1932

Abstract

On Earth, all life is exposed to dramatic changes in the environment over the course of the day; consequently, organisms have evolved strategies to both adapt to and anticipate these 24-h oscillations. As a result, time of day is a major regulator of mammalian physiology and processes, including transcription, signaling, metabolism, and muscle contraction, all of which oscillate over the course of the day. In particular, the heart is subject to wide fluctuations in energetic demand throughout the day as a result of waking, physical activity, and food intake patterns. Daily rhythms in cardiovascular function ensure that increased delivery of oxygen, nutrients, and endocrine factors to organs during the active period and the removal of metabolic by-products are in balance. Failure to maintain these physiologic rhythms invariably has pathologic consequences. This review highlights rhythms that underpin cardiac physiology. More specifically, we summarize the key aspects of cardiac physiology that oscillate over the course of the day and discuss potential mechanisms that regulate these 24-h rhythms.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-020518-114349
2020-02-10
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/physiol/82/1/annurev-physiol-020518-114349.html?itemId=/content/journals/10.1146/annurev-physiol-020518-114349&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Edery I. 2000. Circadian rhythms in a nutshell. Physiol. Genom. 3:59–74
    [Google Scholar]
  2. 2. 
    Takahashi JS, Hong HK, Ko CH, McDearmon EL 2008. The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat. Rev. Genet. 9:764–75
    [Google Scholar]
  3. 3. 
    Degaute JP, van de Borne P, Linkowski P, Van Cauter E 1991. Quantitative analysis of the 24-hour blood pressure and heart rate patterns in young men. Hypertension 18:199–210
    [Google Scholar]
  4. 4. 
    Bass J, Takahashi JS. 2010. Circadian integration of metabolism and energetics. Science 330:1349–54
    [Google Scholar]
  5. 5. 
    Martino TA, Young ME. 2015. Influence of the cardiomyocyte circadian clock on cardiac physiology and pathophysiology. J. Biol. Rhythms 30:183–205
    [Google Scholar]
  6. 6. 
    Gamble KL, Berry R, Frank SJ, Young ME 2014. Circadian clock control of endocrine factors. Nat. Rev. Endocrinol. 10:466–75
    [Google Scholar]
  7. 7. 
    Smolensky MH, Hermida RC, Reinberg A, Sackett-Lundeen L, Portaluppi F 2016. Circadian disruption: new clinical perspective of disease pathology and basis for chronotherapeutic intervention. Chronobiol. Int. 33:1101–19
    [Google Scholar]
  8. 8. 
    Prinz PN, Halter J, Benedetti C, Raskind M 1979. Circadian variation of plasma catecholamines in young and old men: relation to rapid eye movement and slow wave sleep. J. Clin. Endocrinol. Metab. 49:300–4
    [Google Scholar]
  9. 9. 
    Richards AM, Nicholls MG, Espiner EA, Ikram H, Cullens M, Hinton D 1986. Diurnal patterns of blood pressure, heart rate and vasoactive hormones in normal man. Clin. Exp. Hypertens. A 8:153–66
    [Google Scholar]
  10. 10. 
    Turton MB, Deegan T. 1974. Circadian variations of plasma catecholamine, cortisol and immunoreactive insulin concentrations in supine subjects. Clin. Chim. Acta 55:389–97
    [Google Scholar]
  11. 11. 
    Scheer FA, Hu K, Evoniuk H, Kelly EE, Malhotra A et al. 2010. Impact of the human circadian system, exercise, and their interaction on cardiovascular function. PNAS 107:20541–46
    [Google Scholar]
  12. 12. 
    Gekakis N, Staknis D, Nguyen H, Davis F, Wilsbacher L et al. 1998. Role of the CLOCK protein in the mammalian circadian mechanism. Science 280:1564–69
    [Google Scholar]
  13. 13. 
    Hogenesch J, Gu Y, Jain S, Bradfield C 1998. The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. PNAS 95:5474–79
    [Google Scholar]
  14. 14. 
    Kume K, Zylka M, Sriram S, Shearman L, Weaver D et al. 1999. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98:193–205
    [Google Scholar]
  15. 15. 
    Shearman L, Sriram S, Weaver D, Maywood E, Chaves I et al. 2000. Interacting molecular loops in the mammalian circadian clock. Science 288:1013–19
    [Google Scholar]
  16. 16. 
    Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D et al. 2002. The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110:251–60
    [Google Scholar]
  17. 17. 
    Durgan D, Hotze M, Tomlin T, Egbejimi O, Graveleau C et al. 2005. The intrinsic circadian clock within the cardiomyocyte. Am. J. Physiol. Heart Circ. Physiol. 289:H1530–41
    [Google Scholar]
  18. 18. 
    Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB 2014. A circadian gene expression atlas in mammals: implications for biology and medicine. PNAS 111:16219–24
    [Google Scholar]
  19. 19. 
    Young ME, Brewer RA, Peliciari-Garcia RA, Collins HE, He L et al. 2014. Cardiomyocyte-specific BMAL1 plays critical roles in metabolism, signaling, and maintenance of contractile function of the heart. J. Biol. Rhythms 29:257–76
    [Google Scholar]
  20. 20. 
    Bray M, Shaw C, Moore M, Garcia R, Zanquetta M et al. 2008. Disruption of the circadian clock within the cardiomyocyte influences myocardial contractile function; metabolism; and gene expression. Am. J. Physiol. Heart Circ. Physiol. 294:H1036–47
    [Google Scholar]
  21. 21. 
    Durgan DJ, Tsai JY, Grenett MH, Pat BM, Ratcliffe WF et al. 2011. Evidence suggesting that the cardiomyocyte circadian clock modulates responsiveness of the heart to hypertrophic stimuli in mice. Chronobiol. Int. 28:187–203
    [Google Scholar]
  22. 22. 
    McGinnis GR, Tang Y, Brewer RA, Brahma MK, Stanley HL et al. 2017. Genetic disruption of the cardiomyocyte circadian clock differentially influences insulin-mediated processes in the heart. J. Mol. Cell. Cardiol. 110:80–95
    [Google Scholar]
  23. 23. 
    Durgan D, Trexler N, Egbejimi O, McElfresh T, Suk H et al. 2006. The circadian clock within the cardiomyocyte is essential for responsiveness of the heart to fatty acids. J. Biol. Chem. 281:24254–69
    [Google Scholar]
  24. 24. 
    Young ME, Bray MS. 2007. Potential role for peripheral circadian clock dyssynchrony in the pathogenesis of cardiovascular dysfunction. Sleep Med 8:656–67
    [Google Scholar]
  25. 25. 
    Son GH, Chung S, Choe HK, Kim HD, Baik SM et al. 2008. Adrenal peripheral clock controls the autonomous circadian rhythm of glucocorticoid by causing rhythmic steroid production. PNAS 105:20970–75
    [Google Scholar]
  26. 26. 
    Kong TQ Jr., Goldberger JJ, Parker M, Wang T, Kadish AH. 1995. Circadian variation in human ventricular refractoriness. Circulation 92:1507–16
    [Google Scholar]
  27. 27. 
    Boudreau P, Dumont G, Kin NM, Walker CD, Boivin DB 2011. Correlation of heart rate variability and circadian markers in humans. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011:681–82
    [Google Scholar]
  28. 28. 
    Bexton RS, Vallin HO, Camm AJ 1986. Diurnal variation of the QT interval–influence of the autonomic nervous system. Br. Heart J. 55:253–58
    [Google Scholar]
  29. 29. 
    Schroder EA, Lefta M, Zhang X, Bartos DC, Feng HZ et al. 2013. The cardiomyocyte molecular clock, regulation of Scn5a, and arrhythmia susceptibility. Am. J. Physiol. Cell Physiol. 304:C954–65
    [Google Scholar]
  30. 30. 
    Zhu Y, Hanafy MA, Killingsworth CR, Walcott GP, Young ME, Pogwizd SM 2014. Morning surge of ventricular arrhythmias in a new arrhythmogenic canine model of chronic heart failure is associated with attenuation of time-of-day dependence of heart rate and autonomic adaptation, and reduced cardiac chaos. PLOS ONE 9:e105379
    [Google Scholar]
  31. 31. 
    du Pre BC, Dierickx P, Crnko S, Doevendans PA, Vos MA et al. 2017. Neonatal rat cardiomyocytes as an in vitro model for circadian rhythms in the heart. J. Mol. Cell. Cardiol. 112:58–63
    [Google Scholar]
  32. 32. 
    Curtis AM, Cheng Y, Kapoor S, Reilly D, Price TS, Fitzgerald GA 2007. Circadian variation of blood pressure and the vascular response to asynchronous stress. PNAS 104:3450–55
    [Google Scholar]
  33. 33. 
    Tong M, Watanabe E, Yamamoto N, Nagahata-Ishiguro M, Maemura K et al. 2013. Circadian expressions of cardiac ion channel genes in mouse might be associated with the central clock in the SCN but not the peripheral clock in the heart. Biol. Rhythm Res. 44:519–30
    [Google Scholar]
  34. 34. 
    Schroder EA, Burgess DE, Zhang X, Lefta M, Smith JL et al. 2015. The cardiomyocyte molecular clock regulates the circadian expression of Kcnh2 and contributes to ventricular repolarization. Heart Rhythm 12:1306–14
    [Google Scholar]
  35. 35. 
    Jeyaraj D, Haldar SM, Wan X, McCauley MD, Ripperger JA et al. 2012. Circadian rhythms govern cardiac repolarization and arrhythmogenesis. Nature 483:96–99
    [Google Scholar]
  36. 36. 
    Ko ML, Shi L, Tsai JY, Young ME, Neuendorff N et al. 2011. Cardiac-specific mutation of Clock alters the quantitative measurements of physical activities without changing behavioral circadian rhythms. J. Biol. Rhythms 26:412–22
    [Google Scholar]
  37. 37. 
    Yamashita T, Sekiguchi A, Iwasaki YK, Sagara K, Iinuma H et al. 2003. Circadian variation of cardiac K+ channel gene expression. Circulation 107:1917–22
    [Google Scholar]
  38. 38. 
    Chen Y, Zhu D, Yuan J, Han Z, Wang Y et al. 2016. CLOCK-BMAL1 regulate the cardiac L-type calcium channel subunit CACNA1C through PI3K-Akt signaling pathway. Can. J. Physiol. Pharmacol. 94:1023–32
    [Google Scholar]
  39. 39. 
    Karabag T, Aydin M, Dogan SM, Sayin MR, Cetiner MA 2011. The influence of circadian variations on echocardiographic parameters in healthy people. Echocardiography 28:612–18
    [Google Scholar]
  40. 40. 
    Voutilainen S, Kupari M, Hippelainen M, Karppinen K, Ventila M 1996. Circadian variation of left ventricular diastolic function in healthy people. Heart 75:35–39
    [Google Scholar]
  41. 41. 
    Young M, Razeghi P, Cedars A, Guthrie P, Taegtmeyer H 2001. Intrinsic diurnal variations in cardiac metabolism and contractile function. Circ. Res. 89:1199–208
    [Google Scholar]
  42. 42. 
    Young ME. 2009. Anticipating anticipation: pursuing identification of cardiomyocyte circadian clock function. J. Appl. Physiol. 107:1339–47
    [Google Scholar]
  43. 43. 
    Sachan N, Dey A, Rotter D, Grinsfelder DB, Battiprolu PK et al. 2011. Sustained hemodynamic stress disrupts normal circadian rhythms in calcineurin-dependent signaling and protein phosphorylation in the heart. Circ. Res. 108:437–45
    [Google Scholar]
  44. 44. 
    Podobed P, Pyle WG, Ackloo S, Alibhai FJ, Tsimakouridze EV et al. 2014. The day/night proteome in the murine heart. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307:R121–37
    [Google Scholar]
  45. 45. 
    Martino T, Arab S, Straume M, Belsham DD, Tata N et al. 2004. Day/night rhythms in gene expression of the normal murine heart. J. Mol. Med. 82:256–64
    [Google Scholar]
  46. 46. 
    Storch KF, Lipan O, Leykin I, Viswanathan N, Davis FC et al. 2002. Extensive and divergent circadian gene expression in liver and heart. Nature 417:78–83
    [Google Scholar]
  47. 47. 
    Hannan RD, Stennard FA, West AK 1993. Expression of c-fos and related genes in the rat heart in response to norepinephrine. J. Mol. Cell. Cardiol. 25:1137–48
    [Google Scholar]
  48. 48. 
    Ni YG, Wang N, Cao DJ, Sachan N, Morris DJ et al. 2007. FoxO transcription factors activate Akt and attenuate insulin signaling in heart by inhibiting protein phosphatases. PNAS 104:20517–22
    [Google Scholar]
  49. 49. 
    Barger P, Kelly D. 2000. PPAR signaling in the control of cardiac energy metabolism. Trends Cardiovasc. Med. 10:238–45
    [Google Scholar]
  50. 50. 
    Oakley RH, Cruz-Topete D, He B, Foley JF, Myers PH et al. 2019. Cardiomyocyte glucocorticoid and mineralocorticoid receptors directly and antagonistically regulate heart disease in mice. Sci. Signal 12:eaau9685
    [Google Scholar]
  51. 51. 
    Takahashi J. 1993. Circadian-clock regulation of gene expression. Curr. Opin. Genet. Dev. 3:301–9
    [Google Scholar]
  52. 52. 
    Hsieh PN, Zhang L, Jain MK 2018. Coordination of cardiac rhythmic output and circadian metabolic regulation in the heart. Cell Mol. Life Sci. 75:403–16
    [Google Scholar]
  53. 53. 
    Zhang L, Zhang R, Tien CL, Chan RE, Sugi K et al. 2017. REV-ERBα ameliorates heart failure through transcription repression. JCI Insight 2:e95177
    [Google Scholar]
  54. 54. 
    Reddy AB, Karp NA, Maywood ES, Sage EA, Deery M et al. 2006. Circadian orchestration of the hepatic proteome. Curr. Biol. 16:1107–15
    [Google Scholar]
  55. 55. 
    Dorn GW 2nd, Force T 2005. Protein kinase cascades in the regulation of cardiac hypertrophy. J. Clin. Investig. 115:527–37
    [Google Scholar]
  56. 56. 
    Peliciari-Garcia RA, Goel M, Aristorenas JA, Shah K, He L et al. 2016. Altered myocardial metabolic adaptation to increased fatty acid availability in cardiomyocyte-specific CLOCK mutant mice. Biochim. Biophys. Acta 1860:1579–95
    [Google Scholar]
  57. 57. 
    Kawai M, Delany AM, Green CB, Adamo ML, Rosen CJ 2010. Nocturnin suppresses Igf1 expression in bone by targeting the 3′ untranslated region of Igf1 mRNA. Endocrinology 151:4861–70
    [Google Scholar]
  58. 58. 
    Brewer RA, Collins HE, Berry RD, Brahma MK, Tirado BA et al. 2018. Temporal partitioning of adaptive responses of the murine heart to fasting. Life Sci 197:30–39
    [Google Scholar]
  59. 59. 
    Shavlakadze T, Anwari T, Soffe Z, Cozens G, Mark PJ et al. 2013. Impact of fasting on the rhythmic expression of myogenic and metabolic factors in skeletal muscle of adult mice. Am. J. Physiol. Cell Physiol. 305:C26–35
    [Google Scholar]
  60. 60. 
    Willis MS, Patterson C. 2013. Proteotoxicity and cardiac dysfunction—Alzheimer's disease of the heart?. N. Engl. J. Med. 368:455–64
    [Google Scholar]
  61. 61. 
    Portbury AL, Ronnebaum SM, Zungu M, Patterson C, Willis MS 2012. Back to your heart: ubiquitin proteasome system-regulated signal transduction. J. Mol. Cell. Cardiol. 52:526–37
    [Google Scholar]
  62. 62. 
    Schibler U. 2009. The 2008 Pittendrigh/Aschoff Lecture: peripheral phase coordination in the mammalian circadian timing system. J. Biol. Rhythms 24:3–15
    [Google Scholar]
  63. 63. 
    Duffield GE, Best JD, Meurers BH, Bittner A, Loros JJ, Dunlap JC 2002. Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells. Curr. Biol. 12:551–57
    [Google Scholar]
  64. 64. 
    Stojkovic K, Wing SS, Cermakian N 2014. A central role for ubiquitination within a circadian clock protein modification code. Front. Mol. Neurosci. 7:69
    [Google Scholar]
  65. 65. 
    Papazyan R, Zhang Y, Lazar MA 2016. Genetic and epigenomic mechanisms of mammalian circadian transcription. Nat. Struct. Mol. Biol. 23:1045–52
    [Google Scholar]
  66. 66. 
    Tamaru T, Takamatsu K. 2018. Circadian modification network of a core clock driver BMAL1 to harmonize physiology from brain to peripheral tissues. Neurochem. Int. 119:11–16
    [Google Scholar]
  67. 67. 
    Hirano A, Fu YH, Ptacek LJ 2016. The intricate dance of post-translational modifications in the rhythm of life. Nat. Struct. Mol. Biol. 23:1053–60
    [Google Scholar]
  68. 68. 
    Gallego M, Virshup DM. 2007. Post-translational modifications regulate the ticking of the circadian clock. Nat. Rev. Mol. Cell Biol. 8:139–48
    [Google Scholar]
  69. 69. 
    Robles MS, Humphrey SJ, Mann M 2017. Phosphorylation is a central mechanism for circadian control of metabolism and physiology. Cell Metab 25:118–27
    [Google Scholar]
  70. 70. 
    Dey J, Carr AJ, Cagampang FR, Semikhodskii AS, Loudon AS et al. 2005. The tau mutation in the Syrian hamster differentially reprograms the circadian clock in the SCN and peripheral tissues. J. Biol. Rhythms 20:99–110
    [Google Scholar]
  71. 71. 
    Jordan SD, Lamia KA. 2013. AMPK at the crossroads of circadian clocks and metabolism. Mol. Cell. Endocrinol. 366:163–69
    [Google Scholar]
  72. 72. 
    Yin L, Wang J, Klein PS, Lazar MA 2006. Nuclear receptor Rev-erbα is a critical lithium-sensitive component of the circadian clock. Science 311:1002–5
    [Google Scholar]
  73. 73. 
    Reischl S, Kramer A. 2011. Kinases and phosphatases in the mammalian circadian clock. FEBS Lett 585:1393–99
    [Google Scholar]
  74. 74. 
    Hiraishi T, Seo Y, Murakami M, Watari H 1990. Detection of biexponential relaxation in intracellular K in the rat heart by double-quantum 39K NMR. J. Magn. Reson. 87:169–73
    [Google Scholar]
  75. 75. 
    Yan X, Huang Y, Wu J 2018. Identify cross talk between circadian rhythm and coronary heart disease by multiple correlation analysis. J. Comput. Biol. 25:1312–27
    [Google Scholar]
  76. 76. 
    Etchegaray JP, Lee C, Wade PA, Reppert SM 2003. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 421:177–82
    [Google Scholar]
  77. 77. 
    Wang RH, Zhao T, Cui K, Hu G, Chen Q et al. 2016. Negative reciprocal regulation between Sirt1 and Per2 modulates the circadian clock and aging. Sci. Rep. 6:28633
    [Google Scholar]
  78. 78. 
    Curtis AM, Seo SB, Westgate EJ, Rudic RD, Smyth EM et al. 2004. Histone acetyltransferase-dependent chromatin remodeling and the vascular clock. J. Biol. Chem. 279:7091–97
    [Google Scholar]
  79. 79. 
    Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y et al. 2009. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324:651–54
    [Google Scholar]
  80. 80. 
    Wijnen H. 2009. A circadian loop asSIRTs itself. Science 324:598–99
    [Google Scholar]
  81. 81. 
    Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P 2009. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324:654–57
    [Google Scholar]
  82. 82. 
    Sahar S, Nin V, Barbosa MT, Chini EN, Sassone-Corsi P 2011. Altered behavioral and metabolic circadian rhythms in mice with disrupted NAD+ oscillation. Aging 3:794–802
    [Google Scholar]
  83. 83. 
    Durgan DJ, Pat BM, Laczy B, Bradley JA, Tsai JY et al. 2011. O-GlcNAcylation, novel post-translational modification linking myocardial metabolism and cardiomyocyte circadian clock. J. Biol. Chem. 286:44606–19
    [Google Scholar]
  84. 84. 
    Wright JN, Collins HE, Wende AR, Chatham JC 2017. O-GlcNAcylation and cardiovascular disease. Biochem. Soc. Trans. 45:545–53
    [Google Scholar]
  85. 85. 
    Kim EY, Jeong EH, Park S, Jeong HJ, Edery I, Cho JW 2012. A role for O-GlcNAcylation in setting circadian clock speed. Genes Dev 26:490–502
    [Google Scholar]
  86. 86. 
    Li MD, Ruan HB, Hughes ME, Lee JS, Singh JP et al. 2013. O-GlcNAc signaling entrains the circadian clock by inhibiting BMAL1/CLOCK ubiquitination. Cell Metab 17:303–10
    [Google Scholar]
  87. 87. 
    Ma YT, Luo H, Guan WJ, Zhang H, Chen C et al. 2013. O-GlcNAcylation of BMAL1 regulates circadian rhythms in NIH3T3 fibroblasts. Biochem. Biophys. Res. Commun. 431:382–87
    [Google Scholar]
  88. 88. 
    Li YH, Liu X, Vanselow JT, Zheng H, Schlosser A, Chiu JC 2019. O-GlcNAcylation of PERIOD regulates its interaction with CLOCK and timing of circadian transcriptional repression. PLOS Genet 15:e1007953
    [Google Scholar]
  89. 89. 
    Kaasik K, Kivimae S, Allen JJ, Chalkley RJ, Huang Y et al. 2013. Glucose sensor O-GlcNAcylation coordinates with phosphorylation to regulate circadian clock. Cell Metab 17:291–302
    [Google Scholar]
  90. 90. 
    Berthier A, Vinod M, Porez G, Steenackers A, Alexandre J et al. 2018. Combinatorial regulation of hepatic cytoplasmic signaling and nuclear transcriptional events by the OGT/REV-ERBα complex. PNAS 115:E11033–42
    [Google Scholar]
  91. 91. 
    Chatham JC, Young ME. 2013. Regulation of myocardial metabolism by the cardiomyocyte circadian clock. J. Mol. Cell. Cardiol. 55:139–46
    [Google Scholar]
  92. 92. 
    Tsai JY, Kienesberger PC, Pulinilkunnil T, Sailors MH, Durgan DJ et al. 2009. Direct regulation of myocardial triglyceride metabolism by the cardiomyocyte circadian clock. J. Biol. Chem. 285:2918–29
    [Google Scholar]
  93. 93. 
    Tong L. 2013. Structure and function of biotin-dependent carboxylases. Cell. Mol. Life Sci. 70:863–91
    [Google Scholar]
  94. 94. 
    He L, Hamm JA, Reddy A, Sams D, Peliciari-Garcia RA et al. 2016. Biotinylation: a novel posttranslational modification linking cell autonomous circadian clocks with metabolism. Am. J. Physiol. Heart Circ. Physiol. 310:H1520–32
    [Google Scholar]
  95. 95. 
    Asher G, Schibler U. 2011. Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab 13:125–37
    [Google Scholar]
  96. 96. 
    Cotter DG, Schugar RC, Crawford PA 2013. Ketone body metabolism and cardiovascular disease. Am. J. Physiol. Heart Circ. Physiol. 304:H1060–76
    [Google Scholar]
  97. 97. 
    Hocking MD, Rayner PH, Nattrass M 1986. Metabolic rhythms in adolescents with diabetes. Arch. Dis. Child 61:124–29
    [Google Scholar]
  98. 98. 
    Iwata S, Ozawa K, Shimahara Y, Mori K, Kobayashi N et al. 1991. Diurnal fluctuations of arterial ketone body ratio in normal subjects and patients with liver dysfunction. Gastroenterology 100:1371–78
    [Google Scholar]
  99. 99. 
    Ahlersova E, Ahlers I, Benninghausova Z, Toropila M, Datelinka I 1985. Circadian rhythm of ketone bodies in the blood of fasting rats. Physiol. Bohemoslov. 34:177–81
    [Google Scholar]
  100. 100. 
    Aubert G, Martin OJ, Horton JL, Lai L, Vega RB et al. 2016. The failing heart relies on ketone bodies as a fuel. Circulation 133:698–705
    [Google Scholar]
  101. 101. 
    Zhang L, Prosdocimo DA, Bai X, Fu C, Zhang R et al. 2015. KLF15 establishes the landscape of diurnal expression in the heart. Cell Rep 13:2368–75
    [Google Scholar]
  102. 102. 
    Eckel-Mahan KL, Patel VR, Mohney RP, Vignola KS, Baldi P, Sassone-Corsi P 2012. Coordination of the transcriptome and metabolome by the circadian clock. PNAS 109:5541–46
    [Google Scholar]
  103. 103. 
    Rau E, Meyer DK. 1975. A diurnal rhythm of incorporation of L-[3H] leucine in myocardium of the rat. Recent Adv. Stud. Cardiac. Struct. Metab. 7:105–10
    [Google Scholar]
  104. 104. 
    Young ME, Razeghi P, Cedars AM, Guthrie PH, Taegtmeyer H 2001. Intrinsic diurnal variations in cardiac metabolism and contractile function. Circ. Res. 89:1199–208
    [Google Scholar]
  105. 105. 
    Kohsaka A, Das P, Hashimoto I, Nakao T, Deguchi Y et al. 2014. The circadian clock maintains cardiac function by regulating mitochondrial metabolism in mice. PLOS ONE 9:e112811
    [Google Scholar]
  106. 106. 
    Mure LS, Le HD, Benegiamo G, Chang MW, Rios L et al. 2018. Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science 359:eaao0318
    [Google Scholar]
  107. 107. 
    Ruben MD, Wu G, Smith DF, Schmidt RE, Francey LJ et al. 2018. A database of tissue-specific rhythmically expressed human genes has potential applications in circadian medicine. Sci. Transl. Med. 10:eaat8806
    [Google Scholar]
  108. 108. 
    Panda S, Antoch MP, Miller BH, Su AI, Schook AB et al. 2002. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109:307–20
    [Google Scholar]
  109. 109. 
    Jacobi D, Liu S, Burkewitz K, Kory N, Knudsen NH et al. 2015. Hepatic Bmal1 regulates rhythmic mitochondrial dynamics and promotes metabolic fitness. Cell Metab 22:709–20
    [Google Scholar]
  110. 110. 
    Chouchani ET, Pell VR, Gaude E, Aksentijevic D, Sundier SY et al. 2014. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515:431–35
    [Google Scholar]
  111. 111. 
    Turko IV, Li L, Aulak KS, Stuehr DJ, Chang JY, Murad F 2003. Protein tyrosine nitration in the mitochondria from diabetic mouse heart. Implications to dysfunctional mitochondria in diabetes. J. Biol. Chem. 278:33972–77
    [Google Scholar]
  112. 112. 
    Liu H, Colavitti R, Rovira II, Finkel T 2005. Redox-dependent transcriptional regulation. Circ. Res. 97:967–74
    [Google Scholar]
  113. 113. 
    Peliciari-Garcia RA, Darley-Usmar V, Young ME 2018. An overview of the emerging interface between cardiac metabolism, redox biology and the circadian clock. Free Radic. Biol. Med. 119:75–84
    [Google Scholar]
  114. 114. 
    Wende AR, Young ME, Chatham J, Zhang J, Rajasekaran NS, Darley-Usmar VM 2016. Redox biology and the interface between bioenergetics, autophagy and circadian control of metabolism. Free Radic. Biol. Med. 100:94–107
    [Google Scholar]
  115. 115. 
    Farooqui MY, Ahmed AE. 1984. Circadian periodicity of tissue glutathione and its relationship with lipid peroxidation in rats. Life Sci 34:2413–18
    [Google Scholar]
  116. 116. 
    O'Neill JS, Reddy AB. 2011. Circadian clocks in human red blood cells. Nature 469:498–503
    [Google Scholar]
  117. 117. 
    O'Neill JS, van Ooijen G, Dixon LE, Troein C, Corellou F et al. 2011. Circadian rhythms persist without transcription in a eukaryote. Nature 469:554–58
    [Google Scholar]
  118. 118. 
    Qipshidze N, Tyagi N, Metreveli N, Lominadze D, Tyagi SC 2012. Autophagy mechanism of right ventricular remodeling in murine model of pulmonary artery constriction. Am. J. Physiol. Heart Circ. Physiol. 302:H688–96
    [Google Scholar]
  119. 119. 
    Rhee SG, Kil IS. 2016. Mitochondrial H2O2 signaling is controlled by the concerted action of peroxiredoxin III and sulfiredoxin: linking mitochondrial function to circadian rhythm. Free Radic. Biol. Med. 99:120–27
    [Google Scholar]
  120. 120. 
    Lapenna D, De Gioia S, Mezzetti A, Porreca E, Ciofani G et al. 1992. Circadian variations in antioxidant defences and lipid peroxidation in the rat heart. Free Radic. Res. Commun. 17:187–94
    [Google Scholar]
  121. 121. 
    Anea CB, Cheng B, Sharma S, Kumar S, Caldwell RW et al. 2012. Increased superoxide and endothelial NO synthase uncoupling in blood vessels of Bmal1-knockout mice. Circ. Res. 111:1157–65
    [Google Scholar]
  122. 122. 
    Anea CB, Zhang M, Chen F, Ali MI, Hart CM et al. 2013. Circadian clock control of Nox4 and reactive oxygen species in the vasculature. PLOS ONE 8:e78626
    [Google Scholar]
  123. 123. 
    Hirayama J, Cho S, Sassone-Corsi P 2007. Circadian control by the reduction/oxidation pathway: catalase represses light-dependent clock gene expression in the zebrafish. PNAS 104:15747–52
    [Google Scholar]
  124. 124. 
    Dioum EM, Rutter J, Tuckerman JR, Gonzalez G, Gilles-Gonzalez MA, McKnight SL 2002. NPAS2: a gas-responsive transcription factor. Science 298:2385–87
    [Google Scholar]
  125. 125. 
    Boehning D, Snyder SH. 2002. Carbon monoxide and clocks. Science 298:2339–40
    [Google Scholar]
  126. 126. 
    Kaasik K, Lee CC. 2004. Reciprocal regulation of haem biosynthesis and the circadian clock in mammals. Nature 430:467–71
    [Google Scholar]
  127. 127. 
    Raghuram S, Stayrook KR, Huang P, Rogers PM, Nosie AK et al. 2007. Identification of heme as the ligand for the orphan nuclear receptors REV-ERBα and REV-ERBβ. Nat. Struct. Mol. Biol. 14:1207–13
    [Google Scholar]
  128. 128. 
    Yin L, Wu N, Curtin JC, Qatanani M, Szwergold NR et al. 2007. Rev-erbα, a heme sensor that coordinates metabolic and circadian pathways. Science 318:1786–89
    [Google Scholar]
  129. 129. 
    Rey G, Valekunja UK, Feeney KA, Wulund L, Milev NB et al. 2016. The pentose phosphate pathway regulates the circadian clock. Cell Metab 24:462–73
    [Google Scholar]
  130. 130. 
    Duncker DJ, Bache RJ. 2008. Regulation of coronary blood flow during exercise. Physiol. Rev. 88:1009–86
    [Google Scholar]
  131. 131. 
    Schaper J, Meiser E, Stammler G 1985. Ultrastructural morphometric analysis of myocardium from dogs, rats, hamsters, mice, and from human hearts. Circ. Res. 56:377–91
    [Google Scholar]
  132. 132. 
    Menzies RA, Gold PH. 1971. The turnover of mitochondria in a variety of tissues of young adult and aged rats. J. Biol. Chem. 246:2425–29
    [Google Scholar]
  133. 133. 
    Pfeifer U, Scheller H. 1975. A morphometric study of cellular autophagy including diurnal variations in kidney tubules of normal rats. J. Cell Biol. 64:608–21
    [Google Scholar]
  134. 134. 
    Sachdeva UM, Thompson CB. 2008. Diurnal rhythms of autophagy: implications for cell biology and human disease. Autophagy 4:581–89
    [Google Scholar]
  135. 135. 
    Ma D, Panda S, Lin JD 2011. Temporal orchestration of circadian autophagy rhythm by C/EBPβ. EMBO J 30:4642–51
    [Google Scholar]
  136. 136. 
    Kageyama Y, Hoshijima M, Seo K, Bedja D, Sysa-Shah P et al. 2014. Parkin-independent mitophagy requires Drp1 and maintains the integrity of mammalian heart and brain. EMBO J 33:2798–813
    [Google Scholar]
  137. 137. 
    Schmitt K, Grimm A, Dallmann R, Oettinghaus B, Restelli LM et al. 2018. Circadian control of DRP1 activity regulates mitochondrial dynamics and bioenergetics. Cell Metab 27:657–66.e5
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-020518-114349
Loading
/content/journals/10.1146/annurev-physiol-020518-114349
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error