1932

Abstract

Channelopathies are a diverse set of disorders associated with defects in ion channel (and transporter) function. Although the vast majority of channelopathies are linked with inherited mutations that alter ion channel biophysical properties, another group of similar disorders has emerged that alter ion channel synthesis, membrane trafficking, and/or posttranslational modifications. In fact, some electrical and episodic disorders have now been identified that are not defects in the ion channel but instead reflect dysfunction in an ion channel (or transporter) regulatory protein. This review focuses on alternative paradigms for physiological disorders associated with protein biosynthesis, folding, trafficking, and membrane retention. Furthermore, the review highlights the role of aberrant posttranslational modifications in acquired channelopathies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021014-071838
2015-02-10
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/physiol/77/1/annurev-physiol-021014-071838.html?itemId=/content/journals/10.1146/annurev-physiol-021014-071838&mimeType=html&fmt=ahah

Literature Cited

  1. Hille B. 1.  2001. Ion Channels of Excitable Membranes Sunderland, MA: Sinauer, 3rd ed..
  2. Fahlke C. 2.  2000. Molecular mechanisms of ion conduction in ClC-type chloride channels: lessons from disease-causing mutations. Kidney Int. 57:780–86 [Google Scholar]
  3. Aguilar-Bryan L, Clement JP IV, Gonzalez G, Kunjilwar K, Babenko A, Bryan J. 3.  1998. Toward understanding the assembly and structure of KATP channels. Physiol. Rev. 78:227–45 [Google Scholar]
  4. Coetzee WA, Amarillo Y, Chiu J, Chow A, Lau D. 4.  et al. 1999. Molecular diversity of K+ channels. Ann. N. Y. Acad. Sci. 868:233–85 [Google Scholar]
  5. Kline CF, Kurata HT, Hund TJ, Cunha SR, Koval OM. 5.  et al. 2009. Dual role of KATP channel C-terminal motif in membrane targeting and metabolic regulation. Proc. Natl. Acad. Sci. USA 106:16669–74 [Google Scholar]
  6. Li J, Kline CF, Hund TJ, Anderson ME, Mohler PJ. 6.  2010. Ankyrin-B regulates Kir6.2 membrane expression and function in heart. J. Biol. Chem. 285:28723–30 [Google Scholar]
  7. Davies JC, Alton EW, Bush A. 7.  2007. Cystic fibrosis. BMJ 335:1255–59 [Google Scholar]
  8. Meregalli PG, Tan HL, Probst V, Koopmann TT, Tanck MW. 8.  et al. 2009. Type of SCN5A mutation determines clinical severity and degree of conduction slowing in loss-of-function sodium channelopathies. Heart Rhythm 6:341–48 [Google Scholar]
  9. Meregalli PG, Wilde AA, Tan HL. 9.  2005. Pathophysiological mechanisms of Brugada syndrome: depolarization disorder, repolarization disorder, or more?. Cardiovasc. Res. 67:367–78 [Google Scholar]
  10. Probst V, Wilde AA, Barc J, Sacher F, Babuty D. 10.  et al. 2009. SCN5A mutations and the role of genetic background in the pathophysiology of Brugada syndrome. Circ. Cardiovasc. Genet. 2:552–57 [Google Scholar]
  11. Watanabe H, Koopmann TT, Le Scouarnec S, Yang T, Ingram CR. 11.  et al. 2008. Sodium channel β1 subunit mutations associated with Brugada syndrome and cardiac conduction disease in humans. J. Clin. Investig. 118:2260–68 [Google Scholar]
  12. Hu D, Barajas-Martinez H, Burashnikov E, Springer M, Wu Y. 12.  et al. 2009. A mutation in the β3 subunit of the cardiac sodium channel associated with Brugada ECG phenotype. Circ. Cardiovasc. Genet. 2:270–78 [Google Scholar]
  13. Yang Y, Yang Y, Liang B, Liu J, Li J. 13.  et al. 2010. Identification of a Kir3.4 mutation in congenital long QT syndrome. Am. J. Hum. Genet. 86:872–80 [Google Scholar]
  14. Morita H, Wu J, Zipes DP. 14.  2008. The QT syndromes: long and short. Lancet 372:750–63 [Google Scholar]
  15. Moss AJ, Zareba W, Schwarz KQ, Rosero S, McNitt S, Robinson JL. 15.  2008. Ranolazine shortens repolarization in patients with sustained inward sodium current due to type-3 long-QT syndrome. J. Cardiovasc. Electrophysiol. 19:1289–93 [Google Scholar]
  16. Imai M, Nakajima T, Kaneko Y, Niwamae N, Irie T. 16.  et al. 2014. A novel KCNQ1 splicing mutation in patients with forme fruste LQT1 aggravated by hypokalemia. J. Cardiol. 64:121–26 [Google Scholar]
  17. Keller SH, Platoshyn O, Yuan JX. 17.  2005. Long QT syndrome–associated I593R mutation in HERG potassium channel activates ER stress pathways. Cell Biochem. Biophys. 43:365–77 [Google Scholar]
  18. Silvis MR, Picciano JA, Bertrand C, Weixel K, Bridges RJ, Bradbury NA. 18.  2003. A mutation in the cystic fibrosis transmembrane conductance regulator generates a novel internalization sequence and enhances endocytic rates. J. Biol. Chem. 278:11554–60 [Google Scholar]
  19. Dobson CM. 19.  2003. Protein folding and misfolding. Nature 426:884–90 [Google Scholar]
  20. Riordan JR. 20.  2005. Assembly of functional CFTR chloride channels. Annu. Rev. Physiol. 67:701–18 [Google Scholar]
  21. Anderson CL, Delisle BP, Anson BD, Kilby JA, Will ML. 21.  et al. 2006. Most LQT2 mutations reduce Kv11.1 (hERG) current by a class 2 (trafficking-deficient) mechanism. Circulation 113:365–73 [Google Scholar]
  22. Gui J, Wang T, Jones RP, Trump D, Zimmer T, Lei M. 22.  2010. Multiple loss-of-function mechanisms contribute to SCN5A-related familial sick sinus syndrome. PLOS ONE 5:e10985 [Google Scholar]
  23. Bidaud I, Mezghrani A, Swayne LA, Monteil A, Lory P. 23.  2006. Voltage-gated calcium channels in genetic diseases. Biochim. Biophys. Acta 1763:1169–74 [Google Scholar]
  24. Herfst LJ, Rook MB, Jongsma HJ. 24.  2004. Trafficking and functional expression of cardiac Na+ channels. J. Mol. Cell. Cardiol. 36:185–93 [Google Scholar]
  25. Vacher H, Trimmer JS. 25.  2012. Trafficking mechanisms underlying neuronal voltage-gated ion channel localization at the axon initial segment. Epilepsia 53:Suppl. 921–31 [Google Scholar]
  26. Ficker E, Dennis A, Kuryshev Y, Wible BA, Brown AM. 26.  2005. HERG channel trafficking. Novartis Found. Symp. 266:57–69; discussion 70–74, 95–99 [Google Scholar]
  27. Bukau B, Horwich AL. 27.  1998. The Hsp70 and Hsp60 chaperone machines. Cell 92:351–66 [Google Scholar]
  28. Ficker E, Dennis AT, Wang L, Brown AM. 28.  2003. Role of the cytosolic chaperones Hsp70 and Hsp90 in maturation of the cardiac potassium channel HERG. Circ. Res. 92:e87–100 [Google Scholar]
  29. Barhanin J, Lesage F, Guillemare E, Fink M, Lazdunski M, Romey G. 29.  1996. KVLQT1 and IsK (minK) proteins associate to form the IKS cardiac potassium current. Nature 384:78–80 [Google Scholar]
  30. Sanguinetti MC, Curran ME, Zou A, Shen J, Spector PS. 30.  et al. 1996. Coassembly of KVLQT1 and minK (IsK) proteins to form cardiac IKS potassium channel. Nature 384:80–83 [Google Scholar]
  31. Xu X, Kanda VA, Choi E, Panaghie G, Roepke TK. 31.  et al. 2009. MinK-dependent internalization of the IKs potassium channel. Cardiovasc. Res. 82:430–38 [Google Scholar]
  32. Bianchi L, Shen Z, Dennis AT, Priori SG, Napolitano C. 32.  et al. 1999. Cellular dysfunction of LQT5-minK mutants: abnormalities of IKs, IKr and trafficking in long QT syndrome. Hum. Mol. Genet. 8:1499–507 [Google Scholar]
  33. Yamashita F, Horie M, Kubota T, Yoshida H, Yumoto Y. 33.  et al. 2001. Characterization and subcellular localization of KCNQ1 with a heterozygous mutation in the C terminus. J. Mol. Cell. Cardiol. 33:197–207 [Google Scholar]
  34. Biliczki P, Girmatsion Z, Brandes RP, Harenkamp S, Pitard B. 34.  et al. 2009. Trafficking-deficient long QT syndrome mutation KCNQ1-T587M confers severe clinical phenotype by impairment of KCNH2 membrane localization: evidence for clinically significant IKr-IKs α-subunit interaction. Heart Rhythm 6:1792–801 [Google Scholar]
  35. Labro AJ, Boulet IR, Timmermans JP, Ottschytsch N, Snyders DJ. 35.  2010. The rate-dependent biophysical properties of the LQT1 H258R mutant are counteracted by a dominant negative effect on channel trafficking. J. Mol. Cell. Cardiol. 48:1096–104 [Google Scholar]
  36. Li D, Takimoto K, Levitan ES. 36.  2000. Surface expression of Kv1 channels is governed by a C-terminal motif. J. Biol. Chem. 275:11597–602 [Google Scholar]
  37. Shi G, Nakahira K, Hammond S, Rhodes KJ, Schechter LE, Trimmer JS. 37.  1996. β subunits promote K+ channel surface expression through effects early in biosynthesis. Neuron 16:843–52 [Google Scholar]
  38. Schmitt N, Schwarz M, Peretz A, Abitbol I, Attali B, Pongs O. 38.  2000. A recessive C-terminal Jervell and Lange-Nielsen mutation of the KCNQ1 channel impairs subunit assembly. EMBO J. 19:332–40 [Google Scholar]
  39. Sato A, Arimura T, Makita N, Ishikawa T, Aizawa Y. 39.  et al. 2009. Novel mechanisms of trafficking defect caused by KCNQ1 mutations found in long QT syndrome. J. Biol. Chem. 284:35122–33 [Google Scholar]
  40. Volkers L, Rook MB, Das JH, Verbeek NE, Groenewegen WA. 40.  et al. 2009. Functional analysis of novel KCNQ2 mutations found in patients with Benign Familial Neonatal Convulsions. Neurosci. Lett. 462:24–29 [Google Scholar]
  41. Su J, Cao X, Wang K. 41.  2011. A novel degradation signal derived from distal C-terminal frameshift mutations of KCNQ2 protein which cause neonatal epilepsy. J. Biol. Chem. 286:42949–58 [Google Scholar]
  42. Biervert C, Schroeder BC, Kubisch C, Berkovic SF, Propping P. 42.  et al. 1998. A potassium channel mutation in neonatal human epilepsy. Science 279:403–6 [Google Scholar]
  43. Neyroud N, Tesson F, Denjoy I, Leibovici M, Donger C. 43.  et al. 1997. A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome. Nat. Genet. 15:186–89 [Google Scholar]
  44. Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED, Keating MT. 44.  1995. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell 80:795–803 [Google Scholar]
  45. Wilson AJ, Quinn KV, Graves FM, Bitner-Glindzicz M, Tinker A. 45.  2005. Abnormal KCNQ1 trafficking influences disease pathogenesis in hereditary long QT syndromes (LQT1). Cardiovasc. Res. 67:476–86 [Google Scholar]
  46. Grant B, Zhang Y, Paupard MC, Lin SX, Hall DH, Hirsh D. 46.  2001. Evidence that RME-1, a conserved C. elegans EH-domain protein, functions in endocytic recycling. Nat. Cell Biol. 3:573–79 [Google Scholar]
  47. Hurley JH. 47.  2010. The ESCRT complexes. Crit. Rev. Biochem. Mol. Biol. 45:463–87 [Google Scholar]
  48. Zivony-Elboum Y, Westbroek W, Kfir N, Savitzki D, Shoval Y. 48.  et al. 2012. A founder mutation in Vps37A causes autosomal recessive complex hereditary spastic paraparesis. J. Med. Genet. 49:462–72 [Google Scholar]
  49. Dinour D, Davidovitz M, Levin-Iaina N, Lotan D, Cleper R. 49.  et al. 2009. Truncating mutations in the chloride/proton ClC-5 antiporter gene in seven Jewish Israeli families with Dent's 1 disease. Nephron Clin. Pract. 112:c262–67 [Google Scholar]
  50. Piwon N, Gunther W, Schwake M, Bosl MR, Jentsch TJ. 50.  2000. ClC-5 Cl-channel disruption impairs endocytosis in a mouse model for Dent's disease. Nature 408:369–73 [Google Scholar]
  51. Devuyst O, Jouret F, Auzanneau C, Courtoy PJ. 51.  2005. Chloride channels and endocytosis: new insights from Dent's disease and ClC-5 knockout mice. Nephron Physiol. 99:p69–73 [Google Scholar]
  52. 52. The Cardiac Arrhythmia Suppression Trial II Investigators 1992. Effect of the antiarrhythmic agent moricizine on survival after myocardial infarction. N. Engl. J. Med. 327:227–33 [Google Scholar]
  53. Brooks MM, Gorkin L, Schron EB, Wiklund I, Campion J, Ledingham RB. 53.  1994. Moricizine and quality of life in the Cardiac Arrhythmia Suppression Trial II (CAST II). Control. Clin. Trials 15:437–49 [Google Scholar]
  54. Zimmer T, Surber R. 54.  2008. SCN5A channelopathies—an update on mutations and mechanisms. Prog. Biophys. Mol. Biol. 98:120–36 [Google Scholar]
  55. Abriel H. 55.  2010. Cardiac sodium channel Nav1.5 and interacting proteins: physiology and pathophysiology. J. Mol. Cell. Cardiol. 48:2–11 [Google Scholar]
  56. Pfahnl AE, Viswanathan PC, Weiss R, Shang LL, Sanyal S. 56.  et al. 2007. A sodium channel pore mutation causing Brugada syndrome. Heart Rhythm 4:46–53 [Google Scholar]
  57. Tan BH, Valdivia CR, Song C, Makielski JC. 57.  2006. Partial expression defect for the SCN5A missense mutation G1406R depends on splice variant background Q1077 and rescue by mexiletine. Am. J. Physiol. Heart Circ. Physiol. 291:H1822–28 [Google Scholar]
  58. Valdivia CR, Ackerman MJ, Tester DJ, Wada T, McCormack J. 58.  et al. 2002. A novel SCN5A arrhythmia mutation, M1766L, with expression defect rescued by mexiletine. Cardiovasc. Res. 55:279–89 [Google Scholar]
  59. Duff HJ, Offord J, West J, Catterall WA. 59.  1992. Class I and IV antiarrhythmic drugs and cytosolic calcium regulate mRNA encoding the sodium channel α subunit in rat cardiac muscle. Mol. Pharmacol. 42:570–74 [Google Scholar]
  60. Curran J, Mohler PJ. 60.  2011. Coordinating electrical activity of the heart: ankyrin polypeptides in human cardiac disease. Expert Opin. Ther. Targets 15:789–801 [Google Scholar]
  61. Bennett V, Davis J. 61.  1983. Spectrin and ankyrin in brain. Cell Motil. 3:623–33 [Google Scholar]
  62. Bennett V, Stenbuck PJ. 62.  1979. Identification and partial purification of ankyrin, the high affinity membrane attachment site for human erythrocyte spectrin. J. Biol. Chem. 254:2533–41 [Google Scholar]
  63. Kizhatil K, Sandhu NK, Peachey NS, Bennett V. 63.  2009. Ankyrin-B is required for coordinated expression of β-2-spectrin, the Na/K-ATPase and the Na/Ca exchanger in the inner segment of rod photoreceptors. Exp. Eye Res. 88:57–64 [Google Scholar]
  64. Kline CF, Wright PJ, Koval OM, Zmuda EJ, Johnson BL. 64.  et al. 2013. βIV-Spectrin and CaMKII facilitate Kir6.2 regulation in pancreatic β cells. Proc. Natl. Acad. Sci. USA 110:17576–81 [Google Scholar]
  65. Jenkins SM, Bennett V. 65.  2001. Ankyrin-G coordinates assembly of the spectrin-based membrane skeleton, voltage-gated sodium channels, and L1 CAMs at Purkinje neuron initial segments. J. Cell Biol. 155:739–46 [Google Scholar]
  66. Bennett V. 66.  1978. Purification of an active proteolytic fragment of the membrane attachment site for human erythrocyte spectrin. J. Biol. Chem. 253:2292–99 [Google Scholar]
  67. Bennett V, Stenbuck PJ. 67.  1980. Human erythrocyte ankyrin. Purification and properties. J. Biol. Chem. 255:2540–48 [Google Scholar]
  68. Ayalon G, Davis JQ, Scotland PB, Bennett V. 68.  2008. An ankyrin-based mechanism for functional organization of dystrophin and dystroglycan. Cell 135:1189–200 [Google Scholar]
  69. Kizhatil K, Baker SA, Arshavsky VY, Bennett V. 69.  2009. Ankyrin-G promotes cyclic nucleotide–gated channel transport to rod photoreceptor sensory cilia. Science 323:1614–17 [Google Scholar]
  70. Le Scouarnec S, Bhasin N, Vieyres C, Hund TJ, Cunha SR. 70.  et al. 2008. Dysfunction in ankyrin-B-dependent ion channel and transporter targeting causes human sinus node disease. Proc. Natl. Acad. Sci. USA 105:15617–22 [Google Scholar]
  71. Garrido JJ, Giraud P, Carlier E, Fernandes F, Moussif A. 71.  et al. 2003. A targeting motif involved in sodium channel clustering at the axonal initial segment. Science 300:2091–94 [Google Scholar]
  72. Pan Z, Kao T, Horvath Z, Lemos J, Sul JY. 72.  et al. 2006. A common ankyrin-G-based mechanism retains KCNQ and NaV channels at electrically active domains of the axon. J. Neurosci. 26:2599–613 [Google Scholar]
  73. Sato PY, Coombs W, Lin X, Nekrasova O, Green KJ. 73.  et al. 2011. Interactions between ankyrin-G, Plakophilin-2, and Connexin43 at the cardiac intercalated disc. Circ. Res. 109:193–201 [Google Scholar]
  74. Lowe JS, Palygin O, Bhasin N, Hund TJ, Boyden PA. 74.  et al. 2008. Voltage-gated Nav channel targeting in the heart requires an ankyrin-G dependent cellular pathway. J. Cell Biol. 180:173–86 [Google Scholar]
  75. Wang Q, Shen J, Splawski I, Atkinson D, Li Z. 75.  et al. 1995. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell 80:805–11 [Google Scholar]
  76. Mohler PJ, Rivolta I, Napolitano C, LeMaillet G, Lambert S. 76.  et al. 2004. Nav1.5 E1053K mutation causing Brugada syndrome blocks binding to ankyrin-G and expression of Nav1.5 on the surface of cardiomyocytes. Proc. Natl. Acad. Sci. USA 101:17533–38 [Google Scholar]
  77. Priori SG, Napolitano C, Gasparini M, Pappone C, Della Bella P. 77.  et al. 2002. Natural history of Brugada syndrome: insights for risk stratification and management. Circulation 105:1342–47 [Google Scholar]
  78. Hund TJ, Koval OM, Li J, Wright PJ, Qian L. 78.  et al. 2010. A βIV-spectrin/CaMKII signaling complex is essential for membrane excitability in mice. J. Clin. Investig. 120:3508–19 [Google Scholar]
  79. Mohler PJ, Davis JQ, Bennett V. 79.  2005. Ankyrin-B coordinates the Na/K ATPase, Na/Ca exchanger, and InsP3 receptor in a cardiac T-tubule/SR microdomain. PLOS Biol. 3:e423 [Google Scholar]
  80. Mohler PJ, Schott JJ, Gramolini AO, Dilly KW, Guatimosim S. 80.  et al. 2003. Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature 421:634–39 [Google Scholar]
  81. Camors E, Mohler PJ, Bers DM, Despa S. 81.  2012. Ankyrin-B reduction enhances Ca spark–mediated SR Ca release promoting cardiac myocyte arrhythmic activity. J. Mol. Cell. Cardiol. 52:1240–48 [Google Scholar]
  82. Schott JJ, Charpentier F, Peltier S, Foley P, Drouin E. 82.  et al. 1995. Mapping of a gene for long QT syndrome to chromosome 4q25–27. Am. J. Hum. Genet. 57:1114–22 [Google Scholar]
  83. Hund TJ, Mohler PJ. 83.  2008. Ankyrin-based targeting pathway regulates human sinoatrial node automaticity. Channels 2:404–6 [Google Scholar]
  84. Ayalon G, Hostettler JD, Hoffman J, Kizhatil K, Davis JQ, Bennett V. 84.  2011. Ankyrin-B interactions with spectrin and dynactin-4 are required for dystrophin-based protection of skeletal muscle from exercise injury. J. Biol. Chem. 286:7370–78 [Google Scholar]
  85. Bhasin N, Cunha SR, Mudannayake M, Gigena MS, Rogers TB, Mohler PJ. 85.  2007. Molecular basis for PP2A regulatory subunit B56α targeting in cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 293:H109–19 [Google Scholar]
  86. Healy JA, Nilsson KR, Hohmeier HE, Berglund J, Davis J. 86.  et al. 2010. Cholinergic augmentation of insulin release requires ankyrin-B. Sci. Signal. 3:ra19 [Google Scholar]
  87. Vaxillaire M, Populaire C, Busiah K, Cave H, Gloyn AL. 87.  et al. 2004. Kir6.2 mutations are a common cause of permanent neonatal diabetes in a large cohort of French patients. Diabetes 53:2719–22 [Google Scholar]
  88. Lin X, Liu N, Lu J, Zhang J, Anumonwo JM. 88.  et al. 2011. Subcellular heterogeneity of sodium current properties in adult cardiac ventricular myocytes. Heart Rhythm 8:1923–30 [Google Scholar]
  89. Gavillet B, Rougier JS, Domenighetti AA, Behar R, Boixel C. 89.  et al. 2006. Cardiac sodium channel Nav1.5 is regulated by a multiprotein complex composed of syntrophins and dystrophin. Circ. Res. 99:407–14 [Google Scholar]
  90. Williams JC, Armesilla AL, Mohamed TM, Hagarty CL, McIntyre FH. 90.  et al. 2006. The sarcolemmal calcium pump, α-1 syntrophin, and neuronal nitric-oxide synthase are parts of a macromolecular protein complex. J. Biol. Chem. 281:23341–48 [Google Scholar]
  91. Ahern GP, Hsu SF, Klyachko VA, Jackson MB. 91.  2000. Induction of persistent sodium current by exogenous and endogenous nitric oxide. J. Biol. Chem. 275:28810–15 [Google Scholar]
  92. Oceandy D, Cartwright EJ, Emerson M, Prehar S, Baudoin FM. 92.  et al. 2007. Neuronal nitric oxide synthase signaling in the heart is regulated by the sarcolemmal calcium pump 4b. Circulation 115:483–92 [Google Scholar]
  93. Ueda K, Valdivia C, Medeiros-Domingo A, Tester DJ, Vatta M. 93.  et al. 2008. Syntrophin mutation associated with long QT syndrome through activation of the nNOS-SCN5A macromolecular complex. Proc. Natl. Acad. Sci. USA 105:9355–60 [Google Scholar]
  94. Bankston JR, Sampson KJ, Kateriya S, Glaaser IW, Malito DL. 94.  et al. 2007. A novel LQT-3 mutation disrupts an inactivation gate complex with distinct rate-dependent phenotypic consequences. Channels 1:273–80 [Google Scholar]
  95. Chang CC, Acharfi S, Wu MH, Chiang FT, Wang JK. 95.  et al. 2004. A novel SCN5A mutation manifests as a malignant form of long QT syndrome with perinatal onset of tachycardia/bradycardia. Cardiovasc. Res. 64:268–78 [Google Scholar]
  96. Cheng J, Van Norstrand DW, Medeiros-Domingo A, Valdivia C, Tan BH. 96.  et al. 2009. α1-Syntrophin mutations identified in sudden infant death syndrome cause an increase in late cardiac sodium current. Circ. Arrhythm. Electrophysiol. 2:667–76 [Google Scholar]
  97. Lajoie P, Nabi IR. 97.  2010. Lipid rafts, caveolae, and their endocytosis. Int. Rev. Cell Mol. Biol. 282:135–63 [Google Scholar]
  98. Balijepalli RC, Kamp TJ. 98.  2008. Caveolae, ion channels and cardiac arrhythmias. Prog. Biophys. Mol. Biol. 98:149–60 [Google Scholar]
  99. Harvey RD, Hell JW. 99.  2013. CaV1.2 signaling complexes in the heart. J. Mol. Cell. Cardiol. 58:143–52 [Google Scholar]
  100. Balijepalli RC, Foell JD, Hall DD, Hell JW, Kamp TJ. 100.  2006. Localization of cardiac L-type Ca2+ channels to a caveolar macromolecular signaling complex is required for β2-adrenergic regulation. Proc. Natl. Acad. Sci. USA 103:7500–5 [Google Scholar]
  101. Ostrom RS, Bundey RA, Insel PA. 101.  2004. Nitric oxide inhibition of adenylyl cyclase type 6 activity is dependent upon lipid rafts and caveolin signaling complexes. J. Biol. Chem. 279:19846–53 [Google Scholar]
  102. Shibata EF, Brown TL, Washburn ZW, Bai J, Revak TJ, Butters CA. 102.  2006. Autonomic regulation of voltage-gated cardiac ion channels. J. Cardiovasc. Electrophysiol. 17:Suppl. 134–42 [Google Scholar]
  103. Steinberg SF. 103.  2004. β2-Adrenergic receptor signaling complexes in cardiomyocyte caveolae/lipid rafts. J. Mol. Cell. Cardiol. 37:407–15 [Google Scholar]
  104. Venema VJ, Ju H, Zou R, Venema RC. 104.  1997. Interaction of neuronal nitric-oxide synthase with caveolin-3 in skeletal muscle. Identification of a novel caveolin scaffolding/inhibitory domain. J. Biol. Chem. 272:28187–90 [Google Scholar]
  105. Cronk LB, Ye B, Kaku T, Tester DJ, Vatta M. 105.  et al. 2007. Novel mechanism for sudden infant death syndrome: persistent late sodium current secondary to mutations in caveolin-3. Heart Rhythm 4:161–66 [Google Scholar]
  106. Vatta M, Ackerman MJ, Ye B, Makielski JC, Ughanze EE. 106.  et al. 2006. Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome. Circulation 114:2104–12 [Google Scholar]
  107. Cheng J, Valdivia CR, Vaidyanathan R, Balijepalli RC, Ackerman MJ, Makielski JC. 107.  2013. Caveolin-3 suppresses late sodium current by inhibiting nNOS-dependent S-nitrosylation of SCN5A. J. Mol. Cell. Cardiol. 61:102–10 [Google Scholar]
  108. Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD. 108.  et al. 2012. Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation 125:e2–220 [Google Scholar]
  109. Marban E. 109.  1999. Heart failure: the electrophysiologic connection. J. Cardiovasc. Electrophysiol. 10:1425–28 [Google Scholar]
  110. Kääb S, Nuss HB, Chiamvimonvat N, O'Rourke B, Pak PH. 110.  et al. 1996. Ionic mechanism of action potential prolongation in ventricular myocytes from dogs with pacing-induced heart failure. Circ. Res. 78:262–73 [Google Scholar]
  111. Kääb S, Dixon J, Duc J, Ashen D, Nabauer M. 111.  et al. 1998. Molecular basis of transient outward potassium current downregulation in human heart failure: A decrease in Kv4.3 mRNA correlates with a reduction in current density. Circulation 98:1383–93 [Google Scholar]
  112. Narayan SM, Bayer JD, Lalani G, Trayanova NA. 112.  2008. Action potential dynamics explain arrhythmic vulnerability in human heart failure: a clinical and modeling study implicating abnormal calcium handling. J. Am. Coll. Cardiol. 52:1782–92 [Google Scholar]
  113. Bers DM. 113.  2002. Cardiac excitation-contraction coupling. Nature 415:198–205 [Google Scholar]
  114. Wehrens XH, Lehnart SE, Marks AR. 114.  2005. Intracellular calcium release and cardiac disease. Annu. Rev. Physiol. 67:69–98 [Google Scholar]
  115. Toischer K, Hartmann N, Wagner S, Fischer TH, Herting J. 115.  et al. 2013. Role of late sodium current as a potential arrhythmogenic mechanism in the progression of pressure-induced heart disease. J. Mol. Cell. Cardiol. 61:111–22 [Google Scholar]
  116. Koval OM, Snyder JS, Wolf RM, Pavlovicz RE, Glynn P. 116.  et al. 2012. Ca2+/calmodulin-dependent protein kinase II–based regulation of voltage-gated Na+ channel in cardiac disease. Circulation 126:2084–94 [Google Scholar]
  117. Shannon TR, Bers DM. 117.  2004. Integrated Ca2+ management in cardiac myocytes. Ann. N. Y. Acad. Sci. 1015:28–38 [Google Scholar]
  118. Akar FG, Wu RC, Juang GJ, Tian Y, Burysek M. 118.  et al. 2005. Molecular mechanisms underlying K+ current downregulation in canine tachycardia-induced heart failure. Am. J. Physiol. Heart Circ. Physiol. 288:H2887–96 [Google Scholar]
  119. Grandi E, Puglisi JL, Wagner S, Maier LS, Severi S, Bers DM. 119.  2007. Simulation of Ca-calmodulin-dependent protein kinase II on rabbit ventricular myocyte ion currents and action potentials. Biophys. J. 93:3835–47 [Google Scholar]
  120. Reiken S, Gaburjakova M, Guatimosim S, Gomez AM, D'Armiento J. 120.  et al. 2003. Protein kinase A phosphorylation of the cardiac calcium release channel (ryanodine receptor) in normal and failing hearts. Role of phosphatases and response to isoproterenol. J. Biol. Chem. 278:444–53 [Google Scholar]
  121. Wehrens XH, Lehnart SE, Reiken SR, Marks AR. 121.  2004. Ca2+/calmodulin-dependent protein kinase II phosphorylation regulates the cardiac ryanodine receptor. Circ. Res. 94:e61–70 [Google Scholar]
  122. Xiao B, Zhong G, Obayashi M, Yang D, Chen K. 122.  et al. 2006. Ser-2030, but not Ser-2808, is the major phosphorylation site in cardiac ryanodine receptors responding to protein kinase A activation upon β-adrenergic stimulation in normal and failing hearts. Biochem. J. 396:7–16 [Google Scholar]
  123. Fischer TH, Herting J, Tirilomis T, Renner A, Neef S. 123.  et al. 2013. Ca2+/calmodulin-dependent protein kinase II and protein kinase A differentially regulate sarcoplasmic reticulum Ca2+ leak in human cardiac pathology. Circulation 128:970–81 [Google Scholar]
  124. Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D. 124.  et al. 2000. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101:365–76 [Google Scholar]
  125. Ai X, Curran JW, Shannon TR, Bers DM, Pogwizd SM. 125.  2005. Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Circ. Res. 97:1314–22 [Google Scholar]
  126. Curran J, Hinton MJ, Rios E, Bers DM, Shannon TR. 126.  2007. β-Adrenergic enhancement of sarcoplasmic reticulum calcium leak in cardiac myocytes is mediated by calcium/calmodulin-dependent protein kinase. Circ. Res. 100:391–98 [Google Scholar]
  127. Shannon TR, Pogwizd SM, Bers DM. 127.  2003. Elevated sarcoplasmic reticulum Ca2+ leak in intact ventricular myocytes from rabbits in heart failure. Circ. Res. 93:592–94 [Google Scholar]
  128. Pogwizd SM, Bers DM. 128.  2002. Na/Ca exchange in heart failure: contractile dysfunction and arrhythmogenesis. Ann. N. Y. Acad. Sci. 976:454–65 [Google Scholar]
  129. Pogwizd SM, Hoyt RH, Saffitz JE, Corr PB, Cox JL, Cain ME. 129.  1992. Reentrant and focal mechanisms underlying ventricular tachycardia in the human heart. Circulation 86:1872–87 [Google Scholar]
  130. Pogwizd SM, McKenzie JP, Cain ME. 130.  1998. Mechanisms underlying spontaneous and induced ventricular arrhythmias in patients with idiopathic dilated cardiomyopathy. Circulation 98:2404–14 [Google Scholar]
  131. Bers DM, Pogwizd SM, Schlotthauer K. 131.  2002. Upregulated Na/Ca exchange is involved in both contractile dysfunction and arrhythmogenesis in heart failure. Basic Res. Cardiol. 97:Suppl. 1I36–42 [Google Scholar]
  132. Beuckelmann DJ, Nabauer M, Erdmann E. 132.  1993. Alterations of K+ currents in isolated human ventricular myocytes from patients with terminal heart failure. Circ. Res. 73:379–85 [Google Scholar]
  133. Curran J, Brown KH, Santiago DJ, Pogwizd S, Bers DM, Shannon TR. 133.  2010. Spontaneous Ca waves in ventricular myocytes from failing hearts depend on Ca2+-calmodulin-dependent protein kinase II. J. Mol. Cell. Cardiol. 49:25–32 [Google Scholar]
  134. Ravens U, Cerbai E. 134.  2008. Role of potassium currents in cardiac arrhythmias. Europace 10:1133–37 [Google Scholar]
  135. Nagado T, Arimura K, Sonoda Y, Kurono A, Horikiri Y. 135.  et al. 1999. Potassium current suppression in patients with peripheral nerve hyperexcitability. Brain 122:Part 112057–66 [Google Scholar]
  136. Hart IK, Waters C, Vincent A, Newland C, Beeson D. 136.  et al. 1997. Autoantibodies detected to expressed K+ channels are implicated in neuromyotonia. Ann. Neurol. 41:238–46 [Google Scholar]
  137. Liguori R, Vincent A, Clover L, Avoni P, Plazzi G. 137.  et al. 2001. Morvan's syndrome: peripheral and central nervous system and cardiac involvement with antibodies to voltage-gated potassium channels. Brain 124:2417–26 [Google Scholar]
  138. Shih WH, Landau ME, Barner KC, Campbell WW. 138.  2003. Acquired neuromyotonia in association with systemic lupus erythematosus. J. Clin. Neuromuscul. Dis. 5:8–11 [Google Scholar]
/content/journals/10.1146/annurev-physiol-021014-071838
Loading
/content/journals/10.1146/annurev-physiol-021014-071838
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error