1932

Abstract

As energy demands increase, electrocatalysis serves as a vital tool in energy conversion. Elucidating electrocatalytic mechanisms using in situ spectroscopic characterization techniques can provide experimental guidance for preparing high-efficiency electrocatalysts. Surface-enhanced Raman spectroscopy (SERS) can provide rich spectral information for ultratrace surface species and is extremely well suited to studying their activity. To improve the material and morphological universalities, researchers have employed different kinds of nanostructures that have played important roles in the development of SERS technologies. Different strategies, such as so-called borrowing enhancement from shell-isolated modes and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS)-satellite structures, have been proposed to obtain highly effective Raman enhancement, and these methods make it possible to apply SERS to various electrocatalytic systems. Here, we discuss the development of SERS technology, focusing on its applications in different electrocatalytic reactions (such as oxygen reduction reactions) and at different nanostructure surfaces, and give a brief outlook on its development.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-090519-034645
2021-04-20
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/physchem/72/1/annurev-physchem-090519-034645.html?itemId=/content/journals/10.1146/annurev-physchem-090519-034645&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Norskov JK, Jaramillo TF 2017. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355:eaad4998
    [Google Scholar]
  2. 2. 
    Shao M, Chang Q, Dodelet JP, Chenitz R 2016. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116:3594–657
    [Google Scholar]
  3. 3. 
    Aricò AS, Srinivasan S, Antonucci V 2001. DMFCs: from fundamental aspects to technology development. Fuel Cells 1:133–61
    [Google Scholar]
  4. 4. 
    Kumar P, Singh M, Reddy GB 2020. Oxidized core–shell MoO2–MoS2 nanostructured thin films for hydrogen evolution. ACS Appl. Nano Mater. 3:711–23
    [Google Scholar]
  5. 5. 
    Carneiro J, Nikolla E. 2019. Nanoengineering of solid oxide electrochemical cell technologies: an outlook. Nano Res. 12:2081–92
    [Google Scholar]
  6. 6. 
    Heidary N, Ly KH, Kornienko N 2019. Probing CO2 conversion chemistry on nanostructured surfaces with operando vibrational spectroscopy. Nano Lett. 19:4817–26
    [Google Scholar]
  7. 7. 
    Jiao Y, Zheng Y, Jaroniec M, Qiao SZ 2015. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 44:2060–86
    [Google Scholar]
  8. 8. 
    Benck JD, Hellstern TR, Kibsgaard J, Chakthranont P, Jaramillo TF 2014. Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal. 4:3957–71
    [Google Scholar]
  9. 9. 
    Gasteiger HA, Kocha SS, Sompalli B, Wagner FT 2005. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B Environ. 56:9–35
    [Google Scholar]
  10. 10. 
    Siahrostami S, Verdaguer-Casadevall A, Karamad M, Deiana D, Malacrida P et al. 2013. Enabling direct H2O2 production through rational electrocatalyst design. Nat. Mater. 12:1137–43
    [Google Scholar]
  11. 11. 
    Whipple DT, Kenis PJA. 2010. Prospects of CO2 utilization via direct heterogeneous electrochemical reduction. J. Phys. Chem. Lett. 1:3451–58
    [Google Scholar]
  12. 12. 
    Hwang J, Rao RR, Giordano L, Katayama Y, Yu Y, Shao-Horn Y 2017. Perovskites in catalysis and electrocatalysis. Science 358:751–56
    [Google Scholar]
  13. 13. 
    Trindell JA, Duan Z, Henkelman G, Crooks RM 2020. Well-defined nanoparticle electrocatalysts for the refinement of theory. Chem. Rev. 120:814–50
    [Google Scholar]
  14. 14. 
    Shi F, Li F, Ma Y, Zheng F, Feng R et al. 2019. In situ transmission electron microscopy study of nanocrystal formation for electrocatalysis. ChemNanoMat 5:1439–55
    [Google Scholar]
  15. 15. 
    Gasteiger HA, Marković NM. 2009. Just a dream—or future reality?. Science 324:48–49
    [Google Scholar]
  16. 16. 
    Tian N, Zhou Z-Y, Sun S-G 2008. Platinum metal catalysts of high-index surfaces: from single-crystal planes to electrochemically shape-controlled nanoparticles. J. Phys. Chem. C 112:19801–17
    [Google Scholar]
  17. 17. 
    Gawande MB, Goswami A, Asefa T, Guo H, Biradar AV et al. 2015. Core-shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chem. Soc. Rev. 44:7540–90
    [Google Scholar]
  18. 18. 
    Iglesias-Mayor A, Amor-Gutiérrez O, Costa-García A, de la Escosura-Muñiz A 2019. Nanoparticles as emerging labels in electrochemical immunosensors. Sensors 19:5137
    [Google Scholar]
  19. 19. 
    Solla-Gullón J, Vidal-Iglesias FJ, Feliu JM 2011. Shape dependent electrocatalysis. Annu. Rep. Prog. Chem. C Phys. Chem. 107:263–97
    [Google Scholar]
  20. 20. 
    Xiao X, Zou L, Pang H, Xu Q 2020. Synthesis of micro/nanoscaled metal-organic frameworks and their direct electrochemical applications. Chem. Soc. Rev. 49:301–31
    [Google Scholar]
  21. 21. 
    Tian Z-Q, Ren B. 2004. Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy. Annu. Rev. Phys. Chem. 55:197–229
    [Google Scholar]
  22. 22. 
    Yang H, He Q, Liu Y, Li H, Zhang H, Zhai T 2020. On-chip electrocatalytic microdevice: an emerging platform for expanding the insight into electrochemical processes. Chem. Soc. Rev. 49:2916
    [Google Scholar]
  23. 23. 
    Marković NM, Ross PN. 2002. Surface science studies of model fuel cell electrocatalysts. Surf. Sci. Rep. 45:117–229
    [Google Scholar]
  24. 24. 
    Tong YJ. 2017. In situ electrochemical nuclear magnetic resonance spectroscopy for electrocatalysis: challenges and prospects. Curr. Opin. Electrochem. 4:60–68
    [Google Scholar]
  25. 25. 
    Saveleva VA, Savinova ER. 2019. Insights into electrocatalysis from ambient pressure photoelectron spectroscopy. Curr. Opin. Electrochem. 17:79–89
    [Google Scholar]
  26. 26. 
    Liang Y, Pfisterer JHK, McLaughlin D, Csoklich C, Seidl L et al. 2019. Electrochemical scanning probe microscopies in electrocatalysis. Small Methods 3:1800387
    [Google Scholar]
  27. 27. 
    Pfisterer JHK, Domke KF. 2018. Unfolding the versatile potential of EC-TERS for electrocatalysis. Curr. Opin. Electrochem. 8:96–102
    [Google Scholar]
  28. 28. 
    Ye S, Kondo T, Hoshi N, Inukai J, Yoshimoto S et al. 2009. Recent progress in electrochemical surface science with atomic and molecular levels. Electrochemistry 77:2–20
    [Google Scholar]
  29. 29. 
    Zhang N, Zou Y, Tao L, Chen W, Zhou L et al. 2019. Electrochemical oxidation of 5-hydroxymethylfurfural on nickel nitride/carbon nanosheets: reaction pathway determined by in situ sum frequency generation vibrational spectroscopy. Angew. Chem. Int. Ed. 58:15895–903
    [Google Scholar]
  30. 30. 
    Adarsh KS, Chandrasekaran N, Chakrapani V 2020. In-situ spectroscopic techniques as critical evaluation tools for electrochemical carbon dioxide reduction: a mini review. Front. Chem. 8:137
    [Google Scholar]
  31. 31. 
    Varsha MV, Nageswaran G. 2020. Operando X-ray spectroscopic techniques: a focus on hydrogen and oxygen evolution reactions. Front. Chem. 8:23
    [Google Scholar]
  32. 32. 
    Tian Z-Q, Ren B. 2007. Raman spectroscopy of electrode surfaces.. Encyclopedia of Electrochemistry AJ Bard, M Stratmann Weinheim, Ger: Wiley-VCH Verlag https://doi.org/10.1002/9783527610426.bard030306
    [Crossref] [Google Scholar]
  33. 33. 
    Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS 1999. Ultrasensitive chemical analysis by Raman spectroscopy. Chem. Rev. 99:2957–76
    [Google Scholar]
  34. 34. 
    Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I et al. 1997. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78:1667–70
    [Google Scholar]
  35. 35. 
    Nie S, Emory SR. 1997. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–6
    [Google Scholar]
  36. 36. 
    Fleischmann M, Hendra PJ, McQuillan AJ 1974. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26:163–66
    [Google Scholar]
  37. 37. 
    Jeanmaire DL, Van Duyne RP 1977. Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfacial Electrochem. 84:1–20
    [Google Scholar]
  38. 38. 
    Schlücker S. 2014. Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew. Chem. Int. Ed. 53:4756–95
    [Google Scholar]
  39. 39. 
    Vlčková B, Moskovits M, Pavel I, Šišková K, Sládková M, Šlouf M 2008. Single-molecule surface-enhanced Raman spectroscopy from a molecularly-bridged silver nanoparticle dimer. Chem. Phys. Lett. 455:131–34
    [Google Scholar]
  40. 40. 
    Dieringer JA, Lettan RB, Scheidt KA, Van Duyne RP 2007. A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 129:16249–56
    [Google Scholar]
  41. 41. 
    Li J-F, Anema JR, Wandlowski T, Tian Z-Q 2015. Dielectric shell isolated and graphene shell isolated nanoparticle enhanced Raman spectroscopies and their applications. Chem. Soc. Rev. 44:8399–409
    [Google Scholar]
  42. 42. 
    Li C-Y, Yang Z-W, Dong J-C, Ganguly T, Li J-F 2017. Plasmon-enhanced spectroscopies with shell-isolated nanoparticles. Small 13:1601598
    [Google Scholar]
  43. 43. 
    Zaleski S, Wilson AJ, Mattei M, Chen X, Goubert G et al. 2016. Investigating nanoscale electrochemistry with surface- and tip-enhanced Raman spectroscopy. Acc. Chem. Res. 49:2023–30
    [Google Scholar]
  44. 44. 
    Ding S-Y, Yi J, Li J-F, Ren B, Wu D-Y et al. 2016. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mat. 1:16021
    [Google Scholar]
  45. 45. 
    Moskovits M. 1985. Surface-enhanced spectroscopy. Rev. Mod. Phys. 57:783–826
    [Google Scholar]
  46. 46. 
    Tian Z-Q, Ren B, Li J-F, Yang Z-L 2007. Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy. Chem. Commun. 3514:34
    [Google Scholar]
  47. 47. 
    Li JF, Huang YF, Ding Y, Yang ZL, Li SB et al. 2010. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464:392–95
    [Google Scholar]
  48. 48. 
    Fleischmann M, Tian ZQ, Li LJ 1987. Raman spectroscopy of adsorbates on thin film electrodes deposited on silver substrates. J. Electroanal. Chem. Interfacial Electrochem. 217:397–410
    [Google Scholar]
  49. 49. 
    Leng LWH, Weaver MJ. 1987. Extending surface-enhanced raman spectroscopy to transition-metal surfaces: carbon monoxide adsorption and electrooxidation on platinum- and palladium-coated gold electrodes. J. Am. Chem. Soc. 109:5113–19
    [Google Scholar]
  50. 50. 
    Li J-F, Yang Z-L, Ren B, Liu G-K, Fang P-P et al. 2006. Surface-enhanced Raman spectroscopy using gold-core platinum-shell nanoparticle film electrodes:toward a versatile vibrational strategy for electrochemical interfaces. Langmuir 22:10372–79
    [Google Scholar]
  51. 51. 
    Zhang H, Wang C, Sun H-L, Fu G, Chen S et al. 2017. In situ dynamic tracking of heterogeneous nanocatalytic processes by shell-isolated nanoparticle-enhanced Raman spectroscopy. Nat. Commun. 8:15447
    [Google Scholar]
  52. 52. 
    Tian Z-Q, Ren B, Wu D-Y 2002. Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures. J. Phys. Chem. B 106:9463–83
    [Google Scholar]
  53. 53. 
    Zhang H, Zhang X-G, Wei J, Wang C, Chen S et al. 2017. Revealing the role of interfacial properties on catalytic behaviors by in situ surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 139:10339–46
    [Google Scholar]
  54. 54. 
    Homola J. 2003. Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377:528–39
    [Google Scholar]
  55. 55. 
    Bartlett PN, Birkin PR, Ghanem MA 2000. Electrochemical deposition of macroporous platinum, palladium and cobalt films using polystyrene latex sphere templates. Chem. Commun. 2000:1671–72
    [Google Scholar]
  56. 56. 
    Haes AJ, Stuart DA, Nie S, Van Duyne RP 2004. Using solution-phase nanoparticles, surface-confined nanoparticle arrays and single nanoparticles as biological sensing platforms. J. Fluoresc. 14:355–67
    [Google Scholar]
  57. 57. 
    Oberst JL, Jhong H-RM, Kenis PJA, Gewirth AA 2016. Insight into the electrochemical reduction of CO2 on gold via surface-enhanced Raman spectroscopy and N-containing additives. J. Solid State Electr. 20:1149–54
    [Google Scholar]
  58. 58. 
    Zhao Y, Chang X, Malkani AS, Yang X, Thompson L et al. 2020. Speciation of Cu surfaces during the electrochemical CO reduction reaction. J. Am. Chem. Soc. 142:973543
    [Google Scholar]
  59. 59. 
    Peng Z, Chen Y, Bruce PG, Xu Y 2015. Direct detection of the superoxide anion as a stable intermediate in the electroreduction of oxygen in a non-aqueous electrolyte containing phenol as a proton source. Angew. Chem. Int. Ed. 54:8165–68
    [Google Scholar]
  60. 60. 
    Kim J, Gewirth AA. 2006. Mechanism of oxygen electroreduction on gold surfaces in basic media. J. Phys. Chem. B 110:2565–71
    [Google Scholar]
  61. 61. 
    Tian ZQ, Ren B, Mao BW 1997. Extending surface Raman spectroscopy to transition metal surfaces for practical applications. 1. Vibrational properties of thiocyanate and carbon monoxide adsorbed on electrochemically activated platinum surfaces. J. Phys. Chem. B 101:1338–46
    [Google Scholar]
  62. 62. 
    Cai WB, Ren B, Li XQ, She CX, Liu FM et al. 1998. Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment. Surf. Sci. 406:9–22
    [Google Scholar]
  63. 63. 
    Cao PG, Sun YH, Yao JL, Ren B, Gu RN, Tian ZQ 2002. Adsorption and electro-oxidation of carbon monoxide at the platinum–acetonitrile interface as probed by surface-enhanced Raman spectroscopy. Langmuir 18:2737–42
    [Google Scholar]
  64. 64. 
    Yeo BS, Bell AT. 2011. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 133:5587–93
    [Google Scholar]
  65. 65. 
    Zou S, Williams CT, Chen EK-Y, Weaver MJ 1998. Surface-enhanced Raman scattering as a ubiquitous vibrational probe of transition-metal interfaces: benzene and related chemisorbates on palladium and rhodium in aqueous solution. J. Phys. Chem. B 102:9039–49
    [Google Scholar]
  66. 66. 
    Mrozek MF, Luo H, Weaver MJ 2000. Formic acid electrooxidation on platinum-group metals:Is adsorbed carbon monoxide solely a catalytic poison. ? Langmuir 16:8463–69
    [Google Scholar]
  67. 67. 
    Luo H, Weaver MJ. 2001. A versatile surface Raman spectroelectrochemical flow cell: applications to chemisorbate kinetics. J. Electroanal. Chem. 501:141–50
    [Google Scholar]
  68. 68. 
    Jebaraj AJJ, de Godoi DRM, Scherson D 2013. The oxidation of hydroxylamine on Pt-, and Pd-modified Au electrodes in aqueous electrolytes: electrochemical and in situ spectroscopic studies. Catal. Today 202:44–49
    [Google Scholar]
  69. 69. 
    Yang HZ, Yang YQ, Zou SZ 2007. In situ surface-enhanced Raman spectroscopic studies of CO adsorption and methanol oxidation on Ru-modified Pt surfaces. J. Phys. Chem. C 111:19058–65
    [Google Scholar]
  70. 70. 
    Jeong H, Kim J. 2018. Methanol dehydrogenation reaction at Au@Pt catalysts: insight into the methanol electrooxidation. Electrochim. Acta 283:11–17
    [Google Scholar]
  71. 71. 
    Gómez R, Pérez JM, Solla-Gullón J, Montiel V, Aldaz A 2004. In situ surface enhanced Raman spectroscopy on electrodes with platinum and palladium nanoparticle ensembles. J. Phys. Chem. B 108:9943–49
    [Google Scholar]
  72. 72. 
    Gómez R, Solla-Gullón J, Pérez JM, Aldaz A 2005. Nanoparticles-on-electrode approach for in situ surface-enhanced Raman spectroscopy studies with platinum-group metals: examples and prospects. J. Raman Spectrosc. 36:613–22
    [Google Scholar]
  73. 73. 
    Vidal-Iglesias FJ, Solla-Gullón J, Pérez JM, Aldaz A 2006. Evidence by SERS of azide anion participation in ammonia electrooxidation in alkaline medium on nanostructured Pt electrodes. Electrochem. Commun. 8:102–6
    [Google Scholar]
  74. 74. 
    Solla-Gullón J, Vidal-Iglesias FJ, Pérez JM, Aldaz A 2009. Alkylidynes-modified Pt nanoparticles: a spectroelectrochemical (SERS) and electrocatalytic study. Electrochim. Acta 54:6971–77
    [Google Scholar]
  75. 75. 
    Scheijen FJE, Beltramo GL, Hoeppener S, Housmans THM, Koper MTM 2008. The electrooxidation of small organic molecules on platinum nanoparticles supported on gold: influence of platinum deposition procedure. J. Solid State Electr. 12:483–95
    [Google Scholar]
  76. 76. 
    Hu J-W, Li J-F, Ren B, Wu D-Y, Sun S-G, Tian Z-Q 2007. Palladium-coated gold nanoparticles with a controlled shell thickness used as surface-enhanced Raman scattering substrate. J. Phys. Chem. C 111:1105–12
    [Google Scholar]
  77. 77. 
    Rees NV, Taylor RJ, Jiang YX, Morgan IR, Knight DW, Attard GA 2011. In situ surface-enhanced Raman spectroscopic studies and electrochemical reduction of α-ketoesters and self condensation products at platinum surfaces. J. Phys. Chem. C 115:1163–70
    [Google Scholar]
  78. 78. 
    Fang P-P, Duan S, Lin X-D, Anema JR, Li J-F et al. 2011. Tailoring Au-core Pd-shell Pt-cluster nanoparticles for enhanced electrocatalytic activity. Chem. Sci. 2:531–39
    [Google Scholar]
  79. 79. 
    Gómez-Marín AM, Feliu JM. 2012. Pt(111) surface disorder kinetics in perchloric acid solutions and the influence of specific anion adsorption. Electrochim. Acta 82:558–69
    [Google Scholar]
  80. 80. 
    Ledezma-Yanez I, Wallace WDZ, Sebastián-Pascual P, Climent V, Feliu JM, Koper MTM 2017. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2:17031
    [Google Scholar]
  81. 81. 
    Núñez M, Lansford JL, Vlachos DG 2019. Optimization of the facet structure of transition-metal catalysts applied to the oxygen reduction reaction. Nat. Chem. 11:449–56
    [Google Scholar]
  82. 82. 
    Huang Y-F, Kooyman PJ, Koper MTM 2016. Intermediate stages of electrochemical oxidation of single-crystalline platinum revealed by in situ Raman spectroscopy. Nat. Commun. 7:12440
    [Google Scholar]
  83. 83. 
    Li J-F, Zhang Y-J, Ding S-Y, Panneerselvam R, Tian Z-Q 2017. Core–shell nanoparticle-enhanced Raman spectroscopy. Chem. Rev. 117:5002–69
    [Google Scholar]
  84. 84. 
    Bodappa N, Su M, Zhao Y, Le J-B, Yang W-M et al. 2019. Early stages of electrochemical oxidation of Cu(111) and polycrystalline Cu surfaces revealed by in situ Raman spectroscopy. J. Am. Chem. Soc. 141:12192–96
    [Google Scholar]
  85. 85. 
    Li C-Y, Dong J-C, Jin X, Chen S, Panneerselvam R et al. 2015. In situ monitoring of electrooxidation processes at gold single crystal surfaces using shell-isolated nanoparticle-enhanced Raman spectroscopy. J. Am. Chem. Soc. 137:7648–51
    [Google Scholar]
  86. 86. 
    Keith JA, Jacob T. 2010. Theoretical studies of potential-dependent and competing mechanisms of the electrocatalytic oxygen reduction reaction on Pt(111). Angew. Chem. Int. Ed. 49:9521–25
    [Google Scholar]
  87. 87. 
    Bu LZ, Zhang N, Guo SJ, Zhang X, Li J et al. 2016. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 354:1410–14
    [Google Scholar]
  88. 88. 
    Li J, Yin H-M, Li X-B, Okunishi E, Shen Y-L et al. 2017. Surface evolution of a Pt–Pd–Au electrocatalyst for stable oxygen reduction. Nat. Energy 2:17111
    [Google Scholar]
  89. 89. 
    Dong J-C, Zhang X-G, Briega-Martos V, Jin X, Yang J et al. 2018. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy 4:60–67
    [Google Scholar]
  90. 90. 
    Dong J-C, Su M, Briega-Martos V, Li L, Le J-B et al. 2020. Direct in situ Raman spectroscopic evidence of oxygen reduction reaction intermediates at high-index Pt(hkl) surfaces. J. Am. Chem. Soc. 142:715–19
    [Google Scholar]
  91. 91. 
    Christensen CH, Nørskov JK. 2008. A molecular view of heterogeneous catalysis. J. Chem. Phys. 128:182503
    [Google Scholar]
  92. 92. 
    Schlogl R. 2015. Heterogeneous catalysis. Angew. Chem. Int. Ed. 54:3465–520
    [Google Scholar]
  93. 93. 
    Wang Y-H, Liang M-M, Zhang Y-J, Chen S, Radjenovic PM et al. 2018. Probing interfacial electronic and catalytic properties on well-defined surfaces using in situ Raman spectroscopy. Angew. Chem. Int. Ed. 57:11257–61
    [Google Scholar]
  94. 94. 
    Wang D, Xin HL, Hovden R, Wang H, Yu Y et al. 2012. Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 12:81–87
    [Google Scholar]
  95. 95. 
    Chung DY, Jun SW, Yoon G, Kwon SG, Shin DY et al. 2015. Highly durable and active PtFe nanocatalyst for electrochemical oxygen reduction reaction. J. Am. Chem. Soc. 137:15478–85
    [Google Scholar]
  96. 96. 
    Wang L, Zeng ZH, Gao WP, Maxson T, Raciti D et al. 2019. Tunable intrinsic strain in two-dimensional transition metal electrocatalysts. Science 363:870–74
    [Google Scholar]
  97. 97. 
    Xie W, Walkenfort B, Schlücker S 2013. Label-free SERS monitoring of chemical reactions catalyzed by small gold nanoparticles using 3D plasmonic superstructures. J. Am. Chem. Soc. 135:1657–60
    [Google Scholar]
  98. 98. 
    Joseph V, Engelbrekt C, Zhang JD, Gernert U, Ulstrup J, Kneipp J 2012. Characterizing the kinetics of nanoparticle-catalyzed reactions by surface-enhanced Raman scattering. Angew. Chem. Int. Ed. 51:7592–96
    [Google Scholar]
  99. 99. 
    Xie W, Schlücker S. 2015. Hot electron-induced reduction of small molecules on photorecycling metal surfaces. Nat. Commun. 6:7570
    [Google Scholar]
  100. 100. 
    Wang Y-H, Le J-B, Li W-Q, Wei J, Radjenovic PM et al. 2019. In situ spectroscopic insight into the origin of the enhanced performance of bimetallic nanocatalysts towards the oxygen reduction reaction (ORR). Angew. Chem. Int. Ed. 58:16062–66
    [Google Scholar]
  101. 101. 
    Liang M-M, Wang Y-H, Shao R, Yang W-M, Zhang H et al. 2017. In situ electrochemical surface-enhanced Raman spectroscopy study of CO electrooxidation on PtFe nanocatalysts. Electrochem. Commun. 81:38–42
    [Google Scholar]
  102. 102. 
    Hartman T, Weckhuysen BM. 2018. Thermally stable TiO2- and SiO2-shell-isolated Au nanoparticles for in situ plasmon-enhanced Raman spectroscopy of hydrogenation catalysts. Chem. Eur. J. 24:3733–41
    [Google Scholar]
  103. 103. 
    Lin X-D, Uzayisenga V, Li J-F, Fang P-P, Wu D-Y et al. 2012. Synthesis of ultrathin and compact Au@MnO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). J. Raman Spectrosc. 43:40–45
    [Google Scholar]
  104. 104. 
    Whitney AV, Elam JW, Stair PC, Van Duyne RP 2007. Toward a thermally robust operando surface-enhanced Raman spectroscopy substrate. J. Phys. Chem. C 111:16827–32
    [Google Scholar]
  105. 105. 
    Xu J, Yang W-M, Huang S-J, Yin H, Zhang H et al. 2018. CdS core-Au plasmonic satellites nanostructure enhanced photocatalytic hydrogen evolution reaction. Nano Energy 49:363–71
    [Google Scholar]
  106. 106. 
    Zhang R, Zhang Y, Dong ZC, Jiang S, Zhang C et al. 2013. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498:82–86
    [Google Scholar]
  107. 107. 
    Zhong J-H, Jin X, Meng LY, Wang X, Su H-S et al. 2017. Probing the electronic and catalytic properties of a bimetallic surface with 3nm resolution. Nat. Nanotechnol. 12:132–36
    [Google Scholar]
  108. 108. 
    Huang Y-P, Huang S-C, Wang X-J, Bodappa N, Li C-Y et al. 2018. Shell-isolated tip-enhanced Raman and fluorescence spectroscopy. Angew. Chem. Int. Ed. 130:7645–49
    [Google Scholar]
  109. 109. 
    Xu W, Mao N, Zhang J 2013. Graphene: a platform for surface-enhanced Raman spectroscopy. Small 9:1206–24
    [Google Scholar]
  110. 110. 
    Sun XL, Li DG, Ding Y, Zhu WL, Guo SJ et al. 2014. Core/shell Au/CuPt nanoparticles and their dual electrocatalysis for both reduction and oxidation reactions. J. Am. Chem. Soc. 136:5745–49
    [Google Scholar]
  111. 111. 
    Mahmood A, Guo WH, Tabassum H, Zou RQ 2016. Metal-organic framework-based nanomaterials for electrocatalysis. Adv. Energy Mater. 6:1600423
    [Google Scholar]
  112. 112. 
    Grigoriants I, Markovsky B, Persky R, Perelshtein I, Gedanken A et al. 2008. Electrochemical reduction of trinitrotoluene on core–shell tin–carbon electrodes. Electrochim. Acta 54:690–97
    [Google Scholar]
  113. 113. 
    Godoi DR, Chen Y, Zhu H, Scherson D 2010. Electrochemical oxidation of hydroxylamine on gold in aqueous acidic electrolytes: an in situ SERS investigation. Langmuir 26:15711–13
    [Google Scholar]
  114. 114. 
    Li ZL, Kelkar S, Lam CH, Luczek K, Jackson JE et al. 2012. Aqueous electrocatalytic hydrogenation of furfural using a sacrificial anode. Electrochim. Acta 64:87–93
    [Google Scholar]
  115. 115. 
    Yao K, Liu Y. 2018. Infrared plasmonic resonators based on self-assembled core–shell particles. ACS Photon. 5:844–51
    [Google Scholar]
  116. 116. 
    Shen S, Meng L, Zhang Y, Han J, Ma Z et al. 2015. Plasmon-enhanced second-harmonic generation nanorulers with ultrahigh sensitivities. Nano Lett. 15:6716–21
    [Google Scholar]
  117. 117. 
    Li C-Y, Meng M, Huang S-C, Li L, Huang S-R et al. 2015. “Smart” Ag nanostructures for plasmon-enhanced spectroscopies. J. Am. Chem. Soc. 137:13784–87
    [Google Scholar]
  118. 118. 
    Li J-F, Li C-Y, Aroca RF 2017. Plasmon-enhanced fluorescence spectroscopy. Chem. Soc. Rev. 46:3962–79
    [Google Scholar]
  119. 119. 
    Krier JM, Michalak WD, Cai X, Carl L, Komvopoulos K, Somorjai GA 2015. Sum frequency generation vibrational spectroscopy of 1,3-butadiene hydrogenation on 4 nm Pt@SiO2, Pd@SiO2, and Rh@SiO2 core–shell catalysts. Nano Lett. 15:39–44
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-090519-034645
Loading
/content/journals/10.1146/annurev-physchem-090519-034645
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error