1932

Abstract

Mitochondria are critical organelles responsible for regulating the metabolic status of skeletal muscle. These organelles exhibit remarkable plasticity by adapting their volume, structure, and function in response to chronic exercise, disuse, aging, and disease. A single bout of exercise initiates signaling to provoke increases in mitochondrial biogenesis, balanced by the onset of organelle turnover carried out by the mitophagy pathway. This accelerated turnover ensures the presence of a high functioning network of mitochondria designed for optimal ATP supply, with the consequence of favoring lipid metabolism, maintaining muscle mass, and reducing apoptotic susceptibility over the longer term. Conversely, aging and disuse are associated with reductions in muscle mass that are in part attributable to dysregulation of the mitochondrial network and impaired mitochondrial function. Therefore, exercise represents a viable, nonpharmaceutical therapy with the potential to reverse and enhance the impaired mitochondrial function observed with aging and chronic muscle disuse.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-020518-114310
2019-02-10
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/physiol/81/1/annurev-physiol-020518-114310.html?itemId=/content/journals/10.1146/annurev-physiol-020518-114310&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Hood DA, Gorski J, Terjung RL 1986. Oxygen cost of twitch and tetanic isometric contractions of rat skeletal muscle. Am. J. Physiol. 250:4E449–56
    [Google Scholar]
  2. 2.  Kirkwood SP, Munn EA, Brooks GA 1986. Mitochondrial reticulum in limb skeletal muscle. Am. J. Physiol. 251:3C395–402
    [Google Scholar]
  3. 3.  Ogata T, Yamasaki Y 1997. Ultra-high-resolution scanning electron microscopy of mitochondria and sarcoplasmic reticulum arrangement in human red, white, and intermediate muscle fibers. Anat. Rec. 248:2214–23
    [Google Scholar]
  4. 4.  Cogswell AM, Stevens RJ, Hood DA 1993. Properties of skeletal muscle mitochondria from subsarcolemmal and intermyofibrillar isolated regions. Am. J. Physiol. 264:2C383–89
    [Google Scholar]
  5. 5.  Picard M, White K, Turnbull DM 2013. Mitochondrial morphology, topology, and membrane interactions in skeletal muscle: a quantitative three-dimensional electron microscopy study. J. Appl. Physiol. 114:2161–71
    [Google Scholar]
  6. 6.  Hoppeler H. 1986. Exercise-induced ultrastructural changes in skeletal muscle. Integr. J. Sport. Med. 7:4187–204
    [Google Scholar]
  7. 7.  Ferreira R, Vitorino R, Alves RMP, Appell HJ, Powers SK et al. 2010. Subsarcolemmal and intermyofibrillar mitochondria proteome differences disclose functional specializations in skeletal muscle. Proteomics 10:173142–54
    [Google Scholar]
  8. 8.  Boncompagni S, Rossi AE, Micaroni M, Beznoussenko GV, Polishchuk RS et al. 2009. Mitochondria are linked to calcium stores in striated muscle by developmentally regulated tethering structures. Mol. Biol. Cell 20:31058–67
    [Google Scholar]
  9. 9.  Kayar SR, Hoppeler H, Mermod L, Weibel ER 1988. Mitochondrial size and shape in equine skeletal muscle: a three-dimensional reconstruction study. Anat. Rec. 222:4333–39
    [Google Scholar]
  10. 10.  Dahl R, Larsen S, Dohlmann TL, Qvortrup K, Helge JW et al. 2015. Three-dimensional reconstruction of the human skeletal muscle mitochondrial network as a tool to assess mitochondrial content and structural organization. Acta Physiol 213:1145–55
    [Google Scholar]
  11. 11.  Mishra P, Chan DC 2016. Metabolic regulation of mitochondrial dynamics. J. Cell Biol. 212:4379–87
    [Google Scholar]
  12. 12.  Losón OC, Song Z, Chen H, Chan DC 2013. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol. Biol. Cell 24:5659–67
    [Google Scholar]
  13. 13.  Iqbal S, Hood DA 2014. Cytoskeletal regulation of mitochondrial movements in myoblasts. Cytoskeleton 71:10564–72
    [Google Scholar]
  14. 14.  Glancy B, Hartnell LM, Combs CA, Fenmou A, Sun J et al. 2017. Power grid protection of the muscle mitochondrial reticulum. Cell Rep 19:3487–96
    [Google Scholar]
  15. 15.  Garry DJ, Ordway GA, Lorenz JN, Radford NB, Chin ER et al. 1998. Mice without myoglobin. Nature 395:6705905–8
    [Google Scholar]
  16. 16.  Kernec F, Ünlü M, Labeikovsky W, Minden JS, Koretsky AP 2001. Changes in the mitochondrial proteome from mouse hearts deficient in creatine kinase. Physiol. Genom. 6:2117–28
    [Google Scholar]
  17. 17.  Picard M, McManus MJ, Csordás G, Várnai P, Dorn GW et al. 2015. Trans-mitochondrial coordination of cristae at regulated membrane junctions. Nat. Commun. 6:6259
    [Google Scholar]
  18. 18.  Picard M, Gentil BJ, McManus MJ, White K, St. Louis K et al. 2013. Acute exercise remodels mitochondrial membrane interactions in mouse skeletal muscle. J. Appl. Physiol. 115:101562–71
    [Google Scholar]
  19. 19.  Kirkwood SP, Packer L, Brooks GA 1987. Effects of endurance training on a mitochondrial reticulum in limb skeletal muscle. Arch. Biochem. Biophys. 255:180–88
    [Google Scholar]
  20. 20.  Mishra P, Varuzhanyan G, Pham AH, Chan DC 2015. Mitochondrial dynamics is a distinguishing feature of skeletal muscle fiber types and regulates organellar compartmentalization. Cell Metab 22:61033–44
    [Google Scholar]
  21. 21.  Nielsen J, Gejl KD, Hey-Mogensen M, Holmberg H-C, Suetta C et al. 2017. Plasticity in mitochondrial cristae density allows metabolic capacity modulation in human skeletal muscle. J. Physiol. 595:2839–47
    [Google Scholar]
  22. 22.  Iqbal S, Ostojic O, Singh K, Joseph A-M, Hood DA 2013. Expression of mitochondrial fission and fusion regulatory proteins in skeletal muscle during chronic use and disuse. Muscle Nerve 48:6963–70
    [Google Scholar]
  23. 23.  Halling JF, Ringholm S, Olesen J, Prats C, Pilegaard H 2017. Exercise training protects against aging-induced mitochondrial fragmentation in mouse skeletal muscle in a PGC-1α dependent manner. Exp. Gerontol. 96:1–6
    [Google Scholar]
  24. 24.  Romanello V, Guadagnin E, Gomes L, Roder I, Sandri C et al. 2010. Mitochondrial fission and remodelling contributes to muscle atrophy. EMBO J 29:101774–85
    [Google Scholar]
  25. 25.  Koltai E, Hart N, Taylor AW, Goto S, Ngo JK et al. 2012. Age-associated declines in mitochondrial biogenesis and protein quality control factors are minimized by exercise training. Am. J. Physiol. Integr. Comp. Physiol. 303:2R127–34
    [Google Scholar]
  26. 26.  Adhihetty PJ, O'Leary MFN, Chabi B, Wicks KL, Hood DA 2007. Effect of denervation on mitochondrially mediated apoptosis in skeletal muscle. J. Appl. Physiol. 102:31143–51
    [Google Scholar]
  27. 27.  Singh K, Hood DA 2011. Effect of denervation-induced muscle disuse on mitochondrial protein import. Am. J. Cell Physiol. 300:1C138–45
    [Google Scholar]
  28. 28.  Carter HN, Chen CCW, Hood DA 2015. Mitochondria, muscle health, and exercise with advancing age. Physiology 30:3208–23
    [Google Scholar]
  29. 29.  Holloszy JO. 1967. Biochemical adaptations in muscle: effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J. Biol. Chem. 242:92278–82
    [Google Scholar]
  30. 30.  Hood DA. 2001. Invited review: contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol 90:31137–57
    [Google Scholar]
  31. 31.  Dudley GA, Tullson PC, Terjung RL 1987. Influence of mitochondrial content on the sensitivity of respiratory control. J. Biol. Chem. 262:199109–14
    [Google Scholar]
  32. 32.  Reichmann H, Hoppeler H, Mathieu-Costello O, von Bergen F, Pette D 1985. Biochemical and ultrastructural changes of skeletal muscle mitochondria after chronic electrical stimulation in rabbits. Pflügers Arch 404:11–9
    [Google Scholar]
  33. 33.  Larsen S, Nielsen J, Hansen CN, Nielsen LB, Wibrand F et al. 2012. Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J. Physiol. 590:143349–60
    [Google Scholar]
  34. 34.  Perry CGR, Kane DA, Lanza IR, Neufer PD 2013. Methods for assessing mitochondrial function in diabetes. Diabetes 62:41032–36
    [Google Scholar]
  35. 35.  Jacobs RA, Lundby C 2013. Mitochondria express enhanced quality as well as quantity in association with aerobic fitness across recreationally active individuals up to elite athletes. J. Appl. Physiol. 114:3344–50
    [Google Scholar]
  36. 36.  Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, Macdonald MJ et al. 2008. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J. Physiol. 586:1151–60
    [Google Scholar]
  37. 37.  Porter C, Reidy PT, Bhattarai N, Sidossis LS, Rasmussen BB 2015. Resistance exercise training alters mitochondrial function in human skeletal muscle. Med. Sci. Sports Exerc. 47:91922–31
    [Google Scholar]
  38. 38.  Holloway GP. 2017. Nutrition and training influences on the regulation of mitochondrial adenosine diphosphate sensitivity and bioenergetics. Sports Med 47:Suppl. 113–21
    [Google Scholar]
  39. 39.  Cannavino J, Brocca L, Sandri M, Grassi B, Bottinelli R, Pellegrino MA 2015. The role of alterations in mitochondrial dynamics and PGC-1α over-expression in fast muscle atrophy following hindlimb unloading. J. Physiol. 593:81981–95
    [Google Scholar]
  40. 40.  Mettauer B, Zoll J, Sanchez H, Lampert E, Ribera F et al. 2001. Oxidative capacity of skeletal muscle in heart failure patients versus sedentary or active control subjects. J. Am. Coll. Cardiol. 38:4947–54
    [Google Scholar]
  41. 41.  Wicks KL, Hood DA 1991. Mitochondrial adaptations in denervated muscle: relationship to muscle performance. Am. J. Physiol. Cell Physiol. 260:29C841–50
    [Google Scholar]
  42. 42.  Romanello V, Sandri M 2016. Mitochondrial quality control and muscle mass maintenance. Front. Physiol. 6:422
    [Google Scholar]
  43. 59.  Powers SK, Ji LL, Kavazis AN, Jackson MJ 2011. Reactive oxygen species: impact on skeletal muscle. Compr. Physiol. 1:2941–69
    [Google Scholar]
  44. 43.  Chabi B, Ljubicic V, Menzies KJ, Huang JH, Saleem A, Hood DA 2008. Mitochondrial function and apoptotic susceptibility in aging skeletal muscle. Aging Cell 7:12–12
    [Google Scholar]
  45. 44.  Montgomery MK, Turner N 2015. Mitochondrial dysfunction and insulin resistance: an update. Endocr. Connect. 4:1 https://doi.org/10.1530/EC-14-0092
    [Crossref] [Google Scholar]
  46. 45.  Payne BAI, Chinnery PF 2015. Mitochondrial dysfunction in aging: much progress but many unresolved questions. Biochim. Biophys. Acta 1847:111347–53
    [Google Scholar]
  47. 46.  Chin ER, Grange RW, Viau F, Simard AR, Humphries C et al. 2003. Alterations in slow-twitch muscle phenotype in transgenic mice overexpressing the Ca2+ buffering protein parvalbumin. J. Physiol. 547:2649–63
    [Google Scholar]
  48. 47.  Ojuka EO, Jones TE, Han D-H, Chen M, Holloszy JO 2003. Raising Ca2+ in L6 myotubes mimics effects of exercise on mitochondrial biogenesis in muscle. FASEB J 17:6675–81
    [Google Scholar]
  49. 48.  Wu H, Kanatous SB, Thurmond FA, Gallardo T, Isotani E et al. 2002. Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science 296:5566349–52
    [Google Scholar]
  50. 49.  Freyssenet D, Di Carlo M, Hood DA 1999. Calcium-dependent regulation of cytochrome c gene expression in skeletal muscle cells. Identification of a protein kinase C-dependent pathway. J. Biol. Chem. 274:149305–11
    [Google Scholar]
  51. 50.  Connor MK, Irrcher I, Hood DA 2001. Contractile activity-induced transcriptional activation of cytochrome c involves Sp1 and is proportional to mitochondrial ATP synthesis in C2C12 muscle cells. J. Biol. Chem. 276:1915898–904
    [Google Scholar]
  52. 51.  Hood DA, Parent G 1991. Metabolic and contractile responses of rat fast-twitch muscle to 10-Hz stimulation. Am. J. Physiol. 260:4C832–40
    [Google Scholar]
  53. 52.  Gowans GJ, Hawley SA, Ross FA, Hardie DG 2013. AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation. Cell Metab 18:4556–66
    [Google Scholar]
  54. 53.  Winder WW, Holmes BF, Rubink DS, Jensen EB, Chen M, Holloszy JO 2000. Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle. J. Appl. Physiol. 88:62219–26
    [Google Scholar]
  55. 54.  Jäger S, Handschin C, St-Pierre J, Spiegelman BM 2007. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. PNAS 104:2912017–22
    [Google Scholar]
  56. 55.  Irrcher I, Ljubicic V, Kirwan AF, Hood DA 2008. AMP-activated protein kinase-regulated activation of the PGC-1α promoter in skeletal muscle cells. PLOS ONE 3:10e3614
    [Google Scholar]
  57. 56.  Garcia-Roves PM, Osler ME, Holmström MH, Zierath JR 2008. Gain-of-function R225Q mutation in AMP-activated protein kinase γ3 subunit increases mitochondrial biogenesis in glycolytic skeletal muscle. J. Biol. Chem. 283:5135724–34
    [Google Scholar]
  58. 57.  O'Neill HM, Maarbjerg SJ, Crane JD, Jeppesen J, Jørgensen SB 2011. AMP-activated protein kinase (AMPK) β1β2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise. PNAS 108:3816092–97
    [Google Scholar]
  59. 58.  Toyama EQ, Herzig S, Courchet J, Lewis TL, Losón OC et al. 2016. Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 351:6270275–81
    [Google Scholar]
  60. 60.  Pogozelski AR, Geng T, Li P, Yin X, Lira VA et al. 2009. p38γ mitogen-activated protein kinase is a key regulator in skeletal muscle metabolic adaptation in mice. PLOS ONE 4:11e7934
    [Google Scholar]
  61. 61.  Saleem A, Iqbal S, Zhang Y, Hood DA 2015. Effect of p53 on mitochondrial morphology, import and assembly in skeletal muscle. Am. J. Physiol. Cell Physiol. 308:4C319–29
    [Google Scholar]
  62. 62.  Puigserver P, Rhee J, Lin J, Wu Z, Yoon JC et al. 2001. Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARγ coactivator-1. Mol. Cell 8:5971–82
    [Google Scholar]
  63. 63.  Koopman WJH, Verkaart S, Visch H-J, van der Westhuizen FH, Murphy MP et al. 2005. Inhibition of complex I of the electron transport chain causes O2⋅-mediated mitochondrial outgrowth. Am. J. Physiol. Cell Physiol. 288:6C1440–50
    [Google Scholar]
  64. 64.  Ogborn DI, McKay BR, Crane JD, Parise G, Tarnopolsky MA 2014. The unfolded protein response is triggered following a single, unaccustomed resistance-exercise bout. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307:6R664–69
    [Google Scholar]
  65. 65.  Memme JM, Oliveira AN, Hood DA 2016. Chronology of UPR activation in skeletal muscle adaptations to chronic contractile activity. Am. J. Physiol. Cell Physiol. 310:11C1024–36
    [Google Scholar]
  66. 66.  Bohnert KR, McMillan JD, Kumar A 2018. Emerging roles of ER stress and unfolded protein response pathways in skeletal muscle health and disease. J. Cell. Physiol. 233:167–78
    [Google Scholar]
  67. 67.  Wu J, Ruas JL, Estall JL, Rasbach KA, Choi JH et al. 2011. The unfolded protein response mediates adaptation to exercise in skeletal muscle through a PGC-1α/ATF6α complex. Cell Metab 13:2160–69
    [Google Scholar]
  68. 68.  Mesbah Moosavi ZS, Hood DA 2017. The unfolded protein response in relation to mitochondrial biogenesis in skeletal muscle cells. Am. J. Physiol. Cell Physiol. 312:5C583–94
    [Google Scholar]
  69. 69.  Cartee GD, Hepple RT, Bamman MM, Zierath JR 2016. Exercise promotes healthy aging of skeletal muscle. Cell Metab 23:61034–47
    [Google Scholar]
  70. 70.  Ljubicic V, Hood DA 2009. Diminished contraction-induced intracellular signaling towards mitochondrial biogenesis in aged skeletal muscle. Aging Cell 8:4394–404
    [Google Scholar]
  71. 71.  Ljubicic V, Joseph A-M, Adhihetty PJ, Huang JH, Saleem A et al. 2009. Molecular basis for an attenuated mitochondrial adaptive plasticity in aged skeletal muscle. Aging 1:9818–30
    [Google Scholar]
  72. 72.  Reznick RM, Zong H, Li J, Morino K, Moore IK et al. 2007. Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell Metab 5:2151–56
    [Google Scholar]
  73. 73.  Lanza IR, Short DK, Short KR, Raghavakaimal S, Basu R et al. 2008. Endurance exercise as a countermeasure for aging. Diabetes 57:112933–42
    [Google Scholar]
  74. 74.  Carter HN, Kim Y, Erlich AT, Zarrin-khat D, Hood DA 2018. Autophagy and mitophagy flux in young and aged skeletal muscle following chronic contractile activity. J. Physiol. 596:163567–84
    [Google Scholar]
  75. 75.  Ibebunjo C, Chick JM, Kendall T, Eash JK, Li C et al. 2013. Genomic and proteomic profiling reveals reduced mitochondrial function and disruption of the neuromuscular junction driving rat sarcopenia. Mol. Cell. Biol. 33:2194–212
    [Google Scholar]
  76. 76.  Lombardi A, Silvestri E, Cioffi F, Senese R, Lanni A et al. 2009. Defining the transcriptomic and proteomic profiles of rat ageing skeletal muscle by the use of a cDNA array, 2D- and Blue native-PAGE approach. J. Proteom. 72:4708–21
    [Google Scholar]
  77. 77.  Melov S, Tarnopolsky MA, Beckman K, Felkey K, Hubbard A 2007. Resistance exercise reverses aging in human skeletal muscle. PLOS ONE 2:5e465
    [Google Scholar]
  78. 78.  Garcia S, Nissanka N, Mareco EA, Rossi S, Peralta S et al. 2018. Overexpression of PGC-1α in aging muscle enhances a subset of young-like molecular patterns. Aging Cell 17:2e12707
    [Google Scholar]
  79. 79.  Brault JJ, Jespersen JG, Goldberg AL 2010. Peroxisome proliferator-activated receptor gamma coactivator 1α or 1β overexpression inhibits muscle protein degradation, induction of ubiquitin ligases, and disuse atrophy. J. Biol. Chem. 285:2519460–71
    [Google Scholar]
  80. 80.  Adhihetty PJ, Uguccioni G, Leick L, Hidalgo J, Pilegaard H, Hood DA 2009. The role of PGC-1α on mitochondrial function and apoptotic susceptibility in muscle. Am. J. Physiol. Cell Physiol. 297:1C217–25
    [Google Scholar]
  81. 81.  Rowe GC, El-Khoury R, Patten IS, Rustin P, Arany Z 2012. PGC-1α is dispensable for exercise-induced mitochondrial biogenesis in skeletal muscle. PLOS ONE 7:7e41817
    [Google Scholar]
  82. 82.  Menzies KJ, Singh K, Saleem A, Hood DA 2013. Sirtuin 1-mediated effects of exercise and resveratrol on mitochondrial biogenesis. J. Biol. Chem. 288:106968–79
    [Google Scholar]
  83. 83.  Carter HN, Hood DA 2012. Contractile activity-induced mitochondrial biogenesis and mTORC1. Am. J. Physiol. Cell Physiol. 303:5C540–47
    [Google Scholar]
  84. 84.  Saleem A, Adhihetty PJ, Hood DA 2009. Role of p53 in mitochondrial biogenesis and apoptosis in skeletal muscle. Physiol. Genom. 3:58–66
    [Google Scholar]
  85. 85.  Fan W, Waizenegger W, Lin CS, Sorrentino V, He MX et al. 2017. PPARδ promotes running endurance by preserving glucose. Cell Metab 25:51186–93.e4
    [Google Scholar]
  86. 86.  Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR et al. 1981. Sequence and organization of the human mitochondrial genome. Nature 290:5806457–65
    [Google Scholar]
  87. 87.  Scarpulla RC. 2008. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol. Rev. 88:2611–38
    [Google Scholar]
  88. 88.  Granata C, Oliveira RSF, Little JP, Renner K, Bishop DJ 2017. Sprint-interval but not continuous exercise increases PGC-1α protein content and p53 phosphorylation in nuclear fractions of human skeletal muscle. Sci. Rep. 7:44227
    [Google Scholar]
  89. 89.  Bartlett JD, Joo CH, Jeong T-S, Louhelainen J, Cochran AJ et al. 2012. Matched work high-intensity interval and continuous running induce similar increases in PGC-1 mRNA, AMPK, p38, and p53 phosphorylation in human skeletal muscle. J. Appl. Physiol. 112:71135–43
    [Google Scholar]
  90. 90.  Saleem A, Hood DA 2013. Acute exercise induces tumour suppressor protein p53 translocation to the mitochondria and promotes a p53-Tfam-mitochondrial DNA complex in skeletal muscle. J. Physiol. 591:Pt. 143625–36
    [Google Scholar]
  91. 91.  Park J-Y, Wang P-Y, Matsumoto T, Sung HJ, Ma W et al. 2009. p53 improves aerobic exercise capacity and augments skeletal muscle mitochondrial DNA content. Circ. Res. 105:7705–12
    [Google Scholar]
  92. 92.  Zhuang J, Kamp WM, Li J, Liu C, Kang J-G et al. 2016. Forkhead box O3A (FOXO3) and the mitochondrial disulfide relay carrier (CHCHD4) regulate p53 protein nuclear activity in response to exercise. J. Biol. Chem. 291:4824819–27
    [Google Scholar]
  93. 93.  Heyne K, Mannebach S, Wuertz E, Knaup KX, Mahyar-Roemer M, Roemer K 2004. Identification of a putative p53 binding sequence within the human mitochondrial genome. FEBS Lett 578:198–202
    [Google Scholar]
  94. 94.  Yoshida Y, Izumi H, Torigoe T, Ishiguchi H, Itoh H et al. 2003. p53 physically interacts with mitochondrial transcription factor A and differentially regulates binding to damaged DNA. Cancer Res 63:3729–34
    [Google Scholar]
  95. 95.  Wong TS, Rajagopalan S, Freund SM, Rutherford TJ, Andreeva A et al. 2009. Biophysical characterizations of human mitochondrial transcription factor A and its binding to tumor suppressor p53. Nucleic Acids Res 37:206765–83
    [Google Scholar]
  96. 96.  Donahue RJ, Razmara M, Hoek JB, Knudsen TB 2001. Direct influence of the p53 tumor suppressor on mitochondrial biogenesis and function. FASEB J 15:3635–44
    [Google Scholar]
  97. 97.  Matoba S, Kang J-G, Patino WD, Wragg A, Boehm M et al. 2006. p53 regulates mitochondrial respiration. Science 312:57801650–53
    [Google Scholar]
  98. 98.  Qi Z, He J, Zhang Y, Shao Y, Ding S 2011. Exercise training attenuates oxidative stress and decreases p53 protein content in skeletal muscle of type 2 diabetic Goto-Kakizaki rats. Free Radic. Biol. Med. 50:794–800
    [Google Scholar]
  99. 99.  Beyfuss K, Erlich AT, Triolo M, Hood DA 2018. The role of p53 in determining mitochondrial adaptations to endurance training in skeletal muscle. Sci. Rep. 8:14710
    [Google Scholar]
  100. 100.  Norrbom J, Wallman SE, Gustafsson T, Rundqvist H, Jansson E, Sundberg CJ 2010. Training response of mitochondrial transcription factors in human skeletal muscle. Acta Physiol 198:171–79
    [Google Scholar]
  101. 101.  Gordon JW, Rungi AA, Inagaki H, Hood DA 2001. Effects of contractile activity on mitochondrial transcription factor A expression in skeletal muscle. J. Appl. Physiol. 90:389–96
    [Google Scholar]
  102. 102.  Collu-Marchese M, Shuen M, Pauly M, Saleem A, Hood DA 2015. The regulation of mitochondrial transcription factor A (Tfam) expression during skeletal muscle cell differentiation. Biosci. Rep. 35:3e00221
    [Google Scholar]
  103. 103.  Tryon LD, Crilly MJ, Hood DA 2015. Effect of denervation on the regulation of mitochondrial transcription factor A expression in skeletal muscle. Am. J. Physiol. Cell Physiol. 309:4C228–38
    [Google Scholar]
  104. 104.  Schwarzkopf M, Coletti D, Sassoon D, Marazzi G 2006. Muscle cachexia is regulated by a p53-PW1/Peg3-dependent pathway. Genes Dev 20:243440–52
    [Google Scholar]
  105. 105.  Calvo SE, Clauser KR, Mootha VK 2016. MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res 44:D1D1251–57
    [Google Scholar]
  106. 106.  Wiedemann N, Pfanner N 2017. Mitochondrial machineries for protein import and assembly. Annu. Rev. Biochem. 86:685–714
    [Google Scholar]
  107. 107.  Opalińska M, Meisinger C 2015. Metabolic control via the mitochondrial protein import machinery. Curr. Opin. Cell Biol. 33:42–48
    [Google Scholar]
  108. 108.  Takahashi M, Hood DA 1996. Protein import into subsarcolemmal and intermyofibrillar skeletal muscle mitochondria: differential import regulation in distinct subcellular regions. J. Biol. Chem. 271:4427285–91
    [Google Scholar]
  109. 109.  Takahashi M, Chesley A, Freyssenet D, Hood DA 1998. Contractile activity-induced adaptations in the mitochondrial protein import system. Am. J. Physiol. 274:5C1380–87
    [Google Scholar]
  110. 110.  Joseph A, Hood DA 2012. Plasticity of TOM complex assembly in skeletal muscle mitochondria in response to chronic contractile activity. Mitochondrion 12:2305–12
    [Google Scholar]
  111. 111.  Nickel C, Horneff R, Heermann R, Neumann B, Jung K et al. 2019. Phosphorylation of the outer membrane mitochondrial protein OM64 influences protein import into mitochondria. Mitochondrion 44:93–102
    [Google Scholar]
  112. 112.  Kravic B, Harbauer AB, Romanello V, Simeone L, Vögtle F-N et al. 2017. In mammalian skeletal muscle, phosphorylation of TOMM22 by protein kinase CSNK2/CK2 controls mitophagy. Autophagy 14:2311–35
    [Google Scholar]
  113. 113.  Fiorese CJ, Schulz AM, Lin YF, Rosin N, Pellegrino MW, Haynes CM 2016. The transcription factor ATF5 mediates a mammalian mitochondrial UPR. Curr. Biol. 26:152037–43
    [Google Scholar]
  114. 114.  Oliveira AN, Hood DA 2018. Effect of Tim23 knockdown in vivo on mitochondrial protein import and retrograde signaling to the UPRmt in muscle. Am. J. Physiol. Cell Physiol. 315:C516–26
    [Google Scholar]
  115. 115.  Huang JH, Joseph AM, Ljubicic V, Iqbal S, Hood DA 2010. Effect of age on the processing and import of matrix-destined mitochondrial proteins in skeletal muscle. J. Gerontol. A Biol. Sci. Med. Sci. 65:2138–46
    [Google Scholar]
  116. 116.  Joseph A-M, Ljubicic V, Adhihetty PJ, Hood DA 2010. Biogenesis of the mitochondrial Tom40 channel in skeletal muscle from aged animals and its adaptability to chronic contractile activity. Am. J. Physiol. Cell Physiol. 298:6C1308–14
    [Google Scholar]
  117. 117.  Zhang Y, Iqbal S, O'Leary MFN, Menzies KJ, Saleem A et al. 2013. Altered mitochondrial morphology and defective protein import reveal novel roles for Bax and/or Bak in skeletal muscle. Am. J. Physiol. Cell Physiol. 305:5C502–11
    [Google Scholar]
  118. 118.  Wu JJ, Quijano C, Chen E, Liu H, Cao L et al. 2009. Mitochondrial dysfunction and oxidative stress mediate the physiological impairment induced by the disruption of autophagy. Aging 1:4425–37
    [Google Scholar]
  119. 119.  Parousis A, Carter HN, Tran C, Erlich AT, Mesbah Moosavi ZS et al. 2018. Contractile activity attenuates autophagy suppression and reverses mitochondrial defects in skeletal muscle cells. Autophagy 14:1886–97
    [Google Scholar]
  120. 120.  Kondapalli C, Kazlauskaite A, Zhang N, Woodroof HI, Campbell DG et al. 2012. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol 2:5120080
    [Google Scholar]
  121. 121.  Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K et al. 2010. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 189:2211–21
    [Google Scholar]
  122. 122.  Koyano F, Okatsu K, Kosako H, Tamura Y, Go E et al. 2014. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510:7503162–66
    [Google Scholar]
  123. 123.  Ding W-X, Ni H-M, Li M, Liao Y, Chen X et al. 2010. Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming. J. Biol. Chem. 285:3627879–90
    [Google Scholar]
  124. 124.  Ju J-S, Varadhachary AS, Miller SE, Weihl CC 2010. Quantitation of “autophagic flux” in mature skeletal muscle. Autophagy 6:7929–35
    [Google Scholar]
  125. 125.  Laker RC, Xu P, Ryall KA, Sujkowski A, Kenwood BM et al. 2014. A novel MitoTimer reporter gene for mitochondrial content, structure, stress, and damage in vivo. J. Biol. Chem 289:1712005–15
    [Google Scholar]
  126. 126.  Sun N, Yun J, Liu J, Malide D, Liu C et al. 2015. Measuring in vivo mitophagy. Mol. Cell 60:4685–96
    [Google Scholar]
  127. 127.  Laker RC, Drake JC, Wilson RJ, Lira VA, Lewellen BM et al. 2017. Ampk phosphorylation of Ulk1 is required for targeting of mitochondria to lysosomes in exercise-induced mitophagy. Nat. Commun. 8:548
    [Google Scholar]
  128. 128.  Vainshtein A, Tryon LD, Pauly M, Hood DA 2015. Role of PGC-1α during acute exercise-induced autophagy and mitophagy in skeletal muscle. Am. J. Physiol. Cell Physiol. 308:9C710–19
    [Google Scholar]
  129. 129.  Chen CCW, Erlich AT, Hood DA 2018. Role of Parkin and endurance training on mitochondrial turnover in skeletal muscle. Skelet. Muscle 8:10
    [Google Scholar]
  130. 130.  Chen CCW, Erlich AT, Crilly MJ, Hood DA 2018. Parkin is required for exercise-induced mitophagy in muscle: impact of aging. Am. J. Physiol. Endocrinol. Metab. 315:E404–15
    [Google Scholar]
  131. 131.  Dun Y, Liu S, Zhang W, Xie M, Qiu L 2017. Exercise combined with Rhodiolasacra supplementation improves exercise capacity and ameliorates exhaustive exercise-induced muscle damage through enhancement of mitochondrial quality control. Oxid. Med. Cell. Longev. 2017:8024857
    [Google Scholar]
  132. 132.  Ju J, Jeon S, Park J, Lee J, Lee S et al. 2016. Autophagy plays a role in skeletal muscle mitochondrial biogenesis in an endurance exercise-trained condition. J. Physiol. Sci. 66:5417–30
    [Google Scholar]
  133. 133.  Lira VA, Okutsu M, Zhang M, Greene NP, Laker RC et al. 2013. Autophagy is required for exercise training-induced skeletal muscle adaptation and improvement of physical performance. FASEB J 27:104184–93
    [Google Scholar]
  134. 134.  Tarpey MD, Davy KP, McMillan RP, Bowser SM, Halliday TM et al. 2017. Skeletal muscle autophagy and mitophagy in endurance-trained runners before and after a high-fat meal. Mol. Metab. 6:121597–1609
    [Google Scholar]
  135. 135.  Ljubicic V, Hood DA 2009. Specific attenuation of protein kinase phosphorylation in muscle with a high mitochondrial content. Am. J. Physiol. Metab. 297:3E749–58
    [Google Scholar]
  136. 136.  Vainshtein A, Desjardins EM, Armani A, Sandri M, Hood DA 2015. PGC-1α modulates denervation-induced mitophagy in skeletal muscle. Skelet. Muscle 5:9
    [Google Scholar]
  137. 137.  Tamura Y, Kitaoka Y, Matsunaga Y, Hoshino D, Hatta H 2015. Daily heat stress treatment rescues denervation-activated mitochondrial clearance and atrophy in skeletal muscle. J. Physiol. 593:122707–20
    [Google Scholar]
  138. 138.  Kang C, Yeo D, Ji LL 2016. Muscle immobilization activates mitophagy and disrupts mitochondrial dynamics in mice. Acta Physiol 218:3188–97
    [Google Scholar]
  139. 139.  Furuya N, Ikeda S-I, Sato S, Soma S, Ezaki J et al. 2014. PARK2/Parkin-mediated mitochondrial clearance contributes to proteasome activation during slow-twitch muscle atrophy via NFE2L1 nuclear translocation. Autophagy 10:4631–41
    [Google Scholar]
  140. 140.  O'Leary MF, Vainshtein A, Iqbal S, Ostojic O, Hood DA 2013. Adaptive plasticity of autophagic proteins to denervation in aging skeletal muscle. Am. J. Physiol. Physiol. 304:5C422–30
    [Google Scholar]
  141. 141.  Raben N, Wong A, Ralston E, Myerowitz R 2012. Autophagy and mitochondria in Pompe disease: nothing is so new as what has long been forgotten. Am. J. Med. Genet. C Semin. Med. Genet. 160C:113–21
    [Google Scholar]
  142. 142.  Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M et al. 2009. A gene network regulating lysosomal biogenesis and function. Science 325:5939473–77
    [Google Scholar]
  143. 143.  Mansueto G, Armani A, Viscomi C, D'Orsi L, De Cegli R et al. 2017. Transcription factor EB controls metabolic flexibility during exercise. Cell Metab 25:1182–96
    [Google Scholar]
  144. 144.  Settembre C, Zoncu R, Medina DL, Vetrini F, Erdin S et al. 2012. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J 31:51095–108
    [Google Scholar]
  145. 145.  Erlich AT, Brownlee DM, Beyfuss K, Hood DA 2018. Exercise induces TFEB expression and activity in skeletal muscle in a PGC-1α-dependent manner. Am. J. Physiol. Cell Physiol. 314:1C62–72
    [Google Scholar]
  146. 146.  Kim Y, Hood DA 2017. Regulation of the autophagy system during chronic contractile activity-induced muscle adaptations. Physiol. Rep. 5:14e13307
    [Google Scholar]
  147. 147.  Max SR, Mayer RF, Vogelsang L 1971. Lysosomes and disuse atrophy of skeletal muscle. Arch. Biochem. Biophys. 146:1227–32
    [Google Scholar]
  148. 148.  Örlander J, Kiessling K-H, Larsson L, Karlsson J, Aniansson A 1978. Skeletal muscle metabolism and ultrastructure in relation to age in sedentary men. Acta Physiol. Scand. 104:3249–61
    [Google Scholar]
  149. 149.  Powers SK, Wiggs MP, Duarte JA, Zergeroglu AM, Demirel HA 2012. Mitochondrial signaling contributes to disuse muscle atrophy. Am. J. Physiol. Endocrinol. Metab. 303:1E31–39
    [Google Scholar]
  150. 150.  Medina DL, Di Paola S, Peluso I, Armani A, De Stefani D et al. 2015. Lyosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat. Cell Biol. 17:3288–99
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-020518-114310
Loading
/content/journals/10.1146/annurev-physiol-020518-114310
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error