1932

Abstract

Multiscale models combining quantum mechanical and classical descriptions are a very popular strategy to simulate properties and processes of complex systems. Many alternative formulations have been developed, and they are now available in all of the most widely used quantum chemistry packages. Their application to the study of light-driven processes, however, is more recent, and some methodological and numerical problems have yet to be solved. This is especially the case for the polarizable formulation of these models, the recent advances in which we review here. Specifically, we identify and describe the most important specificities that the polarizable formulation introduces into both the simulation of excited-state dynamics and the modeling of excitation energy and electron transfer processes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-090419-104031
2021-04-20
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/physchem/72/1/annurev-physchem-090419-104031.html?itemId=/content/journals/10.1146/annurev-physchem-090419-104031&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Warshel A, Levitt M. 1976. Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J. Mol. Biol. 103:227–49
    [Google Scholar]
  2. 2. 
    Rivail JL, Rinaldi D. 1976. A quantum chemical approach to dielectric solvent effects in molecular liquids. Chem. Phys. 18:233–42
    [Google Scholar]
  3. 3. 
    Miertuš S, Scrocco E, Tomasi J. 1981. Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Chem. Phys. 55:117–29
    [Google Scholar]
  4. 4. 
    Cramer CJ, Truhlar DG. 1999. Implicit solvation models: equilibria, structure, spectra, and dynamics. Chem. Rev. 99:2161–200
    [Google Scholar]
  5. 5. 
    Orozco M, Luque FJ. 2000. Theoretical methods for the description of the solvent effect in biomolecular systems. Chem. Rev. 100:4187–226
    [Google Scholar]
  6. 6. 
    Tomasi J, Mennucci B, Cammi R 2005. Quantum mechanical continuum solvation models. Chem. Rev. 105:2999–3093
    [Google Scholar]
  7. 7. 
    Klamt A. 2011. The COSMO and COSMO-RS solvation models. Wiley Interdiscip. Rev. Comput. Mol. Sci. 1:699–709
    [Google Scholar]
  8. 8. 
    Gao J. 1996. Hybrid quantum and molecular mechanical simulations: an alternative avenue to solvent effects in organic chemistry. Acc. Chem. Res. 29:298–305
    [Google Scholar]
  9. 9. 
    Lin H, Truhlar DG. 2006. QM/MM: What have we learned, where are we, and where do we go from here?. Theor. Chem. Acc. 117:185–99
    [Google Scholar]
  10. 10. 
    Senn HM, Thiel W. 2009. QM/MM methods for biomolecular systems. Angew. Chem. Int. Ed. 48:1198–229
    [Google Scholar]
  11. 11. 
    van der Kamp MW, Mulholland AJ. 2013. Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology. Biochemistry 52:2708–28
    [Google Scholar]
  12. 12. 
    Halgren TA, Damm W. 2001. Polarizable force fields. Curr. Opin. Struct. Biol. 11:236–42
    [Google Scholar]
  13. 13. 
    Warshel A, Kato M, Pisliakov AV. 2007. Polarizable force fields: history, test cases, and prospects. J. Chem. Theory Comput. 3:2034–45
    [Google Scholar]
  14. 14. 
    Cieplak P, Dupradeau FY, Duan Y, Wang J. 2009. Polarization effects in molecular mechanical force fields. J. Phys. Condens. Matter 21:333102
    [Google Scholar]
  15. 15. 
    Luque FJ, Dehez F, Chipot C, Orozco M. 2011. Polarization effects in molecular interactions. Wiley Interdiscip. Rev. Comput. Mol. Sci. 1:844–54
    [Google Scholar]
  16. 16. 
    Jing Z, Liu C, Cheng SY, Qi R, Walker BD et al. 2019. Polarizable force fields for biomolecular simulations: recent advances and applications. Annu. Rev. Biophys. 48:371–94
    [Google Scholar]
  17. 17. 
    Nerenberg PS, Head-Gordon T. 2018. New developments in force fields for biomolecular simulations. Curr. Opin. Struct. Biol. 49:129–38
    [Google Scholar]
  18. 18. 
    Inakollu VS, Geerke DP, Rowley CN, Yu H. 2020. Polarisable force fields: What do they add in biomolecular simulations?. Curr. Opin. Struct. Biol. 61:182–90
    [Google Scholar]
  19. 19. 
    Bondanza M, Nottoli M, Cupellini L, Lipparini F, Mennucci B. 2020. Polarizable embedding QM/MM: the future gold standard for complex (bio)systems?. Phys. Chem. Chem. Phys. 22:14433–48
    [Google Scholar]
  20. 20. 
    Gordon MS, Freitag MA, Bandyopadhyay P, Jensen JH, Kairys V, Stevens WJ. 2001. The effective fragment potential method: a QM-based MM approach to modeling environmental effects in chemistry. J. Phys. Chem. A 105:293–307
    [Google Scholar]
  21. 21. 
    DeFusco A, Minezawa N, Slipchenko LV, Zahariev F, Gordon MS. 2011. Modeling solvent effects on electronic excited states. J. Phys. Chem. Lett. 2:2184–92
    [Google Scholar]
  22. 22. 
    Gurunathan PK, Acharya A, Ghosh D, Kosenkov D, Kaliman I et al. 2016. Extension of the effective fragment potential method to macromolecules. J. Phys. Chem. B 120:6562–74
    [Google Scholar]
  23. 23. 
    Xie W, Gao J. 2007. The design of a next generation force field: the X-POL potential. J. Chem. Theory Comput. 3:1890–900
    [Google Scholar]
  24. 24. 
    Xie W, Orozco M, Truhlar DG, Gao J. 2009. X-POL potential: an electronic structure–based force field for molecular dynamics simulation of a solvated protein in water. J. Chem. Theory Comput. 5:459–67
    [Google Scholar]
  25. 25. 
    Brunk E, Rothlisberger U. 2015. Mixed quantum mechanical/molecular mechanical molecular dynamics simulations of biological systems in ground and electronically excited states. Chem. Rev. 115:6217–63
    [Google Scholar]
  26. 26. 
    Curutchet C, Mennucci B. 2017. Quantum chemical studies of light harvesting. Chem. Rev. 117:294–343
    [Google Scholar]
  27. 27. 
    Gozem S, Luk HL, Schapiro I, Olivucci M. 2017. Theory and simulation of the ultrafast double-bond isomerization of biological chromophores. Chem. Rev. 117:13502–65
    [Google Scholar]
  28. 28. 
    Oberhofer H, Reuter K, Blumberger J. 2017. Charge transport in molecular materials: an assessment of computational methods. Chem. Rev. 117:10319–57
    [Google Scholar]
  29. 29. 
    Morzan UN, de Armiño DJA, Foglia NO, Lebrero MCG, Scherlis DA, Estrin DA. 2018. Spectroscopy in complex environments from QMMM simulations. Chem. Rev. 118:4071–113
    [Google Scholar]
  30. 30. 
    Boulanger E, Harvey JN. 2018. QM/MM methods for free energies and photochemistry. Curr. Opin. Struct. Biol. 49:72–76
    [Google Scholar]
  31. 31. 
    Mennucci B, Corni S. 2019. Multiscale modelling of photoinduced processes in composite systems. Nat. Rev. Chem. 3:315–30
    [Google Scholar]
  32. 32. 
    Segatta F, Cupellini L, Garavelli M, Mennucci B. 2019. Quantum chemical modeling of the photoinduced activity of multichromophoric biosystems. Chem. Rev. 119:9361–80
    [Google Scholar]
  33. 33. 
    Nelson TR, White AJ, Bjorgaard JA, Sifain AE, Zhang Y et al. 2020. Non-adiabatic excited-state molecular dynamics: theory and applications for modeling photophysics in extended molecular materials. Chem. Rev. 120:2215–87
    [Google Scholar]
  34. 34. 
    Curutchet C, Muñoz-Losa A, Monti S, Kongsted J, Scholes GD, Mennucci B. 2009. Electronic energy transfer in condensed phase studied by a polarizable QM/MM model. J. Chem. Theory Comput. 5:1838–48
    [Google Scholar]
  35. 35. 
    Olsen JMH, Kongsted J. 2011. Molecular properties through polarizable embedding. Advances in Quantum Chemistry, Vol. 61 JR Sabin, E Brändas 107–43 Amsterdam: Elsevier
    [Google Scholar]
  36. 36. 
    Dziedzic J, Mao Y, Shao Y, Ponder J, Head-Gordon T et al. 2016. TINKTEP: a fully self-consistent, mutually polarizable QM/MM approach based on the AMOEBA force field. J. Chem. Phys. 145:124106
    [Google Scholar]
  37. 37. 
    Vitale V, Dziedzic J, Albaugh A, Niklasson AMN, Head-Gordon T, Skylaris CK. 2017. Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory. J. Chem. Phys. 146:124115
    [Google Scholar]
  38. 38. 
    Boulanger E, Thiel W. 2012. Solvent boundary potentials for hybrid QM/MM computations using classical Drude oscillators: a fully polarizable model. J. Chem. Theory Comput. 8:4527–38
    [Google Scholar]
  39. 39. 
    Sahoo SK, Nair NN. 2018. Interfacing the core-shell or the Drude polarizable force field with Car–Parrinello molecular dynamics for QM/MM simulations. Front. Chem. 6:275
    [Google Scholar]
  40. 40. 
    Lemkul JA, Huang J, Roux B, MacKerell AD Jr. 2016. An empirical polarizable force field based on the classical Drude oscillator model: development history and recent applications. Chem. Rev. 116:4983–5013
    [Google Scholar]
  41. 41. 
    Lipparini F, Scalmani G, Mennucci B, Cancès E, Caricato M, Frisch MJ. 2010. A variational formulation of the polarizable continuum model. J. Chem. Phys. 133:014106
    [Google Scholar]
  42. 42. 
    Loco D, Lagardère L, Cisneros GA, Scalmani G, Frisch M et al. 2019. Towards large scale hybrid QM/MM dynamics of complex systems with advanced point dipole polarizable embeddings. Chem. Sci. 10:7200–11
    [Google Scholar]
  43. 43. 
    Lipparini F, Stamm B, Cancès E, Maday Y, Mennucci B. 2013. Fast domain decomposition algorithm for continuum solvation models: energy and first derivatives. J. Chem. Theory Comput. 9:3637–48
    [Google Scholar]
  44. 44. 
    Lipparini F, Lagardère L, Raynaud C, Stamm B, Cancès E et al. 2015. Polarizable molecular dynamics in a polarizable continuum solvent. J. Chem. Theory Comput. 11:623–34
    [Google Scholar]
  45. 45. 
    Rappe AK, Goddard WA III 1991. Charge equilibration for molecular dynamics simulations. J. Phys. Chem. 95:3358–63
    [Google Scholar]
  46. 46. 
    Rick SW, Stuart SJ, Berne BJ. 1994. Dynamical fluctuating charge force fields: application to liquid water. J. Chem. Phys. 101:6141–56
    [Google Scholar]
  47. 47. 
    Klamt A, Schuurmann G. 1993. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin Trans. 2:799–805
    [Google Scholar]
  48. 48. 
    York DM, Karplus M. 1999. A smooth solvation potential based on the conductor-like screening model. J. Phys. Chem. A 103:11060–79
    [Google Scholar]
  49. 49. 
    Lipparini F, Scalmani G, Mennucci B, Frisch MJ. 2011. Self-consistent field and polarizable continuum model: a new strategy of solution for the coupled equations. J. Chem. Theory Comput. 7:610–17
    [Google Scholar]
  50. 50. 
    Casida ME, Jamorski C, Casida KC, Salahub DR. 1998. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold. J. Chem. Phys. 108:4439–49
    [Google Scholar]
  51. 51. 
    Caricato M, Mennucci B, Tomasi J, Ingrosso F, Cammi R et al. 2006. Formation and relaxation of excited states in solution: a new time dependent polarizable continuum model based on time dependent density functional theory. J. Chem. Phys. 124:124520
    [Google Scholar]
  52. 52. 
    Lipparini F, Cappelli C, Barone V. 2012. Linear response theory and electronic transition energies for a fully polarizable QM/classical Hamiltonian. J. Chem. Theory Comput. 8:4153–65
    [Google Scholar]
  53. 53. 
    Cammi R, Tomasi J 1995. Nonequilibrium solvation theory for the polarizable continuum model: a new formulation at the SCF level with application to the case of the frequency-dependent linear electric response function. Int. J. Quantum Chem. 56:465–74
    [Google Scholar]
  54. 54. 
    Corni S, Cammi R, Mennucci B, Tomasi J. 2005. Electronic excitation energies of molecules in solution within continuum solvation models: investigating the discrepancy between state-specific and linear-response methods. J. Chem. Phys. 123:134512
    [Google Scholar]
  55. 55. 
    Lunkenheimer B, Köhn A. 2013. Solvent effects on electronically excited states using the conductor-like screening model and the second-order correlated method ADC(2). J. Chem. Theory Comput. 9:977–94
    [Google Scholar]
  56. 56. 
    Schwabe T. 2016. General theory for environmental effects on (vertical) electronic excitation energies. J. Chem. Phys. 145:154105
    [Google Scholar]
  57. 57. 
    Guido CA, Jacquemin D, Adamo C, Mennucci B. 2015. Electronic excitations in solution: the interplay between state specific approaches and a time-dependent density functional theory description. J. Chem. Theory Comput. 11:5782–90
    [Google Scholar]
  58. 58. 
    Improta R, Barone V, Scalmani G, Frisch MJ. 2006. A state-specific polarizable continuum model time dependent density functional theory method for excited state calculations in solution. J. Chem. Phys. 125:054103
    [Google Scholar]
  59. 59. 
    Caricato M. 2018. Coupled cluster theory with the polarizable continuum model of solvation. Int. J. Quantum Chem. 119:e25710
    [Google Scholar]
  60. 60. 
    Loco D, Polack É, Caprasecca S, Lagardère L, Lipparini F et al. 2016. A QM/MM approach using the AMOEBA polarizable embedding: from ground state energies to electronic excitations. J. Chem. Theory Comput. 12:3654–61
    [Google Scholar]
  61. 61. 
    Li Q, Mennucci B, Robb MA, Blancafort L, Curutchet C. 2015. Polarizable QM/MM multiconfiguration self-consistent field approach with state-specific corrections: environment effects on cytosine absorption spectrum. J. Chem. Theory Comput. 11:1674–82
    [Google Scholar]
  62. 62. 
    Scalmani G, Frisch MJ, Mennucci B, Tomasi J, Cammi R, Barone V. 2006. Geometries and properties of excited states in the gas phase and in solution: theory and application of a time-dependent density functional theory polarizable continuum model. J. Chem. Phys. 124:094107
    [Google Scholar]
  63. 63. 
    Carnimeo I, Cappelli C, Barone V. 2015. Analytical gradients for MP2, double hybrid functionals, and TD-DFT with polarizable embedding described by fluctuating charges. J. Comput. Chem. 36:2271–90
    [Google Scholar]
  64. 64. 
    Menger MFSJ, Caprasecca S, Mennucci B. 2017. Excited-state gradients in polarizable QM/MM models: an induced dipole formulation. J. Chem. Theory Comput. 13:3778–86
    [Google Scholar]
  65. 65. 
    Nottoli M, Mennucci B, Lipparini F. 2020. Excited state Born-Oppenheimer molecular dynamics through a coupling between time dependent DFT and AMOEBA. Phys. Chem. Chem. Phys. 22:19532–41
    [Google Scholar]
  66. 66. 
    Cammi R 2009. Quantum cluster theory for the polarizable continuum model. I. The CCSD level with analytical first and second derivatives. J. Chem. Phys. 131:164104
    [Google Scholar]
  67. 67. 
    Caricato M. 2019. CCSD-PCM excited state energy gradients with the linear response singles approximation to study the photochemistry of molecules in solution. ChemPhotoChem 3:747–54
    [Google Scholar]
  68. 68. 
    Khani SK, Khah AM, Hättig C. 2018. COSMO-RI-ADC(2) excitation energies and excited state gradients. Phys. Chem. Chem. Phys. 20:16354–63
    [Google Scholar]
  69. 69. 
    Khah AM, Khani SK, Hättig C. 2018. Analytic excited state gradients for the QM/MM polarizable embedded second-order algebraic diagrammatic construction for the polarization propagator PE-ADC(2). J. Chem. Theory Comput. 14:4640–50
    [Google Scholar]
  70. 70. 
    Cammi R, Frediani L, Mennucci B, Tomasi J, Ruud K, Mikkelsen KV. 2002. A second-order, quadratically convergent multiconfigurational self-consistent field polarizable continuum model for equilibrium and nonequilibrium solvation. J. Chem. Phys. 117:13–26
    [Google Scholar]
  71. 71. 
    Lasorne B, Worth GA, Robb MA. 2011. Excited-state dynamics. Wiley Interdiscip. Rev. Comput. Mol. Sci. 1:460–75
    [Google Scholar]
  72. 72. 
    Markland TE, Ceriotti M. 2018. Nuclear quantum effects enter the mainstream. Nat. Rev. Chem. 2:109
    [Google Scholar]
  73. 73. 
    Hammes-Schiffer S. 2020. Quantum effects in complex systems: summarizing remarks. Faraday Discuss 221:582–88
    [Google Scholar]
  74. 74. 
    Crespo-Otero R, Barbatti M 2018. Recent advances and perspectives on nonadiabatic mixed quantumclassical dynamics. Chem. Rev. 118:7026–68
    [Google Scholar]
  75. 75. 
    Curchod BFE, Martínez TJ. 2018. Ab initio nonadiabatic quantum molecular dynamics. Chem. Rev. 118:3305–36
    [Google Scholar]
  76. 76. 
    Nelson TR, White AJ, Bjorgaard JA, Sifain AE, Zhang Y et al. 2020. Non-adiabatic excited-state molecular dynamics: theory and applications for modeling photophysics in extended molecular materials. Chem. Rev. 120:2215–87
    [Google Scholar]
  77. 77. 
    Tully JC, Preston RK. 1971. Trajectory surface hopping approach to nonadiabatic molecular collisions: the reaction of H+ with D2. J. Chem. Phys. 55:562–72
    [Google Scholar]
  78. 78. 
    Tully JC. 1990. Molecular dynamics with electronic transitions. J. Chem. Phys. 93:1061–71
    [Google Scholar]
  79. 79. 
    Persico M, Granucci G. 2014. An overview of nonadiabatic dynamics simulations methods, with focus on the direct approach versus the fitting of potential energy surfaces. Theor. Chem. Acc. 133:1526
    [Google Scholar]
  80. 80. 
    Hammes-Schiffer S, Tully JC. 1994. Proton transfer in solution: molecular dynamics with quantum transitions. J. Chem. Phys. 101:4657–67
    [Google Scholar]
  81. 81. 
    Wang L, Long R, Prezhdo OV. 2015. Time-domain ab initio modeling of photoinduced dynamics at nanoscale interfaces. Annu. Rev. Phys. Chem. 66:549–79
    [Google Scholar]
  82. 82. 
    Wang L, Akimov A, Prezhdo OV. 2016. Recent progress in surface hopping: 2011–2015. J. Phys. Chem. Lett. 7:2100–12
    [Google Scholar]
  83. 83. 
    Granucci G, Persico M, Toniolo A. 2001. Direct semiclassical simulation of photochemical processes with semiempirical wave functions. J. Chem. Phys. 114:10608–15
    [Google Scholar]
  84. 84. 
    Mandal A, Yamijala SS, Huo P. 2018. Quasi-diabatic representation for nonadiabatic dynamics propagation. J. Chem. Theory Comput. 14:1828–40
    [Google Scholar]
  85. 85. 
    Plasser F, Granucci G, Pittner J, Barbatti M, Persico M, Lischka H. 2012. Surface hopping dynamics using a locally diabatic formalism: charge transfer in the ethylene dimer cation and excited state dynamics in the 2-pyridone dimer. J. Chem. Phys. 137:22A514
    [Google Scholar]
  86. 86. 
    Mai S, Marquetand P, González L. 2018. Nonadiabatic dynamics: the SHARC approach. Wiley Interdiscip. Rev. Comput. Mol. Sci. 8:e1370
    [Google Scholar]
  87. 87. 
    Wang L, Qiu J, Bai X, Xu J. 2019. Surface hopping methods for nonadiabatic dynamics in extended systems. Wiley Interdiscip. Rev. Comput. Mol. Sci. 10:e1435
    [Google Scholar]
  88. 88. 
    Aguilera-Porta N, Corral I, Muñoz-Muriedas J, Granucci G. 2019. Excited state dynamics of some nonsteroidal anti-inflammatory drugs: a surface-hopping investigation. Comput. Theor. Chem. 1152:20–27
    [Google Scholar]
  89. 89. 
    Meek GA, Levine BG. 2014. Evaluation of the time-derivative coupling for accurate electronic state transition probabilities from numerical simulations. J. Phys. Chem. Lett. 5:2351–56
    [Google Scholar]
  90. 90. 
    Jain A, Alguire E, Subotnik JE. 2016. An efficient, augmented surface hopping algorithm that includes decoherence for use in large-scale simulations. J. Chem. Theory Comput. 12:5256–68
    [Google Scholar]
  91. 91. 
    Plasser F, Mai S, Fumanal M, Gindensperger E, Daniel C, González L. 2019. Strong influence of decoherence corrections and momentum rescaling in surface hopping dynamics of transition metal complexes. J. Chem. Theory Comput. 15:5031–45
    [Google Scholar]
  92. 92. 
    Subotnik JE, Jain A, Landry B, Petit A, Ouyang W, Bellonzi N. 2016. Understanding the surface hopping view of electronic transitions and decoherence. Annu. Rev. Phys. Chem. 67:387–417
    [Google Scholar]
  93. 93. 
    Granucci G, Persico M, Zoccante A. 2010. Including quantum decoherence in surface hopping. J. Chem. Phys. 133:134111
    [Google Scholar]
  94. 94. 
    Crespo-Otero R, Barbatti M 2018. Recent advances and perspectives on nonadiabatic mixed quantum–classical dynamics. Chem. Rev. 118:7026–68
    [Google Scholar]
  95. 95. 
    Ding F, Lingerfelt DB, Mennucci B, Li X. 2015. Time-dependent non-equilibrium dielectric response in QM/continuum approaches. J. Chem. Phys. 142:034120
    [Google Scholar]
  96. 96. 
    Corni S, Pipolo S, Cammi R 2015. Equation of motion for the solvent polarization apparent charges in the polarizable continuum model: application to real-time TDDFT. J. Phys. Chem. A 119:5405–16
    [Google Scholar]
  97. 97. 
    Wu X, Teuler JM, Cailliez F, Clavaguéra C, Salahub DR, de la Lande A. 2017. Simulating electron dynamics in polarizable environments. J. Chem. Theory Comput. 13:3985–4002
    [Google Scholar]
  98. 98. 
    Wildman A, Donati G, Lipparini F, Mennucci B, Li X. 2019. Nonequilibrium environment dynamics in a frequency-dependent polarizable embedding model. J. Chem. Theory Comput. 15:43–51
    [Google Scholar]
  99. 99. 
    Lu Z, Zhang Y. 2008. Interfacing ab initio quantum mechanical method with classical Drude oscillator polarizable model for molecular dynamics simulation of chemical reactions. J. Chem. Theory Comput. 4:1237–48
    [Google Scholar]
  100. 100. 
    Schwörer M, Breitenfeld B, Tröster P, Bauer S, Lorenzen K et al. 2013. Coupling density functional theory to polarizable force fields for efficient and accurate Hamiltonian molecular dynamics simulations. J. Chem. Phys. 138:244103
    [Google Scholar]
  101. 101. 
    Hagras MA, Glover WJ. 2018. Polarizable embedding for excited-state reactions: dynamically weighted polarizable QM/MM. J. Chem. Theory Comput. 14:2137–44
    [Google Scholar]
  102. 102. 
    May V, Kuhn O. 2011. Charge and Energy Transfer Dynamics in Molecular Systems Weinheim, Ger: Wiley. , 3rd ed..
  103. 103. 
    Mukamel S. 1995. Principles of Nonlinear Optical Spectroscopy New York: Oxford Univ. Press
  104. 104. 
    Valleau S, Eisfeld A, Aspuru-Guzik A. 2012. On the alternatives for bath correlators and spectral densities from mixed quantum-classical simulations. J. Chem. Phys. 137:224103
    [Google Scholar]
  105. 105. 
    Georgievskii Y, Hsu CP, Marcus RA. 1999. Linear response in theory of electron transfer reactions as an alternative to the molecular harmonic oscillator model. J. Chem. Phys. 110:5307–17
    [Google Scholar]
  106. 106. 
    Makri N. 1999. The linear response approximation and its lowest order corrections: an influence functional approach. J. Phys. Chem. B 103:2823–29
    [Google Scholar]
  107. 107. 
    Yang M, Fleming GR. 2002. Influence of phonons on exciton transfer dynamics: comparison of the Redfield, Förster, and modified Redfield equations. Chem. Phys. 275:355–72
    [Google Scholar]
  108. 108. 
    Beljonne D, Curutchet C, Scholes GD, Silbey RJ. 2009. Beyond Förster resonance energy transfer in biological and nanoscale systems. J. Phys. Chem. B 113:6583–99
    [Google Scholar]
  109. 109. 
    Borrelli R, Peluso A. 2011. The temperature dependence of radiationless transition rates from ab initio computations. Phys. Chem. Chem. Phys. 13:4420–26
    [Google Scholar]
  110. 110. 
    Lee MH, Dunietz BD, Geva E. 2013. Calculation from first principles of intramolecular golden-rule rate constants for photo-induced electron transfer in molecular donor–acceptor systems. J. Phys. Chem. C 117:23391–401
    [Google Scholar]
  111. 111. 
    Borrelli R, Peluso A. 2013. Elementary electron transfer reactions: from basic concepts to recent computational advances. Wiley Interdiscip. Rev. Comput. Mol. Sci. 3:542–59
    [Google Scholar]
  112. 112. 
    Blumberger J. 2015. Recent advances in the theory and molecular simulation of biological electron transfer reactions. Chem. Rev. 115:11191–238
    [Google Scholar]
  113. 113. 
    Song X, Marcus RA. 1993. Quantum correction for electron transfer rates. Comparison of polarizable versus nonpolarizable descriptions of solvent. J. Chem. Phys. 99:7768–73
    [Google Scholar]
  114. 114. 
    Jortner J. 1976. Temperature dependent activation energy for electron transfer between biological molecules. J. Chem. Phys. 64:4860–67
    [Google Scholar]
  115. 115. 
    Chenu A, Scholes GD. 2015. Coherence in energy transfer and photosynthesis. Annu. Rev. Phys. Chem. 66:69–96
    [Google Scholar]
  116. 116. 
    Jang SJ, Mennucci B. 2018. Delocalized excitons in natural light-harvesting complexes. Rev. Mod. Phys. 90:035003
    [Google Scholar]
  117. 117. 
    Cupellini L, Corbella M, Mennucci B, Curutchet C. 2018. Electronic energy transfer in biomacromolecules. Wiley Interdiscip. Rev. Comput. Mol. Sci. 9:e1392
    [Google Scholar]
  118. 118. 
    You ZQ, Hsu CP. 2013. Theory and calculation for the electronic coupling in excitation energy transfer. Int. J. Quantum Chem. 114:102–15
    [Google Scholar]
  119. 119. 
    Hsu CP, Fleming GR, Head-Gordon M, Head-Gordon T. 2001. Excitation energy transfer in condensed media. J. Chem. Phys. 114:3065–72
    [Google Scholar]
  120. 120. 
    Curutchet C, Kongsted J, Muñoz-Losa A, Hossein-Nejad H, Scholes GD, Mennucci B. 2011. Photosynthetic light harvesting is tuned by the heterogeneous polarizable environment of the protein. J. Am. Chem. Soc. 133:3078–84
    [Google Scholar]
  121. 121. 
    Iozzi MF, Mennucci B, Tomasi J, Cammi R 2004. Excitation energy transfer (EET) between molecules in condensed matter: a novel application of the polarizable continuum model (PCM). J. Chem. Phys. 120:7029–40
    [Google Scholar]
  122. 122. 
    Madjet ME, Abdurahman A, Renger T. 2006. Intermolecular Coulomb couplings from ab initio electrostatic potentials: application to optical transitions of strongly coupled pigments in photosynthetic antennae and reaction centers. J. Phys. Chem. B 110:17268–81
    [Google Scholar]
  123. 123. 
    Hsu CP, You ZQ, Chen HC. 2008. Characterization of the short-range couplings in excitation energy transfer. J. Phys. Chem. C 112:1204–12
    [Google Scholar]
  124. 124. 
    Hsu CP. 2009. The electronic couplings in electron transfer and excitation energy transfer. Acc. Chem. Res. 42:509–18
    [Google Scholar]
  125. 125. 
    You ZQ, Hsu CP. 2010. The fragment spin difference scheme for triplet-triplet energy transfer coupling. J. Chem. Phys. 133:074105
    [Google Scholar]
  126. 126. 
    Azarias C, Russo R, Cupellini L, Mennucci B, Jacquemin D. 2017. Modeling excitation energy transfer in multi-BODIPY architectures. Phys. Chem. Chem. Phys. 19:6443–53
    [Google Scholar]
  127. 127. 
    Di Donato M, Iagatti A, Lapini A, Foggi P, Cicchi S et al. 2014. Combined experimental and theoretical study of efficient and ultrafast energy transfer in a molecular dyad. J. Phys. Chem. C 118:23476–86
    [Google Scholar]
  128. 128. 
    Troisi A, Orlandi G. 2001. The hole transfer in DNA: calculation of electron coupling between close bases. Chem. Phys. Lett. 344:509–18
    [Google Scholar]
  129. 129. 
    Harcourt RD, Scholes GD, Ghiggino KP. 1994. Rate expressions for excitation transfer. II. Electronic considerations of direct and through-configuration exciton resonance interactions. J. Chem. Phys. 101:10521–25
    [Google Scholar]
  130. 130. 
    Voityuk AA, Rösch N. 2002. Fragment charge difference method for estimating donor–acceptor electronic coupling: application to DNA -stacks. J. Chem. Phys. 117:5607–16
    [Google Scholar]
  131. 131. 
    Voityuk AA. 2013. Estimation of electronic coupling for photoinduced charge separation and charge recombination using the fragment charge difference method. J. Phys. Chem. C 117:2670–75
    [Google Scholar]
  132. 132. 
    Yang CHY, Hsu CP. 2013. A multi-state fragment charge difference approach for diabatic states in electron transfer: extension and automation. J. Chem. Phys. 139:154104
    [Google Scholar]
  133. 133. 
    Efrima S, Bixon M. 1976. Vibrational effects in outer-sphere electron-transfer reactions in polar media. Chem. Phys. 13:447–60
    [Google Scholar]
  134. 134. 
    Marcus RA. 1956. On the theory of oxidation-reduction reactions involving electron transfer. I. J. Chem. Phys 24:966–78
    [Google Scholar]
  135. 135. 
    Vaissier V, Barnes P, Kirkpatrick J, Nelson J 2013. Influence of polar medium on the reorganization energy of charge transfer between dyes in a dye sensitized film. Phys. Chem. Chem. Phys. 15:4804–14
    [Google Scholar]
  136. 136. 
    Cupellini L, Giannini S, Mennucci B. 2018. Electron and excitation energy transfers in covalently linked donor–acceptor dyads: mechanisms and dynamics revealed using quantum chemistry. Phys. Chem. Chem. Phys. 20:395–403
    [Google Scholar]
  137. 137. 
    Blumberger J. 2008. Free energies for biological electron transfer from QM/MM calculation: method, application and critical assessment. Phys. Chem. Chem. Phys. 10:5651–67
    [Google Scholar]
  138. 138. 
    Cupellini L, Calvani D, Jacquemin D, Mennucci B. 2020. Charge transfer from the carotenoid can quench chlorophyll excitation in antenna complexes of plants. Nat. Commun. 11:662
    [Google Scholar]
  139. 139. 
    Stasyuk AJ, Stasyuk OA, Solà M, Voityuk AA. 2019. Photoinduced electron transfer and unusual environmental effects in fullerene–Zn-porphyrin–BODIPY triads. Phys. Chem. Chem. Phys. 21:25098–107
    [Google Scholar]
  140. 140. 
    Iagatti A, Cupellini L, Biagiotti G, Caprasecca S, Fedeli S et al. 2016. Efficient photoinduced charge separation in a BODIPY–C60 dyad. J. Phys. Chem. C 120:16526–36
    [Google Scholar]
  141. 141. 
    Botu V, Batra R, Chapman J, Ramprasad R. 2017. Machine learning force fields: construction, validation, and outlook. J. Phys. Chem. C 121:511–22
    [Google Scholar]
  142. 142. 
    Dral PO. 2020. Quantum chemistry in the age of machine learning. J. Phys. Chem. Lett. 11:2336–47
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-090419-104031
Loading
/content/journals/10.1146/annurev-physchem-090419-104031
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error