wolf J, Deiß M, Krükow A, Tiemann E, Ruzic BP et al. 2017. State-to-state chemistry for three-body recombination in an ultracold rubidium gas. Science 358:6365921–24
    [Google Scholar]
  129. 129. 
    Liu K. 2007. Product pair correlation in bimolecular reactions. Phys. Chem. Chem. Phys. 9:117–30
    [Google Scholar]
  130. 130. 
    Pechukas P 1976. Statistical approximations in collision theory. Dynamics of Molecular Collisions WH Miller 269–322 Mod. Theor. Chem. , Vol. 2 Boston: Springer
    [Google Scholar]
  131. 131. 
    Meyer ER, Bohn JL. 2010. Product-state control of bi-alkali-metal chemical reactions. Phys. Rev. A 82:4042707
    [Google Scholar]
  132. 132. 
    González-Martínez ML, Dulieu O, Larrégaray P, Bonnet L 2014. Statistical product distributions for ultracold reactions in external fields. Phys. Rev. A 90:5052716
    [Google Scholar]
  133. 133. 
    Soley MB, Heller EJ. 2018. Classical approach to collision complexes in ultracold chemical reactions. Phys. Rev. A 98:5052702
    [Google Scholar]
  134. 134. 
    Soley MB, Avanaki KN, Heller EJ. 2021. Reducing anomalous reflection from complex absorbing potentials: a semiclassical approach. Phys. Rev. A 103:4L041301
    [Google Scholar]
  135. 135. 
    Croft J, Balakrishnan N, Kendrick B. 2017. Long-lived complexes and signatures of chaos in ultracold K2 + Rb collisions. Phys. Rev. A 96:6062707
    [Google Scholar]
  136. 136. 
    Kendrick BK. 2021. Quantum reactive scattering calculations for the cold and ultracold Li + LiNa → Li2 + Na reaction. J. Chem. Phys. 154:12124303
    [Google Scholar]
  137. 137. 
    Huang J, Kendrick BK, Zhang DH 2021. Mechanistic insights into ultracold chemical reactions under the control of the geometric phase. J. Phys. Chem. Lett. 12:82160–65
    [Google Scholar]
  138. 138. 
    Kendrick BK, Hazra J, Balakrishnan N. 2015. The geometric phase controls ultracold chemistry. Nat. Commun. 6:7918
    [Google Scholar]
  139. 139. 
    Kendrick BK. 2018. Non-adiabatic quantum reactive scattering calculations for the ultracold hydrogen exchange reaction: . Chem. Phys. 515:387–99
    [Google Scholar]
  140. 140. 
    Ohmori K. 2009. Wave-packet and coherent control dynamics. Annu. Rev. Phys. Chem. 60:487–511
    [Google Scholar]
  141. 141. 
    Devolder A, Brumer P, Tscherbul TV. 2021. Complete quantum coherent control of ultracold molecular collisions. Phys. Rev. Lett. 126:15153403
    [Google Scholar]
  142. 142. 
    Wu X, Gantner T, Koller M, Zeppenfeld M, Chervenkov S, Rempe G 2017. A cryofuge for cold-collision experiments with slow polar molecules. Science 358:6363645–48
    [Google Scholar]
  143. 143. 
    Segev Y, Pitzer M, Karpov M, Akerman N, Narevicius J, Narevicius E 2019. Collisions between cold molecules in a superconducting magnetic trap. Nature 572:7768189–93
    [Google Scholar]
  144. 144. 
    Karpov M, Pitzer M, Segev Y, Narevicius J, Narevicius E 2020. Low-energy collisions between carbon atoms and oxygen molecules in a magnetic trap. New J. Phys. 22:10103055
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-090419-043244
Loading
/content/journals/10.1146/annurev-physchem-090419-043244
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error