1932

Abstract

Phospholipids are major constituents of biological membranes. The fatty acyl chain composition of phospholipids determines the biophysical properties of membranes and thereby affects their impact on biological processes. The composition of fatty acyl chains is also actively regulated through a deacylation and reacylation pathway called Lands’ cycle. Recent studies of mouse genetic models have demonstrated that lysophosphatidylcholine acyltransferases (LPCATs), which catalyze the incorporation of fatty acyl chains into the -2 site of phosphatidylcholine, play important roles in pathophysiology. Two LPCAT family members, LPCAT1 and LPCAT3, have been particularly well studied. LPCAT1 is crucial for proper lung function due to its role in pulmonary surfactant biosynthesis. LPCAT3 maintains systemic lipid homeostasis by regulating lipid absorption in intestine, lipoprotein secretion, and de novo lipogenesis in liver. Mounting evidence also suggests that changes in LPCAT activity may be potentially involved in pathological conditions, including nonalcoholic fatty liver disease, atherosclerosis, viral infections, and cancer. Pharmacological manipulation of LPCAT activity and membrane phospholipid composition may provide new therapeutic options for these conditions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-020518-114444
2019-02-10
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/physiol/81/1/annurev-physiol-020518-114444.html?itemId=/content/journals/10.1146/annurev-physiol-020518-114444&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Spector AA, Yorek MA 1985. Membrane lipid composition and cellular function. J. Lipid Res. 26:1015–35
    [Google Scholar]
  2. 2.  van Meer G, Voelker DR, Feigenson GW 2008. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9:112–24
    [Google Scholar]
  3. 3.  Wymann MP, Schneiter R 2008. Lipid signalling in disease. Nat. Rev. Mol. Cell Biol. 9:162–76
    [Google Scholar]
  4. 4.  Harayama T, Riezman H 2018. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 19:281–96
    [Google Scholar]
  5. 5.  Lands WE. 1958. Metabolism of glycerolipides: a comparison of lecithin and triglyceride synthesis. J. Biol. Chem. 231:883–88
    [Google Scholar]
  6. 6.  Kennedy EP, Weiss SB 1956. The function of cytidine coenzymes in the biosynthesis of phospholipides. J. Biol. Chem. 222:193–214
    [Google Scholar]
  7. 7.  Sundler R, Akesson B 1975. Regulation of phospholipid biosynthesis in isolated rat hepatocytes. Effect of different substrates. J. Biol. Chem. 250:3359–67
    [Google Scholar]
  8. 8.  Lands WE. 1960. Metabolism of glycerolipids. 2. The enzymatic acylation of lysolecithin. J. Biol. Chem. 235:2233–37
    [Google Scholar]
  9. 9.  Lands WE, Merkl I 1963. Metabolism of glycerolipids. III. Reactivity of various acyl esters of coenzyme A with α′-acylglycerophosphorylcholine, and positional specificities in lecithin synthesis. J. Biol. Chem. 238:898–904
    [Google Scholar]
  10. 10.  Merkl I, Lands WE 1963. Metabolism of glycerolipids. IV. Synthesis of phosphatidylethanolamine. J. Biol. Chem. 238:905–6
    [Google Scholar]
  11. 11.  Seilhamer JJ, Pruzanski W, Vadas P, Plant S, Miller JA et al. 1989. Cloning and recombinant expression of phospholipase A2 present in rheumatoid arthritic synovial fluid. J. Biol. Chem. 264:5335–8
    [Google Scholar]
  12. 12.  Kramer RM, Hession C, Johansen B, Hayes G, McGray P et al. 1989. Structure and properties of a human non-pancreatic phospholipase A2. J. Biol. Chem. 264:5768–75
    [Google Scholar]
  13. 13.  Eberhardt C, Gray PW, Tjoelker LW 1997. Human lysophosphatidic acid acyltransferase. cDNA cloning, expression, and localization to chromosome 9q34.3. J. Biol. Chem. 272:20299–305
    [Google Scholar]
  14. 14.  Chen X, Hyatt BA, Mucenski ML, Mason RJ, Shannon JM 2006. Identification and characterization of a lysophosphatidylcholine acyltransferase in alveolar type II cells. PNAS 103:11724–29
    [Google Scholar]
  15. 15.  Nakanishi H, Shindou H, Hishikawa D, Harayama T, Ogasawara R et al. 2006. Cloning and characterization of mouse lung-type acyl-CoA:lysophosphatidylcholine acyltransferase 1 (LPCAT1): expression in alveolar type II cells and possible involvement in surfactant production. J. Biol. Chem. 281:20140–47
    [Google Scholar]
  16. 16.  Shindou H, Hishikawa D, Nakanishi H, Harayama T, Ishii S et al. 2007. A single enzyme catalyzes both platelet-activating factor production and membrane biogenesis of inflammatory cells: cloning and characterization of acetyl-CoA:LYSO-PAF acetyltransferase. J. Biol. Chem. 282:6532–39
    [Google Scholar]
  17. 17.  Hishikawa D, Shindou H, Kobayashi S, Nakanishi H, Taguchi R, Shimizu T 2008. Discovery of a lysophospholipid acyltransferase family essential for membrane asymmetry and diversity. PNAS 105:2830–35
    [Google Scholar]
  18. 18.  Zhao Y, Chen YQ, Bonacci TM, Bredt DS, Li S et al. 2008. Identification and characterization of a major liver lysophosphatidylcholine acyltransferase. J. Biol. Chem. 283:8258–65
    [Google Scholar]
  19. 19.  Matsuda S, Inoue T, Lee HC, Kono N, Tanaka F et al. 2008. Member of the membrane-bound O-acyltransferase (MBOAT) family encodes a lysophospholipid acyltransferase with broad substrate specificity. Genes Cells 13:879–88
    [Google Scholar]
  20. 20.  Lewin TM, Wang P, Coleman RA 1999. Analysis of amino acid motifs diagnostic for the sn-glycerol-3-phosphate acyltransferase reaction. Biochemistry 38:5764–71
    [Google Scholar]
  21. 21.  Soupene E, Fyrst H, Kuypers FA 2008. Mammalian acyl-CoA:lysophosphatidylcholine acyltransferase enzymes. PNAS 105:88–93
    [Google Scholar]
  22. 22.  Shikano S, Li M 2003. Membrane receptor trafficking: evidence of proximal and distal zones conferred by two independent endoplasmic reticulum localization signals. PNAS 100:5783–88
    [Google Scholar]
  23. 23.  Shindou H, Eto M, Morimoto R, Shimizu T 2009. Identification of membrane O-acyltransferase family motifs. Biochem. Biophys. Res. Commun. 383:320–25
    [Google Scholar]
  24. 24.  Bridges JP, Ikegami M, Brilli LL, Chen X, Mason RJ, Shannon JM 2010. LPCAT1 regulates surfactant phospholipid synthesis and is required for transitioning to air breathing in mice. J. Clin. Investig. 120:1736–48
    [Google Scholar]
  25. 25.  Rong X, Albert CJ, Hong C, Duerr MA, Chamberlain BT et al. 2013. LXRs regulate ER stress and inflammation through dynamic modulation of membrane phospholipid composition. Cell Metab 18:685–97
    [Google Scholar]
  26. 26.  Harayama T, Shindou H, Ogasawara R, Suwabe A, Shimizu T 2008. Identification of a novel noninflammatory biosynthetic pathway of platelet-activating factor. J. Biol. Chem. 283:11097–106
    [Google Scholar]
  27. 27.  Vance DE. 2008. Role of phosphatidylcholine biosynthesis in the regulation of lipoprotein homeostasis. Curr. Opin. Lipidol. 19:229–34
    [Google Scholar]
  28. 28.  Cole LK, Vance JE, Vance DE 2012. Phosphatidylcholine biosynthesis and lipoprotein metabolism. Biochim. Biophys. Acta 1821:754–61
    [Google Scholar]
  29. 29.  Vance DE. 2014. Phospholipid methylation in mammals: from biochemistry to physiological function. Biochim. Biophys. Acta 1838:1477–87
    [Google Scholar]
  30. 30.  Demeure O, Lecerf F, Duby C, Desert C, Ducheix S et al. 2011. Regulation of LPCAT3 by LXR. Gene 470:7–11
    [Google Scholar]
  31. 31.  Singh AB, Liu J 2017. Identification of hepatic lysophosphatidylcholine acyltransferase 3 as a novel target gene regulated by peroxisome proliferator-activated receptor δ. J. Biol. Chem. 292:884–97
    [Google Scholar]
  32. 32.  Calkin AC, Tontonoz P 2012. Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat. Rev. Mol. Cell Biol. 13:213–24
    [Google Scholar]
  33. 33.  Hong C, Tontonoz P 2014. Liver X receptors in lipid metabolism: opportunities for drug discovery. Nat. Rev. Drug Discov. 13:433–44
    [Google Scholar]
  34. 34.  Gross B, Pawlak M, Lefebvre P, Staels B 2017. PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD. Nat. Rev. Endocrinol. 13:36–49
    [Google Scholar]
  35. 35.  Li Z, Ding T, Pan X, Li Y, Li R et al. 2012. Lysophosphatidylcholine acyltransferase 3 knockdown-mediated liver lysophosphatidylcholine accumulation promotes very low density lipoprotein production by enhancing microsomal triglyceride transfer protein expression. J. Biol. Chem. 287:20122–31
    [Google Scholar]
  36. 36.  Hashidate-Yoshida T, Harayama T, Hishikawa D, Morimoto R, Hamano F et al. 2015. Fatty acid remodeling by LPCAT3 enriches arachidonate in phospholipid membranes and regulates triglyceride transport. eLife 4:e06328
    [Google Scholar]
  37. 37.  Cash JG, Hui DY 2016. Liver-specific overexpression of LPCAT3 reduces postprandial hyperglycemia and improves lipoprotein metabolic profile in mice. Nutr. Diabetes 6:e206
    [Google Scholar]
  38. 38.  Rong X, Wang B, Dunham MM, Hedde PN, Wong JS et al. 2015. Lpcat3-dependent production of arachidonoyl phospholipids is a key determinant of triglyceride secretion. eLife 4:e06557
    [Google Scholar]
  39. 39.  Noga AA, Zhao Y, Vance DE 2002. An unexpected requirement for phosphatidylethanolamine N-methyltransferase in the secretion of very low density lipoproteins. J. Biol. Chem. 277:42358–65
    [Google Scholar]
  40. 40.  Noga AA, Vance DE 2003. A gender-specific role for phosphatidylethanolamine N-methyltransferase-derived phosphatidylcholine in the regulation of plasma high density and very low density lipoproteins in mice. J. Biol. Chem. 278:21851–59
    [Google Scholar]
  41. 41.  Jacobs RL, Devlin C, Tabas I, Vance DE 2004. Targeted deletion of hepatic CTP:phosphocholine cytidylyltransferase α in mice decreases plasma high density and very low density lipoproteins. J. Biol. Chem. 279:47402–10
    [Google Scholar]
  42. 42.  Jacobs RL, Lingrell S, Zhao Y, Francis GA, Vance DE 2008. Hepatic CTP:phosphocholine cytidylyltransferase-α is a critical predictor of plasma high density lipoprotein and very low density lipoprotein. J. Biol. Chem. 283:2147–55
    [Google Scholar]
  43. 43.  Lev S. 2012. Nonvesicular lipid transfer from the endoplasmic reticulum. Cold Spring Harb. Perspect. Biol. 4:a013300
    [Google Scholar]
  44. 44.  Rahim A, Nafi-valencia E, Siddiqi S, Basha R, Runyon CC, Siddiqi SA 2012. Proteomic analysis of the very low density lipoprotein (VLDL) transport vesicles. J. Proteom. 75:2225–35
    [Google Scholar]
  45. 45.  Grefhorst A, Parks EJ 2009. Reduced insulin-mediated inhibition of VLDL secretion upon pharmacological activation of the liver X receptor in mice. J. Lipid Res. 50:1374–83
    [Google Scholar]
  46. 46.  Okazaki H, Goldstein JL, Brown MS, Liang G 2010. LXR-SREBP-1c-phospholipid transfer protein axis controls very low density lipoprotein (VLDL) particle size. J. Biol. Chem. 285:6801–10
    [Google Scholar]
  47. 47.  Schultz JR, Tu H, Luk A, Repa JJ, Medina JC et al. 2000. Role of LXRs in control of lipogenesis. Genes Dev 14:2831–38
    [Google Scholar]
  48. 48.  Repa JJ, Liang G, Ou J, Bashmakov Y, Lobaccaro JM et al. 2000. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRα and LXRβ. Genes Dev 14:2819–30
    [Google Scholar]
  49. 49.  Joseph SB, Laffitte BA, Patel PH, Watson MA, Matsukuma KE et al. 2002. Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver X receptors. J. Biol. Chem. 277:11019–25
    [Google Scholar]
  50. 50.  Rong X, Wang B, Palladino EN, de Aguiar Vallim TQ, Ford DA, Tontonoz P 2017. ER phospholipid composition modulates lipogenesis during feeding and in obesity. J. Clin. Investig. 127:3640–51
    [Google Scholar]
  51. 51.  Dobrosotskaya IY, Seegmiller AC, Brown MS, Goldstein JL, Rawson RB 2002. Regulation of SREBP processing and membrane lipid production by phospholipids in Drosophila. Science 296:879–83
    [Google Scholar]
  52. 52.  Walker AK, Jacobs RL, Watts JL, Rottiers V, Jiang K et al. 2011. A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans. Cell 147:840–52
    [Google Scholar]
  53. 53.  Horton JD, Bashmakov Y, Shimomura I, Shimano H 1998. Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice. PNAS 95:5987–92
    [Google Scholar]
  54. 54.  Shimomura I, Bashmakov Y, Horton JD 1999. Increased levels of nuclear SREBP-1c associated with fatty livers in two mouse models of diabetes mellitus. J. Biol. Chem. 274:30028–32
    [Google Scholar]
  55. 55.  Tso P, Lam J, Simmonds WJ 1978. The importance of the lysophosphatidylcholine and choline moiety of bile phosphatidylcholine in lymphatic transport of fat. Biochim. Biophys. Acta 528:364–72
    [Google Scholar]
  56. 56.  Staggers JE, Hernell O, Stafford RJ, Carey MC 1990. Physical-chemical behavior of dietary and biliary lipids during intestinal digestion and absorption. 1. Phase behavior and aggregation states of model lipid systems patterned after aqueous duodenal contents of healthy adult human beings. Biochemistry 29:2028–40
    [Google Scholar]
  57. 57.  Voshol PJ, Minich DM, Havinga R, Elferink RP, Verkade HJ et al. 2000. Postprandial chylomicron formation and fat absorption in multidrug resistance gene 2 P-glycoprotein-deficient mice. Gastroenterology 118:173–82
    [Google Scholar]
  58. 58.  Dashti M, Kulik W, Hoek F, Veerman EC, Peppelenbosch MP, Rezaee F 2011. A phospholipidomic analysis of all defined human plasma lipoproteins. Sci. Rep. 1:139
    [Google Scholar]
  59. 59.  Parthasarathy S, Subbaiah PV, Ganguly J 1974. The mechanism of intestinal absorption of phosphatidylcholine in rats. Biochem. J. 140:503–8
    [Google Scholar]
  60. 60.  Li Z, Jiang H, Ding T, Lou C, Bui HH et al. 2015. Deficiency in lysophosphatidylcholine acyltransferase 3 reduces plasma levels of lipids by reducing lipid absorption in mice. Gastroenterology 149:1519–29
    [Google Scholar]
  61. 61.  Wang B, Rong X, Duerr MA, Hermanson DJ, Hedde PN et al. 2016. Intestinal phospholipid remodeling is required for dietary-lipid uptake and survival on a high-fat diet. Cell Metab 23:492–504
    [Google Scholar]
  62. 62.  Kabir I, Li Z, Bui HH, Kuo MS, Gao G, Jiang XC 2016. Small intestine but not liver lysophosphatidylcholine acyltransferase 3 (Lpcat3) deficiency has a dominant effect on plasma lipid metabolism. J. Biol. Chem. 291:7651–60
    [Google Scholar]
  63. 63.  Tso P, Nauli A, Lo CM 2004. Enterocyte fatty acid uptake and intestinal fatty acid-binding protein. Biochem. Soc. Trans. 32:75–78
    [Google Scholar]
  64. 64.  Ling KY, Lee HY, Hollander D 1989. Mechanisms of linoleic acid uptake by rabbit small intestinal brush border membrane vesicles. Lipids 24:51–55
    [Google Scholar]
  65. 65.  Trotter PJ, Ho SY, Storch J 1996. Fatty acid uptake by Caco-2 human intestinal cells. J. Lipid Res. 37:336–46
    [Google Scholar]
  66. 66.  Goudriaan JR, Dahlmans VE, Febbraio M, Teusink B, Romijn JA et al. 2002. Intestinal lipid absorption is not affected in CD36 deficient mice. Mol. Cell. Biochem. 239:199–202
    [Google Scholar]
  67. 67.  Shim J, Moulson CL, Newberry EP, Lin MH, Xie Y et al. 2009. Fatty acid transport protein 4 is dispensable for intestinal lipid absorption in mice. J. Lipid Res. 50:491–500
    [Google Scholar]
  68. 68.  Brunaldi K, Huang N, Hamilton JA 2010. Fatty acids are rapidly delivered to and extracted from membranes by methyl-β-cyclodextrin. J. Lipid Res. 51:120–31
    [Google Scholar]
  69. 69.  Kamp F, Hamilton JA 1992. pH gradients across phospholipid membranes caused by fast flip-flop of un-ionized fatty acids. PNAS 89:11367–70
    [Google Scholar]
  70. 70.  Altmann SW, Davis HR Jr., Zhu LJ, Yao X, Hoos LM et al. 2004. Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science 303:1201–4
    [Google Scholar]
  71. 71.  Brunham LR, Kruit JK, Iqbal J, Fievet C, Timmins JM et al. 2006. Intestinal ABCA1 directly contributes to HDL biogenesis in vivo. J. Clin. Investig. 116:1052–62
    [Google Scholar]
  72. 72.  Begg DP, Woods SC 2013. The endocrinology of food intake. Nat. Rev. Endocrinol. 9:584–97
    [Google Scholar]
  73. 73.  Camilleri M. 2015. Peripheral mechanisms in appetite regulation. Gastroenterology 148:1219–33
    [Google Scholar]
  74. 74.  Fu J, Gaetani S, Oveisi F, Lo Verme J, Serrano A et al. 2003. Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-α. Nature 425:90–3
    [Google Scholar]
  75. 75.  Rodríguez de Fonseca F, Navarro M, Gómez R, Escuredo L, Nava F et al. 2001. An anorexic lipid mediator regulated by feeding. Nature 414:209–12
    [Google Scholar]
  76. 76.  Eto M, Shindou H, Koeberle A, Harayama T, Yanagida K, Shimizu T 2012. Lysophosphatidylcholine acyltransferase 3 is the key enzyme for incorporating arachidonic acid into glycerophospholipids during adipocyte differentiation. Int. J. Mol. Sci. 13:16267–80
    [Google Scholar]
  77. 77.  Yu K, Bayona W, Kallen CB, Harding HP, Ravera CP et al. 1995. Differential activation of peroxisome proliferator-activated receptors by eicosanoids. J. Biol. Chem. 270:23975–83
    [Google Scholar]
  78. 78.  Feng C, Lou B, Dong J, Li Z, Chen Y et al. 2018. Lysophosphatidylcholine acyltransferase 3 deficiency impairs 3T3L1 cell adipogenesis through activating Wnt/β-catenin pathway. Biochim. Biophys. Acta 1863:834–43
    [Google Scholar]
  79. 79.  Welte MA. 2015. Expanding roles for lipid droplets. Curr. Biol. 25:R470–81
    [Google Scholar]
  80. 80.  Tauchi-Sato K, Ozeki S, Houjou T, Taguchi R, Fujimoto T 2002. The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition. J. Biol. Chem. 277:44507–12
    [Google Scholar]
  81. 81.  Bartz R, Li WH, Venables B, Zehmer JK, Roth MR et al. 2007. Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic. J. Lipid Res. 48:837–47
    [Google Scholar]
  82. 82.  Krahmer N, Guo Y, Wilfling F, Hilger M, Lingrell S et al. 2011. Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP:phosphocholine cytidylyltransferase. Cell Metab 14:504–15
    [Google Scholar]
  83. 83.  Guo Y, Walther TC, Rao M, Stuurman N, Goshima G et al. 2008. Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature 453:657–61
    [Google Scholar]
  84. 84.  Moessinger C, Kuerschner L, Spandl J, Shevchenko A, Thiele C 2011. Human lysophosphatidylcholine acyltransferases 1 and 2 are located in lipid droplets where they catalyze the formation of phosphatidylcholine. J. Biol. Chem. 286:21330–39
    [Google Scholar]
  85. 85.  Bouchoux J, Beilstein F, Pauquai T, Guerrera IC, Chateau D et al. 2011. The proteome of cytosolic lipid droplets isolated from differentiated Caco-2/TC7 enterocytes reveals cell-specific characteristics. Biol. Cell 103:499–517
    [Google Scholar]
  86. 86.  Moessinger C, Klizaite K, Steinhagen A, Philippou-Massier J, Shevchenko A et al. 2014. Two different pathways of phosphatidylcholine synthesis, the Kennedy Pathway and the Lands Cycle, differentially regulate cellular triacylglycerol storage. BMC Cell Biol 15:43
    [Google Scholar]
  87. 87.  M'barek KM, Ajjaji D, Chorlay A, Vanni S, Foret L, Thiam AR 2017. ER membrane phospholipids and surface tension control cellular lipid droplet formation. Dev. Cell 41:591–604.e7
    [Google Scholar]
  88. 88.  Jackowski S, Wang J, Baburina I 2000. Activity of the phosphatidylcholine biosynthetic pathway modulates the distribution of fatty acids into glycerolipids in proliferating cells. Biochim. Biophys. Acta 1483:301–15
    [Google Scholar]
  89. 89.  Dupont N, Chauhan S, Arko-Mensah J, Castillo EF, Masedunskas A et al. 2014. Neutral lipid stores and lipase PNPLA5 contribute to autophagosome biogenesis. Curr. Biol. 24:609–20
    [Google Scholar]
  90. 90.  Cotte AK, Aires V, Fredon M, Limagne E, Derangere V et al. 2018. Lysophosphatidylcholine acyltransferase 2-mediated lipid droplet production supports colorectal cancer chemoresistance. Nat. Commun. 9:322
    [Google Scholar]
  91. 91.  Wang B, Rong X, Palladino END, Wang J, Fogelman AM et al. 2018. Phospholipid remodeling and cholesterol availability regulate intestinal stemness and tumorigenesis. Cell Stem Cell 22:206–20.e4
    [Google Scholar]
  92. 92.  Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H et al. 2009. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457:608–11
    [Google Scholar]
  93. 93.  Schwitalla S, Fingerle AA, Cammareri P, Nebelsiek T, Goktuna SI et al. 2013. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 152:25–38
    [Google Scholar]
  94. 94.  Dietrich WF, Lander ES, Smith JS, Moser AR, Gould KA et al. 1993. Genetic identification of Mom-1, a major modifier locus affecting Min-induced intestinal neoplasia in the mouse. Cell 75:631–39
    [Google Scholar]
  95. 95.  MacPhee M, Chepenik KP, Liddell RA, Nelson KK, Siracusa LD, Buchberg AM 1995. The secretory phospholipase A2 gene is a candidate for the Mom1 locus, a major modifier of ApcMin-induced intestinal neoplasia. Cell 81:957–66
    [Google Scholar]
  96. 96.  Kennedy BP, Payette P, Mudgett J, Vadas P, Pruzanski W et al. 1995. A natural disruption of the secretory group II phospholipase A2 gene in inbred mouse strains. J. Biol. Chem. 270:22378–85
    [Google Scholar]
  97. 97.  Cormier RT, Hong KH, Halberg RB, Hawkins TL, Richardson P et al. 1997. Secretory phospholipase Pla2g2a confers resistance to intestinal tumorigenesis. Nat. Genet. 17:88–91
    [Google Scholar]
  98. 98.  Hong KH, Bonventre JC, O'Leary E, Bonventre JV, Lander ES 2001. Deletion of cytosolic phospholipase A2 suppresses ApcMin-induced tumorigenesis. PNAS 98:3935–39
    [Google Scholar]
  99. 99.  Jarvinen R, Knekt P, Hakulinen T, Rissanen H, Heliovaara M 2001. Dietary fat, cholesterol and colorectal cancer in a prospective study. Br. J. Cancer 85:357–61
    [Google Scholar]
  100. 100.  Du X, Kristiana I, Wong J, Brown AJ 2006. Involvement of Akt in ER-to-Golgi transport of SCAP/SREBP: a link between a key cell proliferative pathway and membrane synthesis. Mol. Biol. Cell 17:2735–45
    [Google Scholar]
  101. 101.  Porstmann T, Santos CR, Griffiths B, Cully M, Wu M et al. 2008. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab 8:224–36
    [Google Scholar]
  102. 102.  Freed-Pastor WA, Mizuno H, Zhao X, Langerød A, Moon SH et al. 2012. Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell 148:244–58
    [Google Scholar]
  103. 103.  Koeberle A, Shindou H, Koeberle SC, Laufer SA, Shimizu T, Werz O 2013. Arachidonoyl-phosphatidylcholine oscillates during the cell cycle and counteracts proliferation by suppressing Akt membrane binding. PNAS 110:2546–51
    [Google Scholar]
  104. 104.  Halliday HL. 2005. History of surfactant from 1980. Neonatology 87:317–22
    [Google Scholar]
  105. 105.  Floros J, Kala P 1998. Surfactant proteins: molecular genetics of neonatal pulmonary diseases. Annu. Rev. Physiol. 60:365–84
    [Google Scholar]
  106. 106.  Gregory TJ, Longmore WJ, Moxley MA, Whitsett JA, Reed CR et al. 1991. Surfactant chemical composition and biophysical activity in acute respiratory distress syndrome. J. Clin. Investig. 88:1976–81
    [Google Scholar]
  107. 107.  Batenburg JJ. 1992. Surfactant phospholipids: synthesis and storage. Am. J. Physiol. 262:L367–85
    [Google Scholar]
  108. 108.  den Breejen JN, Batenburg JJ, van Golde LM 1989. The species of acyl-CoA in subcellular fractions of type II cells isolated from adult rat lung and their incorporation into phosphatidic acid. Biochim. Biophys. Acta 1002:277–82
    [Google Scholar]
  109. 109.  Mason RJ, Nellenbogen J 1984. Synthesis of saturated phosphatidylcholine and phosphatidylglycerol by freshly isolated rat alveolar type II cells. Biochim. Biophys. Acta 794:392–402
    [Google Scholar]
  110. 110.  Goss V, Hunt AN, Postle AD 2013. Regulation of lung surfactant phospholipid synthesis and metabolism. Biochim. Biophys. Acta 1831:448–58
    [Google Scholar]
  111. 111.  Chang Y, Edeen K, Lu X, De Leon M, Mason RJ 2006. Keratinocyte growth factor induces lipogenesis in alveolar type II cells through a sterol regulatory element binding protein-1c-dependent pathway. Am. J. Respir. Cell Mol. Biol. 35:268–74
    [Google Scholar]
  112. 112.  Lin S, Ikegami M, Moon C, Naren AP, Shannon JM 2015. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) specifically interacts with phospholipid transfer protein StarD10 to facilitate surfactant phospholipid trafficking in alveolar type II cells. J. Biol. Chem. 290:18559–74
    [Google Scholar]
  113. 113.  Hardy T, Oakley F, Anstee QM, Day CP 2016. Nonalcoholic fatty liver disease: pathogenesis and disease spectrum. Annu. Rev. Pathol. Mech. Dis. 11:451–96
    [Google Scholar]
  114. 114.  Li Z, Agellon LB, Allen TM, Umeda M, Jewell L et al. 2006. The ratio of phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and steatohepatitis. Cell Metab 3:321–31
    [Google Scholar]
  115. 115.  van der Veen JN, Kennelly JP, Wan S, Vance JE, Vance DE, Jacobs RL 2017. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochim. Biophys. Acta 1859:1558–72
    [Google Scholar]
  116. 116.  Kalhan SC, Guo L, Edmison J, Dasarathy S, McCullough AJ et al. 2011. Plasma metabolomic profile in nonalcoholic fatty liver disease. Metabolism 60:404–13
    [Google Scholar]
  117. 117.  Oresic M, Hyotylainen T, Kotronen A, Gopalacharyulu P, Nygren H et al. 2013. Prediction of non-alcoholic fatty-liver disease and liver fat content by serum molecular lipids. Diabetologia 56:2266–74
    [Google Scholar]
  118. 118.  Papandreou C, Bullo M, Tinahones FJ, Martinez-Gonzalez MA, Corella D et al. 2017. Serum metabolites in non-alcoholic fatty-liver disease development or reversion; a targeted metabolomic approach within the PREDIMED trial. Nutr. Metab. 14:58
    [Google Scholar]
  119. 119.  Tanaka N, Matsubara T, Krausz KW, Patterson AD, Gonzalez FJ 2012. Disruption of phospholipid and bile acid homeostasis in mice with nonalcoholic steatohepatitis. Hepatology 56:118–29
    [Google Scholar]
  120. 120.  Wattacheril J, Seeley EH, Angel P, Chen H, Bowen BP et al. 2013. Differential intrahepatic phospholipid zonation in simple steatosis and nonalcoholic steatohepatitis. PLOS ONE 8:e57165
    [Google Scholar]
  121. 121.  Puri P, Baillie RA, Wiest MM, Mirshahi F, Choudhury J et al. 2007. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology 46:1081–90
    [Google Scholar]
  122. 122.  Gebhardt R, Matz-Soja M 2014. Liver zonation: novel aspects of its regulation and its impact on homeostasis. World J. Gastroenterol. 20:8491–504
    [Google Scholar]
  123. 123.  Jungermann K, Kietzmann T 1996. Zonation of parenchymal and nonparenchymal metabolism in liver. Annu. Rev. Nutr. 16:179–203
    [Google Scholar]
  124. 124.  Hall Z, Bond NJ, Ashmore T, Sanders F, Ament Z et al. 2017. Lipid zonation and phospholipid remodeling in nonalcoholic fatty liver disease. Hepatology 65:1165–80
    [Google Scholar]
  125. 125.  Hishikawa D, Hashidate T, Shimizu T, Shindou H 2014. Diversity and function of membrane glycerophospholipids generated by the remodeling pathway in mammalian cells. J. Lipid Res. 55:799–807
    [Google Scholar]
  126. 126.  Filipe A, McLauchlan J 2015. Hepatitis C virus and lipid droplets: finding a niche. Trends Mol. Med. 21:34–42
    [Google Scholar]
  127. 127.  Syed GH, Amako Y, Siddiqui A 2010. Hepatitis C virus hijacks host lipid metabolism. Trends Endocrinol. Metab. 21:33–40
    [Google Scholar]
  128. 128.  Su AI, Pezacki JP, Wodicka L, Brideau AD, Supekova L et al. 2002. Genomic analysis of the host response to hepatitis C virus infection. PNAS 99:15669–74
    [Google Scholar]
  129. 129.  Yang W, Hood BL, Chadwick SL, Liu S, Watkins SC et al. 2008. Fatty acid synthase is up-regulated during hepatitis C virus infection and regulates hepatitis C virus entry and production. Hepatology 48:1396–403
    [Google Scholar]
  130. 130.  Huang H, Sun F, Owen DM, Li W, Chen Y et al. 2007. Hepatitis C virus production by human hepatocytes dependent on assembly and secretion of very low-density lipoproteins. PNAS 104:5848–53
    [Google Scholar]
  131. 131.  Bartenschlager R, Penin F, Lohmann V, André P 2011. Assembly of infectious hepatitis C virus particles. Trends Microbiol 19:95–103
    [Google Scholar]
  132. 132.  Miyanari Y, Atsuzawa K, Usuda N, Watashi K, Hishiki T et al. 2007. The lipid droplet is an important organelle for hepatitis C virus production. Nat. Cell Biol. 9:1089–97
    [Google Scholar]
  133. 133.  Shi ST, Polyak SJ, Tu H, Taylor DR, Gretch DR, Lai MM 2002. Hepatitis C virus NS5A colocalizes with the core protein on lipid droplets and interacts with apolipoproteins. Virology 292:198–210
    [Google Scholar]
  134. 134.  Beilstein F, Lemasson M, Pene V, Rainteau D, Demignot S, Rosenberg AR 2017. Lysophosphatidylcholine acyltransferase 1 is downregulated by hepatitis C virus: impact on production of lipo-viro-particles. Gut 66:2160–69
    [Google Scholar]
  135. 135.  Cao SS, Kaufman RJ 2013. Targeting endoplasmic reticulum stress in metabolic disease. Expert Opin. Ther. Targets 17:437–48
    [Google Scholar]
  136. 136.  Zhang K, Kaufman RJ 2008. From endoplasmic-reticulum stress to the inflammatory response. Nature 454:455–62
    [Google Scholar]
  137. 137.  Hotamisligil GS. 2010. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140:900–17
    [Google Scholar]
  138. 138.  Borradaile NM, Han X, Harp JD, Gale SE, Ory DS, Schaffer JE 2006. Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death. J. Lipid Res. 47:2726–37
    [Google Scholar]
  139. 139.  Ariyama H, Kono N, Matsuda S, Inoue T, Arai H 2010. Decrease in membrane phospholipid unsaturation induces unfolded protein response. J. Biol. Chem. 285:22027–35
    [Google Scholar]
  140. 140.  Lusis AJ. 2000. Atherosclerosis. Nature 407:233–41
    [Google Scholar]
  141. 141.  Tabas I, García-Cardeña G, Owens GK 2015. Recent insights into the cellular biology of atherosclerosis. J. Cell Biol. 209:13–22
    [Google Scholar]
  142. 142.  Libby P, Ridker PM, Hansson GK 2011. Progress and challenges in translating the biology of atherosclerosis. Nature 473:317–25
    [Google Scholar]
  143. 143.  Moore KJ, Sheedy FJ, Fisher EA 2013. Macrophages in atherosclerosis: a dynamic balance. Nat. Rev. Immunol. 13:709–21
    [Google Scholar]
  144. 144.  Ishibashi M, Varin A, Filomenko R, Lopez T, Athias A et al. 2013. Liver X receptor regulates arachidonic acid distribution and eicosanoid release in human macrophages: a key role for lysophosphatidylcholine acyltransferase 3. Arterioscler. Thromb. Vasc. Biol. 33:1171–79
    [Google Scholar]
  145. 145.  Lee S, Birukov KG, Romanoski CE, Springstead JR, Lusis AJ, Berliner JA 2012. Role of phospholipid oxidation products in atherosclerosis. Circ. Res. 111:778–99
    [Google Scholar]
  146. 146.  Pratico D, Dogne JM 2009. Vascular biology of eicosanoids and atherogenesis. Expert Rev. Cardiovasc. Ther. 7:1079–89
    [Google Scholar]
  147. 147.  Taniguchi K, Hikiji H, Okinaga T, Hashidate-Yoshida T, Shindou H et al. 2015. Essential role of lysophosphatidylcholine acyltransferase 3 in the induction of macrophage polarization in PMA-treated U937 cells. J. Cell. Biochem. 116:2840–48
    [Google Scholar]
  148. 148.  Tanaka H, Zaima N, Sasaki T, Yamamoto N, Inuzuka K et al. 2017. Lysophosphatidylcholine acyltransferase-3 expression is associated with atherosclerosis progression. J. Vasc. Res. 54:200–8
    [Google Scholar]
  149. 149.  Repa JJ, Mangelsdorf DJ 2000. The role of orphan nuclear receptors in the regulation of cholesterol homeostasis. Annu. Rev. Cell Dev. Biol. 16:459–81
    [Google Scholar]
  150. 150.  Du Y, Wang Q, Zhang X, Wang X, Qin C et al. 2017. Lysophosphatidylcholine acyltransferase 1 upregulation and concomitant phospholipid alterations in clear cell renal cell carcinoma. J. Exp. Clin. Cancer Res. 36:66
    [Google Scholar]
  151. 151.  Shida-Sakazume T, Endo-Sakamoto Y, Unozawa M, Fukumoto C, Shimada K et al. 2015. Lysophosphatidylcholine acyltransferase1 overexpression promotes oral squamous cell carcinoma progression via enhanced biosynthesis of platelet-activating factor. PLOS ONE 10:e0120143
    [Google Scholar]
  152. 152.  Morita Y, Sakaguchi T, Ikegami K, Goto-Inoue N, Hayasaka T et al. 2013. Lysophosphatidylcholine acyltransferase 1 altered phospholipid composition and regulated hepatoma progression. J. Hepatol. 59:292–99
    [Google Scholar]
  153. 153.  Warnecke-Eberz U, Metzger R, Holscher AH, Drebber U, Bollschweiler E 2016. Diagnostic marker signature for esophageal cancer from transcriptome analysis. Tumour Biol 37:6349–58
    [Google Scholar]
  154. 154.  Uehara T, Kikuchi H, Miyazaki S, Iino I, Setoguchi T et al. 2016. Overexpression of lysophosphatidylcholine acyltransferase 1 and concomitant lipid alterations in gastric cancer. Ann. Surg. Oncol. 23:Suppl. 2S206–13
    [Google Scholar]
  155. 155.  Abdelzaher E, Mostafa MF 2015. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) upregulation in breast carcinoma contributes to tumor progression and predicts early tumor recurrence. Tumour Biol 36:5473–83
    [Google Scholar]
  156. 156.  Mansilla F, da Costa KA, Wang S, Kruhøffer M, Lewin TM et al. 2009. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) overexpression in human colorectal cancer. J. Mol. Med. 87:85–97
    [Google Scholar]
  157. 157.  Zhou X, Lawrence TJ, He Z, Pound CR, Mao J, Bigler SA 2012. The expression level of lysophosphatidylcholine acyltransferase 1 (LPCAT1) correlates to the progression of prostate cancer. Exp. Mol. Pathol. 92:105–10
    [Google Scholar]
  158. 158.  Grupp K, Sanader S, Sirma H, Simon R, Koop C et al. 2013. High lysophosphatidylcholine acyltransferase 1 expression independently predicts high risk for biochemical recurrence in prostate cancers. Mol. Oncol. 7:1001–11
    [Google Scholar]
  159. 159.  Xu B, Gao L, Wang L, Tang G, He M et al. 2013. Effects of platelet-activating factor and its differential regulation by androgens and steroid hormones in prostate cancers. Br. J. Cancer 109:1279–86
    [Google Scholar]
  160. 160.  Kurabe N, Hayasaka T, Ogawa M, Masaki N, Ide Y et al. 2013. Accumulated phosphatidylcholine (16:0/16:1) in human colorectal cancer; possible involvement of LPCAT4. Cancer Sci 104:1295–302
    [Google Scholar]
  161. 161.  Agarwal AK, Garg A 2010. Enzymatic activity of the human 1-acylglycerol-3-phosphate-O-acyltransferase isoform 11: upregulated in breast and cervical cancers. J. Lipid Res. 51:2143–52
    [Google Scholar]
  162. 162.  Williams KA, Lee M, Hu Y, Andreas J, Patel SJ et al. 2014. A systems genetics approach identifies CXCL14, ITGAX, and LPCAT2 as novel aggressive prostate cancer susceptibility genes. PLOS Genet 10:e1004809
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-020518-114444
Loading
/content/journals/10.1146/annurev-physiol-020518-114444
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error