1932

Abstract

Gram-negative bacteria are protected by a multicompartmental molecular architecture known as the cell envelope that contains two membranes and a thin cell wall. As the cell envelope controls influx and efflux of molecular species, in recent years both experimental and computational studies of such architectures have seen a resurgence due to the implications for antibiotic development. In this article we review recent progress in molecular simulations of bacterial membranes. We show that enormous progress has been made in terms of the lipidic and protein compositions of bacterial systems. The simulations have moved away from the traditional setup of one protein surrounded by a large patch of the same lipid type toward a more bio-logically representative viewpoint. Simulations with multiple cell envelope components are also emerging. We review some of the key method developments that have facilitated recent progress, discuss some current limitations, and offer a perspective on future directions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-103019-033434
2020-04-20
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/physchem/71/1/annurev-physchem-103019-033434.html?itemId=/content/journals/10.1146/annurev-physchem-103019-033434&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Rev. Antimicrob. Resist 2014. Antimicrobial resistance: tackling a crisis for the health and wealth of nations Rep., Wellcome Trust London:
  2. 2. 
    Yao X, Jericho M, Pink D, Beveridge T 1999. Thickness and elasticity of Gram-negative murein sacculi measured by atomic force microscopy. J. Bacteriol. 181:6865–75
    [Google Scholar]
  3. 3. 
    Silhavy TJ, Kahne D, Walker S 2010. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2:a000414
    [Google Scholar]
  4. 4. 
    Erridge C, Bennett-Guerrero E, Poxton IR 2002. Structure and function of lipopolysaccharides. Microbes Infect 4:837–51
    [Google Scholar]
  5. 5. 
    Raetz CRH, Whitfield C. 2002. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71:635–700
    [Google Scholar]
  6. 6. 
    Lins RD, Straatsma TP. 2001. Computer simulation of the rough lipopolysaccharide membrane of Pseudomonas aeruginosa. Biophys. J 81:1037–46
    [Google Scholar]
  7. 7. 
    Piggot TJ, Holdbrook DA, Khalid S 2011. Electroporation of the E. coli and S. aureus membranes: molecular dynamics simulations of complex bacterial membranes. J. Phys. Chem. B 115:13381–88
    [Google Scholar]
  8. 8. 
    Wu EL, Engstrom O, Jo S, Stuhlsatz D, Yeom MS et al. 2013. Molecular dynamics and NMR spectroscopy studies of E. coli lipopolysaccharide structure and dynamics. Biophys. J. 105:1444–55
    [Google Scholar]
  9. 9. 
    Jo S, Wu EL, Stuhlsatz D, Klauda JB, MacKerell AD Jr. et al. 2015. Lipopolysaccharide membrane building and simulation. Methods Mol. Biol. 1273:391–406
    [Google Scholar]
  10. 10. 
    Lee J, Patel DS, Stahle J, Park SJ, Kern NR et al. 2019. CHARMM-GUI Membrane Builder for complex biological membrane simulations with glycolipids and lipoglycans. J. Chem. Theory Comput. 15:775–86
    [Google Scholar]
  11. 11. 
    Wu EL, Cheng X, Jo S, Rui H, Song KC et al. 2014. CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. J. Comput. Chem. 35:1997–2004
    [Google Scholar]
  12. 12. 
    Jo S, Kim T, Iyer VG, Im W 2008. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29:1859–65
    [Google Scholar]
  13. 13. 
    Qi YF, Ingolfsson HI, Cheng X, Lee J, Marrink SJ, Im W 2015. CHARMM-GUI Martini Maker for coarse-grained simulations with the Martini force field. J. Chem. Theory Comput. 11:4486–94
    [Google Scholar]
  14. 14. 
    Hsu PC, Bruininks BMH, Jefferies D, de Souza PCT, Lee J et al. 2017. CHARMM-GUI Martini Maker for modeling and simulation of complex bacterial membranes with lipopolysaccharides. J. Comput. Chem. 38:2354–63
    [Google Scholar]
  15. 15. 
    Patel DS, Qi Y, Im W 2017. Modeling and simulation of bacterial outer membranes and interactions with membrane proteins. Curr. Opin. Struct. Biol. 43:131–40
    [Google Scholar]
  16. 16. 
    Kotra LP, Golemi D, Amro NA, Liu GY, Mobashery S 1999. Dynamics of the lipopolysaccharide assembly on the surface of Escherichia coli. J. Am. Chem. Soc 121:8707–11
    [Google Scholar]
  17. 17. 
    Soares TA, Straatsma TP. 2007. Towards simulations of outer membrane proteins in lipopolysaccharide membranes. AIP Conf. Proc. 963:1375–78
    [Google Scholar]
  18. 18. 
    Lins RD, Vorpagel ER, Guglielmi M, Straatsma TP 2008. Computer simulation of uranyl uptake by the rough lipopolysaccharide membrane of Pseudomonas aeruginosa. . Biomacromolecules 9:29–35
    [Google Scholar]
  19. 19. 
    Soares TA, Straatsma TP, Lins RD 2008. Influence of the B-band O-antigen chain in the structure and electrostatics of the lipopolysaccharide membrane of Pseudomonas aeruginosa. J. Brazil Chem. . Soc 19:312–20
    [Google Scholar]
  20. 20. 
    Soares TA, Straatsma TP. 2008. Assessment of the convergence of molecular dynamics simulations of lipopolysaccharide membranes. Mol. Simulat. 34:295–307
    [Google Scholar]
  21. 21. 
    Kirschner KN, Lins RD, Maass A, Soares TA 2012. A glycam-based force field for simulations of lipopolysaccharide membranes: parametrization and validation. J. Chem. Theory Comput. 8:4719–31
    [Google Scholar]
  22. 22. 
    Van Oosten B, Harroun TA 2016. A MARTINI extension for Pseudomonas aeruginosa PAO1 lipopolysaccharide. J. Mol. Graph. Model. 63:125–33
    [Google Scholar]
  23. 23. 
    Ma H, Irudayanathan FJ, Jiang W, Nangia S 2015. Simulating Gram-negative bacterial outer membrane: a coarse grain model. J. Phys. Chem. B 119:14668–82
    [Google Scholar]
  24. 24. 
    Kim S, Patel DS, Park S, Slusky J, Klauda JB et al. 2016. Bilayer properties of lipid A from various Gram-negative bacteria. Biophys. J. 111:1750–60
    [Google Scholar]
  25. 25. 
    Blasco P, Patel DS, Engstrom O, Im W, Widmalm G 2017. Conformational dynamics of the lipopolysaccharide from Escherichia coli O91 revealed by nuclear magnetic resonance spectroscopy and molecular simulations. Biochemistry 56:3826–39
    [Google Scholar]
  26. 26. 
    Ma HL, Cummins DD, Edelstein NB, Gomez J, Khan A et al. 2017. Modeling diversity in structures of bacterial outer membrane lipids. J. Chem. Theory Comput. 13:811–24
    [Google Scholar]
  27. 27. 
    Li A, Schertzer JW, Yong X 2018. Molecular dynamics modeling of Pseudomonas aeruginosa outer membranes. Phys. Chem. Chem. Phys. 20:23635–48
    [Google Scholar]
  28. 28. 
    Hughes AV, Patel DS, Widmalm G, Klauda JB, Clifton LA, Im W 2019. Physical properties of bacterial outer membrane models: neutron reflectometry & molecular simulation. Biophys. J. 116:1095–104
    [Google Scholar]
  29. 29. 
    Baltoumas FA, Hamodrakas SJ, Iconomidou VA 2019. The Gram-negative outer membrane modeler: automated building of lipopolysaccharide-rich bacterial outer membranes in four force fields. J. Comput. Chem. 40:1727–34
    [Google Scholar]
  30. 30. 
    Gao Y, Lee J, Widmalm G, Im W 2020. Preferred conformations of lipooligosaccharides and oligosaccharides of Moraxella catarrhalis. . Glycobiology 30:86–94
    [Google Scholar]
  31. 31. 
    Straatsma TP, Soares TA. 2009. Characterization of the outer membrane protein OprF of Pseudomonas aeruginosa in a lipopolysaccharide membrane by computer simulation. Proteins Struct. Funct. Bioinform. 74:475–88
    [Google Scholar]
  32. 32. 
    Piggot TJ, Holdbrook DA, Khalid S 2013. Conformational dynamics and membrane interactions of the E. coli outer membrane protein FecA: a molecular dynamics simulation study. Biochim. Biophys. Acta 1828:284–93
    [Google Scholar]
  33. 33. 
    Holdbrook DA, Piggot TJ, Sansom MS, Khalid S 2013. Stability and membrane interactions of an autotransport protein: MD simulations of the Hia translocator domain in a complex membrane environment. Biochim. Biophys. Acta 1828:715–23
    [Google Scholar]
  34. 34. 
    Wu EL, Fleming PJ, Yeom MS, Widmalm G, Klauda JB 2014. E. coli outer membrane and interactions with OmpLA. Biophys. J. 106:2493–502
    [Google Scholar]
  35. 35. 
    Berglund NA, Piggot TJ, Jefferies D, Sessions RB, Bond PJ, Khalid S 2015. Interaction of the antimicrobial peptide polymyxin B1 with both membranes of E. coli: a molecular dynamics study. PLOS Comput. Biol. 11:e1004180
    [Google Scholar]
  36. 36. 
    Fleming PJ, Patel DS, Wu EL, Qi Y, Yeom MS et al. 2016. BamA POTRA domain interacts with a native lipid membrane surface. Biophys. J. 110:2698–709
    [Google Scholar]
  37. 37. 
    Balusek C, Gumbart JC. 2016. Role of the native outer-membrane environment on the transporter BtuB. Biophys. J. 111:1409–17
    [Google Scholar]
  38. 38. 
    Ortiz-Suarez ML, Samsudin F, Piggot TJ, Bond PJ, Khalid S 2016. Full-length OmpA: structure, function, and membrane interactions predicted by molecular dynamics simulations. Biophys. J. 111:1692–702
    [Google Scholar]
  39. 39. 
    Samsudin F, Ortiz-Suarez ML, Piggot TJ, Bond PJ, Khalid S 2016. OmpA: a flexible clamp for bacterial cell wall attachment. Structure 24:2227–35
    [Google Scholar]
  40. 40. 
    Patel DS, Re S, Wu EL, Qi Y, Klebba PE et al. 2016. Dynamics and interactions of OmpF and LPS: influence on pore accessibility and ion permeability. Biophys. J. 110:930–38
    [Google Scholar]
  41. 41. 
    Hsu PC, Samsudin F, Shearer J, Khalid S 2017. It is complicated: curvature, diffusion, and lipid sorting within the two membranes of Escherichia coli. J. Phys. Chem. Lett 8:5513–18
    [Google Scholar]
  42. 42. 
    Lee J, Patel DS, Kucharska I, Tamm LK, Im W 2017. Refinement of OprH-LPS interactions by molecular simulations. Biophys. J. 112:346–55
    [Google Scholar]
  43. 43. 
    Jefferies D, Hsu PC, Khalid S 2017. Through the lipopolysaccharide glass: A potent antimicrobial peptide induces phase changes in membranes. Biochemistry 56:1672–79
    [Google Scholar]
  44. 44. 
    Matthias KA, Strader MB, Nawar HF, Gao YS, Lee J et al. 2017. Heterogeneity in non-epitope loop sequence and outer membrane protein complexes alters antibody binding to the major porin protein PorB in serogroup B Neisseria meningitidis. Mol. Microbiol 105:934–53
    [Google Scholar]
  45. 45. 
    Hwang H, Paracini N, Parks JM, Lakey JH, Gumbart JC 2018. Distribution of mechanical stress in the Escherichia coli cell envelope. Biochim. Biophys. Acta Biomembr. 1860:2566–75
    [Google Scholar]
  46. 46. 
    Lee J, Pothula KR, Kleinekathöfer U, Im W 2018. Simulation study of Occk5 functional properties in Pseudomonas aeruginosa outer membranes. J. Phys. Chem. B 122:8185–92
    [Google Scholar]
  47. 47. 
    Shearer J, Khalid S. 2018. Communication between the leaflets of asymmetric membranes revealed from coarse-grain molecular dynamics simulations. Sci. Rep. 8:1805
    [Google Scholar]
  48. 48. 
    Ma HL, Khan A, Nangia S 2018. Dynamics of OmpF trimer formation in the bacterial outer membrane of Escherichia coli. . Langmuir 34:5623–34
    [Google Scholar]
  49. 49. 
    Kesireddy A, Pothula KR, Lee J, Patel DS, Pathania M et al. 2019. Modeling of specific lipopolysaccharide binding sites on a Gram-negative porin. J. Phys. Chem. B 123:5700–8
    [Google Scholar]
  50. 50. 
    Shearer J, Jefferies D, Khalid S 2019. Outer membrane proteins OmpA, FhuA, OmpF, EstA, BtuB, and OmpX have unique lipopolysaccharide fingerprints. J. Chem. Theory Comput. 15:2608–19
    [Google Scholar]
  51. 51. 
    Samsudin F, Khalid S. 2019. Movement of arginine through OprD: the energetics of permeation and the role of lipopolysaccharide in directing arginine to the protein. J. Phys. Chem. B 123:2824–32
    [Google Scholar]
  52. 52. 
    Golla VK, Sans-Serramitjana E, Pothula KR, Benier L, Bafna JA et al. 2019. Fosfomycin permeation through the outer membrane porin OmpF. Biophys. J. 116:258–69
    [Google Scholar]
  53. 53. 
    Bhamidimarri SP, Zahn M, Prajapati JD, Schleberger C, Soderholm S et al. 2019. A multidisciplinary approach toward identification of antibiotic scaffolds for Acinetobacter baumannii. . Structure 27:268–80
    [Google Scholar]
  54. 54. 
    Carpenter TS, Parkin J, Khalid S 2016. The free energy of small solute permeation through the Escherichia coli outer membrane has a distinctly asymmetric profile. J. Phys. Chem. Lett. 7:3446–51
    [Google Scholar]
  55. 55. 
    Parkin J, Khalid S. 2014. Atomistic molecular-dynamics simulations enable prediction of the arginine permeation pathway through OccD1/OprD from Pseudomonas aeruginosa. Biophys. . J. 1071853–61
  56. 56. 
    Hsu PC, Jefferies D, Khalid S 2016. Molecular dynamics simulations predict the pathways via which pristine fullerenes penetrate bacterial membranes. J. Phys. Chem. B 120:11170–79
    [Google Scholar]
  57. 57. 
    Holdbrook DA, Huber RG, Piggot TJ, Bond PJ, Khalid S 2016. Dynamics of crowded vesicles: local and global responses to membrane composition. PLOS ONE 11:e0156963
    [Google Scholar]
  58. 58. 
    Chavent M, Duncan AL, Rassam P, Birkholz O, Helie J et al. 2018. How nanoscale protein interactions determine the mesoscale dynamic organisation of bacterial outer membrane proteins. Nat. Commun. 9:2846
    [Google Scholar]
  59. 59. 
    Fowler PW, Helie J, Duncan A, Chavent M, Koldso H, Sansom MS 2016. Membrane stiffness is modified by integral membrane proteins. Soft Matter 12:7792–803
    [Google Scholar]
  60. 60. 
    Vance DE, Vance JE. 2002. Biochemistry of Lipids, Lipoproteins, and Membranes Amsterdam: Elsevier
  61. 61. 
    Shokri A, Larsson G. 2004. Characterisation of the Escherichia coli membrane structure and function during fedbatch cultivation. Microb. Cell Fact. 3:9
    [Google Scholar]
  62. 62. 
    Raetz CR. 1978. Enzymology, genetics, and regulation of membrane phospholipid synthesis in Escherichia coli. Microbiol. Rev. 42:614–59
    [Google Scholar]
  63. 63. 
    Vargiu AV, Ramaswamy VK, Malloci G, Malvacio I, Atzori A, Ruggerone P 2018. Computer simulations of the activity of RND efflux pumps. Res. Microbiol. 169:384–92
    [Google Scholar]
  64. 64. 
    Vargiu AV, Ramaswamy VK, Malvacio I, Malloci G, Kleinekathöfer U, Ruggerone P 2018. Water-mediated interactions enable smooth substrate transport in a bacterial efflux pump. Biochim. Biophys. Acta Gen. Subj. 1862:836–45
    [Google Scholar]
  65. 65. 
    Ramaswamy VK, Vargiu AV, Malloci G, Dreier J, Ruggerone P 2017. Molecular rationale behind the differential substrate specificity of bacterial RND multi-drug transporters. Sci. Rep. 7:8075
    [Google Scholar]
  66. 66. 
    Sjuts H, Vargiu AV, Kwasny SM, Nguyen ST, Kim HS et al. 2016. Molecular basis for inhibition of AcrB multidrug efflux pump by novel and powerful pyranopyridine derivatives. PNAS 113:3509–14
    [Google Scholar]
  67. 67. 
    Hughes GW, Hall SCL, Laxton CS, Sridhar P, Mahadi AH et al. 2019. Evidence for phospholipid export from the bacterial inner membrane by the Mla ABC transport system. Nat. Microbiol. 4:1692–705
    [Google Scholar]
  68. 68. 
    Pathania M, Acosta-Gutierrez S, Bhamidimarri SP, Basle A, Winterhalter M et al. 2018. Unusual constriction zones in the major porins OmpU and OmpT from Vibrio cholerae. . Structure 26:708–21.e4
    [Google Scholar]
  69. 69. 
    Abellon-Ruiz J, Kaptan SS, Basle A, Claudi B, Bumann D et al. 2017. Structural basis for maintenance of bacterial outer membrane lipid asymmetry. Nat. Microbiol. 2:1616–23
    [Google Scholar]
  70. 70. 
    Alcock F, Stansfeld PJ, Basit H, Habersetzer J, Baker MAB et al. 2016. Assembling the Tat protein translocase. eLife 5:e20718
    [Google Scholar]
  71. 71. 
    Chen YY, Capponi S, Zhu L, Gellenbeck P, Freites JA et al. 2017. YidC insertase of Escherichia coli: water accessibility and membrane shaping. Structure 25:1403–14
    [Google Scholar]
  72. 72. 
    Kim S, Pires MM, Im W 2018. Insight into elongation stages of peptidoglycan processing in bacterial cytoplasmic membranes. Sci. Rep. 8:17704
    [Google Scholar]
  73. 73. 
    Boags A, Samsudin F, Khalid S 2019. Details of hydrophobic entanglement between small molecules and Braun's lipoprotein within the cavity of the bacterial chaperone LolA. Sci. Rep. 9:3717
    [Google Scholar]
  74. 74. 
    Turner RD, Mesnage S, Hobbs JK, Foster SJ 2018. Molecular imaging of glycan chains couples cell-wall polysaccharide architecture to bacterial cell morphology. Nat. Commun. 9:1263
    [Google Scholar]
  75. 75. 
    Gumbart JC, Beeby M, Jensen GJ, Roux B 2014. Escherichia coli peptidoglycan structure and mechanics as predicted by atomic-scale simulations. PLOS Comput. Biol. 10:e1003475
    [Google Scholar]
  76. 76. 
    Samsudin F, Boags A, Piggot TJ, Khalid S 2017. Braun's lipoprotein facilitates OmpA interaction with the Escherichia coli cell wall. Biophys. J. 113:1496–504
    [Google Scholar]
  77. 77. 
    Park JS, Lee WC, Yeo KJ, Ryu KS, Kumarasiri M et al. 2012. Mechanism of anchoring of OmpA protein to the cell wall peptidoglycan of the gram-negative bacterial outer membrane. FASEB J 26:219–28
    [Google Scholar]
  78. 78. 
    Boags AT, Samsudin F, Khalid S 2019. Binding from both sides: TolR and full-length OmpA bind and maintain the local structure of the E. coli cell wall. Structure 27:713–24.e2
    [Google Scholar]
  79. 79. 
    Parkin J, Chavent M, Khalid S 2015. Molecular simulations of Gram-negative bacterial membranes: a vignette of some recent successes. Biophys. J. 109:461–68
    [Google Scholar]
  80. 80. 
    Kuhn HM, Meier-Dieter U, Mayer H 1988. ECA, the enterobacterial common antigen. FEMS Microbiol. Rev. 4:195–222
    [Google Scholar]
  81. 81. 
    Whitfield C. 2006. Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu. Rev. Biochem 75:39–68
    [Google Scholar]
  82. 82. 
    Clifton LA, Holt SA, Hughes AV, Daulton EL, Arunmanee W et al. 2015. An accurate in vitro model of the E. coli envelope. Angew. Chem. 54:11952–55
    [Google Scholar]
  83. 83. 
    Michaud-Agrawal N, Denning EJ, Woolf TB, Beckstein O 2011. MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem. 32:2319–27
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-103019-033434
Loading
/content/journals/10.1146/annurev-physchem-103019-033434
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error