1932

Abstract

More than two dozen types of potassium channels, with different biophysical and regulatory properties, are expressed in the kidney, influencing renal function in many important ways. Recently, a confluence of discoveries in areas from human genetics to physiology, cell biology, and biophysics has cast light on the special function of five different potassium channels in the distal nephron, encoded by the genes , , , , and . Research aimed at understanding how these channels work in health and go awry in disease has transformed our understanding of potassium balance and provided new insights into mechanisms of renal sodium handling and the maintenance of blood pressure. This review focuses on recent advances in this rapidly evolving field.

Keyword(s): BKKCa2.3Kir4.1Kir5.1ROMKSK3
Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021115-105423
2016-02-10
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/physiol/78/1/annurev-physiol-021115-105423.html?itemId=/content/journals/10.1146/annurev-physiol-021115-105423&mimeType=html&fmt=ahah

Literature Cited

  1. McCormick JA, Ellison DH. 1.  2011. The WNKs: atypical protein kinases with pleiotropic actions. Physiol. Rev. 91:177–219 [Google Scholar]
  2. Welling PA, Chang YP, Delpire E, Wade JB. 2.  2010. Multigene kinase network, kidney transport, and salt in essential hypertension. Kidney Int. 77:1063–69 [Google Scholar]
  3. Wilson FH, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C. 3.  et al. 2001. Human hypertension caused by mutations in WNK kinases. Science 293:1107–12 [Google Scholar]
  4. Yang SS, Morimoto T, Rai T, Chiga M, Sohara E. 4.  et al. 2007. Molecular pathogenesis of pseudohypoaldosteronism type II: generation and analysis of a Wnk4D561A/+ knockin mouse model. Cell Metab. 5:331–44 [Google Scholar]
  5. Vidal-Petiot E, Elvira-Matelot E, Mutig K, Soukaseum C, Baudrie V. 5.  et al. 2013. WNK1-related familial hyperkalemic hypertension results from an increased expression of L-WNK1 specifically in the distal nephron. PNAS 110:14366–71 [Google Scholar]
  6. Ohta A, Schumacher FR, Mehellou Y, Johnson C, Knebel A. 6.  et al. 2013. The CUL3-KLHL3 E3 ligase complex mutated in Gordon's hypertension syndrome interacts with and ubiquitylates WNK isoforms: Disease-causing mutations in KLHL3 and WNK4 disrupt interaction. Biochem. J. 451:111–22 [Google Scholar]
  7. Boyden LM, Choi M, Choate KA, Nelson-Williams CJ, Farhi A. 7.  et al. 2012. Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature 482:98–102 [Google Scholar]
  8. Chiga M, Rai T, Yang SS, Ohta A, Takizawa T. 8.  et al. 2008. Dietary salt regulates the phosphorylation of OSR1/SPAK kinases and the sodium chloride cotransporter through aldosterone. Kidney Int. 74:1403–9 [Google Scholar]
  9. Vallon V, Schroth J, Lang F, Kuhl D, Uchida S. 9.  2009. Expression and phosphorylation of the Na+-Cl cotransporter NCC in vivo is regulated by dietary salt, potassium, and SGK1. Am. J. Physiol. Ren. Physiol. 297:F704–12 [Google Scholar]
  10. van der Lubbe N, Lim CH, Meima ME, van Veghel R, Rosenbaek LL. 10.  et al. 2012. Aldosterone does not require angiotensin II to activate NCC through a WNK4-SPAK-dependent pathway. Pflugers Arch. 463:853–63 [Google Scholar]
  11. van der Lubbe N, Lim CH, Fenton RA, Meima ME, Jan Danser AH. 11.  et al. 2011. Angiotensin II induces phosphorylation of the thiazide-sensitive sodium chloride cotransporter independent of aldosterone. Kidney Int. 79:66–76 [Google Scholar]
  12. Gonzalez-Villalobos RA, Janjoulia T, Fletcher NK, Giani JF, Nguyen MT. 12.  et al. 2013. The absence of intrarenal ACE protects against hypertension. J. Clin. Investig. 123:2011–23 [Google Scholar]
  13. Castaneda-Bueno M, Cervantes-Perez LG, Vazquez N, Uribe N, Kantesaria S. 13.  et al. 2012. Activation of the renal Na+:Cl cotransporter by angiotensin II is a WNK4-dependent process. PNAS 109:7929–34 [Google Scholar]
  14. Takahashi D, Mori T, Nomura N, Khan MZ, Araki Y. 14.  et al. 2014. WNK4 is the major WNK positively regulating NCC in the mouse kidney. Biosci. Rep. 34:e00107 [Google Scholar]
  15. Terker AS, Yang CL, McCormick JA, Meermeier NP, Rogers SL. 15.  et al. 2014. Sympathetic stimulation of thiazide-sensitive sodium chloride cotransport in the generation of salt-sensitive hypertension. Hypertension 64:178–84 [Google Scholar]
  16. Mu S, Shimosawa T, Ogura S, Wang H, Uetake Y. 16.  et al. 2011. Epigenetic modulation of the renal β-adrenergic–WNK4 pathway in salt-sensitive hypertension. Nat. Med. 17:573–80 [Google Scholar]
  17. Terker AS, Zhang C, McCormick JA, Lazelle RA, Meermeier NP. 17.  et al. 2015. Potassium modulates electrolyte balance and blood pressure through effects on distal cell voltage and chloride. Cell Metab. 21:39–50 [Google Scholar]
  18. Wade JB, Liu J, Coleman R, Grimm PR, Delpire E, Welling PA. 18.  2015. SPAK-mediated NCC regulation in response to low-K+ diet. Am. J. Physiol. Ren. Physiol. 308:F923–31 [Google Scholar]
  19. Richardson C, Rafiqi FH, Karlsson HK, Moleleki N, Vandewalle A. 19.  et al. 2008. Activation of the thiazide-sensitive Na+-Cl cotransporter by the WNK-regulated kinases SPAK and OSR1. J. Cell Sci. 121:675–84 [Google Scholar]
  20. McCormick JA, Mutig K, Nelson JH, Saritas T, Hoorn EJ. 20.  et al. 2011. A SPAK isoform switch modulates renal salt transport and blood pressure. Cell Metab. 14:352–64 [Google Scholar]
  21. Grimm PR, Taneja TK, Liu J, Coleman R, Chen YY. 21.  et al. 2012. SPAK isoforms and OSR1 regulate sodium-chloride co-transporters in a nephron-specific manner. J. Biol. Chem. 287:37673–90 [Google Scholar]
  22. Hadchouel J, Ellison DH, Gamba G. 22.  2016. Regulation of renal electrolyte transport by WNK and SPAK/OSR1 kinases. Annu. Rev. Physiol. 78:367–89 [Google Scholar]
  23. Sorensen MV, Grossmann S, Roesinger M, Gresko N, Todkar AP. 23.  et al. 2013. Rapid dephosphorylation of the renal sodium chloride cotransporter in response to oral potassium intake in mice. Kidney Int. 83:811–24 [Google Scholar]
  24. Rengarajan S, Lee DH, Oh YT, Delpire E, Youn JH, McDonough AA. 24.  2014. Increasing plasma [K+] by intravenous potassium infusion reduces NCC phosphorylation and drives kaliuresis and natriuresis. Am. J. Physiol. Ren. Physiol. 306:F1059–68 [Google Scholar]
  25. Lachheb S, Cluzeaud F, Bens M, Genete M, Hibino H. 25.  et al. 2008. Kir4.1/Kir5.1 channel forms the major K+ channel in the basolateral membrane of mouse renal collecting duct principal cells. Am. J. Physiol. Ren. Physiol. 294:F1398–407 [Google Scholar]
  26. Ookata K, Tojo A, Suzuki Y, Nakamura N, Kimura K. 26.  et al. 2000. Localization of inward rectifier potassium channel Kir7.1 in the basolateral membrane of distal nephron and collecting duct. J. Am. Soc. Nephrol. 11:1987–94 [Google Scholar]
  27. Alewine C, Olsen O, Wade JB, Welling PA. 27.  2006. TIP-1 has PDZ scaffold antagonist activity. Mol. Biol. Cell 17:4200–11 [Google Scholar]
  28. Zheng W, Verlander JW, Lynch IJ, Cash M, Shao J. 28.  et al. 2007. Cellular distribution of the potassium channel KCNQ1 in normal mouse kidney. Am. J. Physiol. Ren. Physiol. 292:F456–66 [Google Scholar]
  29. Tanemoto M, Abe T, Uchida S, Kawahara K. 29.  2014. Mislocalization of K+ channels causes the renal salt wasting in EAST/SeSAME syndrome. FEBS Lett. 588:899–905 [Google Scholar]
  30. Williams DM, Lopes CM, Rosenhouse-Dantsker A, Connelly HL, Matavel A. 30.  et al. 2010. Molecular basis of decreased Kir4.1 function in SeSAME/EAST syndrome. J. Am. Soc. Nephrol. 21:2117–29 [Google Scholar]
  31. Sala-Rabanal M, Kucheryavykh LY, Skatchkov SN, Eaton MJ, Nichols CG. 31.  2010. Molecular mechanisms of EAST/SeSAME syndrome mutations in Kir4.1 (KCNJ10). J. Biol. Chem. 285:36040–48 [Google Scholar]
  32. Bockenhauer D, Feather S, Stanescu HC, Bandulik S, Zdebik AA. 32.  et al. 2009. Epilepsy, ataxia, sensorineural deafness, tubulopathy, and KCNJ10 mutations. N. Engl. J. Med. 360:1960–70 [Google Scholar]
  33. Scholl UI, Choi M, Liu T, Ramaekers VT, Hausler MG. 33.  et al. 2009. Seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10. PNAS 106:5842–47 [Google Scholar]
  34. Simon DB, Nelson-Williams C, Bia MJ, Ellison D, Karet FE. 34.  et al. 1996. Gitelman's variant of Bartter's syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na-Cl cotransporter. Nat. Genet. 12:24–30 [Google Scholar]
  35. Zhang C, Wang L, Zhang J, Su XT, Lin DH. 35.  et al. 2014. KCNJ10 determines the expression of the apical Na-Cl cotransporter (NCC) in the early distal convoluted tubule (DCT1). PNAS 111:11864–69 [Google Scholar]
  36. Reichold M, Zdebik AA, Lieberer E, Rapedius M, Schmidt K. 36.  et al. 2010. KCNJ10 gene mutations causing EAST syndrome (epilepsy, ataxia, sensorineural deafness, and tubulopathy) disrupt channel function. PNAS 107:14490–95 [Google Scholar]
  37. Lourdel S, Paulais M, Cluzeaud F, Bens M, Tanemoto M. 37.  et al. 2002. An inward rectifier K+ channel at the basolateral membrane of the mouse distal convoluted tubule: similarities with Kir4-Kir5.1 heteromeric channels. J. Physiol. 538:391–404 [Google Scholar]
  38. Pessia M, Tucker SJ, Lee K, Bond CT, Adelman JP. 38.  1996. Subunit positional effects revealed by novel heteromeric inwardly rectifying K+ channels. EMBO J. 15:2980–87 [Google Scholar]
  39. Paulais M, Bloch-Faure M, Picard N, Jacques T, Ramakrishnan SK. 39.  et al. 2011. Renal phenotype in mice lacking the Kir5.1 (Kcnj16) K+ channel subunit contrasts with that observed in SeSAME/EAST syndrome. PNAS 108:10361–66 [Google Scholar]
  40. Tanemoto M, Kittaka N, Inanobe A, Kurachi Y. 40.  2000. In vivo formation of a proton-sensitive K+ channel by heteromeric subunit assembly of Kir5.1 with Kir4.1. J. Physiol. 525:587–92 [Google Scholar]
  41. Xu H, Cui N, Yang Z, Qu Z, Jiang C. 41.  2000. Modulation of kir4.1 and kir5.1 by hypercapnia and intracellular acidosis. J. Physiol. 524:725–35 [Google Scholar]
  42. Tucker SJ, Imbrici P, Salvatore L, D'Adamo MC, Pessia M. 42.  2000. pH dependence of the inwardly rectifying potassium channel, Kir5.1, and localization in renal tubular epithelia. J. Biol. Chem. 275:16404–7 [Google Scholar]
  43. Wang L, Zhang C, Su X, Lin DH, Wang W. 43.  2015. Caveolin-1 deficiency inhibits the basolateral K+ channels in the distal convoluted tubule and impairs renal K+ and Mg2+ transport. J. Am. Soc. Nephrol. 262678–90
  44. Sindic A, Huang C, Chen AP, Ding Y, Miller-Little WA. 44.  et al. 2009. MUPP1 complexes renal K+ channels to alter cell surface expression and whole cell currents. Am. J. Physiol. Ren. Physiol. 297:F36–45 [Google Scholar]
  45. Tanemoto M, Toyohara T, Abe T, Ito S. 45.  2008. MAGI-1a functions as a scaffolding protein for the distal renal tubular basolateral K+ channels. J. Biol. Chem. 283:12241–47 [Google Scholar]
  46. Yue P, Sun P, Lin DH, Pan C, Xing W, Wang W. 46.  2011. Angiotensin II diminishes the effect of SGK1 on the WNK4-mediated inhibition of ROMK1 channels. Kidney Int. 79:423–31 [Google Scholar]
  47. Wei Y, Zavilowitz B, Satlin LM, Wang WH. 47.  2007. Angiotensin II inhibits the ROMK-like small conductance K channel in renal cortical collecting duct during dietary potassium restriction. J. Biol. Chem. 282:6455–62 [Google Scholar]
  48. Zhang C, Wang L, Thomas S, Wang K, Lin DH. 48.  et al. 2013. Src family protein tyrosine kinase regulates the basolateral K channel in the distal convoluted tubule (DCT) by phosphorylation of KCNJ10 protein. J. Biol. Chem. 288:26135–46 [Google Scholar]
  49. Zaika OL, Mamenko M, Palygin O, Boukelmoune N, Staruschenko A, Pochynyuk O. 49.  2013. Direct inhibition of basolateral Kir4.1/5.1 and Kir4.1 channels in the cortical collecting duct by dopamine. Am. J. Physiol. Ren. Physiol. 305:F1277–87 [Google Scholar]
  50. Hamilton KL, Devor DC. 50.  2012. Basolateral membrane K+ channels in renal epithelial cells. Am. J. Physiol. Ren. Physiol. 302:F1069–81 [Google Scholar]
  51. Welling PA, Ho K. 51.  2009. A comprehensive guide to the ROMK potassium channel: form and function in health and disease. Am. J. Physiol. Ren. Physiol. 297:F849–63 [Google Scholar]
  52. Pluznick JL, Sansom SC. 52.  2006. BK channels in the kidney: role in K+ secretion and localization of molecular components. Am. J. Physiol. Ren. Physiol. 291:F517–29 [Google Scholar]
  53. Berrout J, Mamenko M, Zaika OL, Chen L, Zang W. 53.  et al. 2014. Emerging role of the calcium-activated, small conductance, SK3 K+ channel in distal tubule function: regulation by TRPV4. PLOS ONE 9:e95149 [Google Scholar]
  54. Ho K, Nichols CG, Lederer WJ, Lytton J, Vassilev PM. 54.  et al. 1993. Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature 362:31–38 [Google Scholar]
  55. Wade JB, Fang L, Coleman RA, Liu J, Grimm PR. 55.  et al. 2011. Differential regulation of ROMK (Kir1.1) in distal nephron segments by dietary potassium. Am. J. Physiol. Ren. Physiol. 300:F1385–93 [Google Scholar]
  56. Frindt G, Shah A, Edvinsson J, Palmer LG. 56.  2009. Dietary K regulates ROMK channels in connecting tubule and cortical collecting duct of rat kidney. Am. J. Physiol. Ren. Physiol. 296:F347–54 [Google Scholar]
  57. Frindt G, Palmer LG. 57.  2009. Surface expression of sodium channels and transporters in rat kidney: effects of dietary sodium. Am. J. Physiol. Ren. Physiol. 297:F1249–55 [Google Scholar]
  58. Liu BC, Yang LL, Lu XY, Song X, Li XC. 58.  et al. 2015. Lovastatin-induced phosphatidylinositol-4-phosphate 5-kinase diffusion from microvilli stimulates ROMK channels. J. Am. Soc. Nephrol. 26:1576–87 [Google Scholar]
  59. Yoo D, Flagg TP, Olsen O, Raghuram V, Foskett JK, Welling PA. 59.  2004. Assembly and trafficking of a multiprotein ROMK (Kir 1.1) channel complex by PDZ interactions. J. Biol. Chem. 279:6863–73 [Google Scholar]
  60. Palmada M, Embark HM, Yun C, Bohmer C, Lang F. 60.  2003. Molecular requirements for the regulation of the renal outer medullary K+ channel ROMK1 by the serum- and glucocorticoid-inducible kinase SGK1. Biochem. Biophys. Res. Commun. 311:629–34 [Google Scholar]
  61. Palmer LG, Frindt G. 61.  2000. Aldosterone and potassium secretion by the cortical collecting duct. Kidney Int. 57:1324–28 [Google Scholar]
  62. Palmer LG, Antonian L, Frindt G. 62.  1994. Regulation of apical K and Na channels and Na/K pumps in rat cortical collecting tubule by dietary K. J. Gen. Physiol. 104:693–710 [Google Scholar]
  63. Wingo CS, Seldin DW, Kokko JP, Jacobson HR. 63.  1982. Dietary modulation of active potassium secretion in the cortical collecting tubule of adrenalectomized rabbits. J. Clin. Investig. 70:579–86 [Google Scholar]
  64. Muto S, Sansom S, Giebisch G. 64.  1988. Effects of a high potassium diet on electrical properties of cortical collecting ducts from adrenalectomized rabbits. J. Clin. Investig. 81:376–80 [Google Scholar]
  65. Muto S, Giebisch G, Sansom S. 65.  1988. An acute increase of peritubular K stimulates K transport through cell pathways of CCT. Am. J. Physiol. 255:F108–14 [Google Scholar]
  66. Nesterov V, Dahlmann A, Krueger B, Bertog M, Loffing J, Korbmacher C. 66.  2012. Aldosterone-dependent and -independent regulation of the epithelial sodium channel (ENaC) in mouse distal nephron. Am. J. Physiol. Ren. Physiol. 303:F1289–99 [Google Scholar]
  67. Yoo D, Kim BY, Campo C, Nance L, King A. 67.  et al. 2003. Cell surface expression of the ROMK (Kir 1.1) channel is regulated by the aldosterone-induced kinase, SGK-1, and protein kinase A. J. Biol. Chem. 278:23066–75 [Google Scholar]
  68. Yoo D, Fang L, Mason A, Kim BY, Welling PA. 68.  2005. A phosphorylation-dependent export structure in ROMK (Kir 1.1) channel overrides an endoplasmic reticulum localization signal. J. Biol. Chem. 280:35281–89 [Google Scholar]
  69. Ma D, Taneja TK, Hagen BM, Kim BY, Ortega B. 69.  et al. 2011. Golgi export of the Kir2.1 channel is driven by a trafficking signal located within its tertiary structure. Cell 145:1102–15 [Google Scholar]
  70. Welling PA. 70.  2013. Regulation of potassium channel trafficking in the distal nephron. Curr. Opin. Nephrol. Hypertens. 22:559–65 [Google Scholar]
  71. Huang DY, Wulff P, Volkl H, Loffing J, Richter K. 71.  et al. 2004. Impaired regulation of renal K+ elimination in the sgk1-knockout mouse. J. Am. Soc. Nephrol. 15:885–91 [Google Scholar]
  72. Cheng CJ, Huang CL. 72.  2011. Activation of PI3-kinase stimulates endocytosis of ROMK via Akt1/SGK1-dependent phosphorylation of WNK1. J. Am. Soc. Nephrol. 22:460–71 [Google Scholar]
  73. Ring AM, Leng Q, Rinehart J, Wilson FH, Kahle KT. 73.  et al. 2007. An SGK1 site in WNK4 regulates Na+ channel and K+ channel activity and has implications for aldosterone signaling and K+ homeostasis. PNAS 104:4025–29 [Google Scholar]
  74. Lin DH, Yue P, Yarborough O 3rd, Scholl UI, Giebisch G. 74.  et al. 2015. Src-family protein tyrosine kinase phosphorylates WNK4 and modulates its inhibitory effect on KCNJ1 (ROMK). PNAS 112:4495–500 [Google Scholar]
  75. Lin DH, Yue P, Rinehart J, Sun P, Wang Z. 75.  et al. 2012. Protein phosphatase 1 modulates the inhibitory effect of with-no-lysine kinase 4 on ROMK channels. Am. J. Physiol. Ren. Physiol. 303:F110–19 [Google Scholar]
  76. Yue P, Lin DH, Pan CY, Leng Q, Giebisch G. 76.  et al. 2009. Src family protein tyrosine kinase (PTK) modulates the effect of SGK1 and WNK4 on ROMK channels. PNAS 106:15061–66 [Google Scholar]
  77. Yun CC, Palmada M, Embark HM, Fedorenko O, Feng Y. 77.  et al. 2002. The serum and glucocorticoid-inducible kinase SGK1 and the Na+/H+ exchange regulating factor NHERF2 synergize to stimulate the renal outer medullary K+ channel ROMK1. J. Am. Soc. Nephrol. 13:2823–30 [Google Scholar]
  78. Zeng WZ, Babich V, Ortega B, Quigley R, White SJ. 78.  et al. 2002. Evidence for endocytosis of ROMK potassium channel via clathrin-coated vesicles. Am. J. Physiol. Ren. Physiol. 283:F630–69 [Google Scholar]
  79. Chu PY, Quigley R, Babich V, Huang CL. 79.  2003. Dietary potassium restriction stimulates endocytosis of ROMK channel in rat cortical collecting duct. Am. J. Physiol. 285:F1179–87 [Google Scholar]
  80. Sterling H, Lin DH, Gu RM, Dong K, Hebert SC, Wang WH. 80.  2002. Inhibition of protein tyrosine phosphatase stimulates the dynamin-dependent endocytosis of ROMK1. J. Biol. Chem. 277:4317–23 [Google Scholar]
  81. Lin DH, Yue P, Pan C, Sun P, Wang WH. 81.  2011. MicroRNA 802 stimulates ROMK channels by suppressing caveolin-1. J. Am. Soc. Nephrol. 22:1087–98 [Google Scholar]
  82. Paunescu TG, Lu HA, Russo LM, Pastor-Soler NM, McKee M. 82.  et al. 2013. Vasopressin induces apical expression of caveolin in rat kidney collecting duct principal cells. Am. J. Physiol. Ren. Physiol. 305:F1783–95 [Google Scholar]
  83. Fang L, Garuti R, Kim BY, Wade JB, Welling PA. 83.  2009. The ARH adaptor protein regulates endocytosis of the ROMK potassium secretory channel in mouse kidney. J. Clin. Investig. 119:3278–89 [Google Scholar]
  84. Cha SK, Hu MC, Kurosu H, Kuro-o M, Moe O, Huang CL. 84.  2009. Regulation of renal outer medullary potassium channel and renal K+ excretion by Klotho. Mol. Pharmacol. 76:38–46 [Google Scholar]
  85. Lazrak A, Liu Z, Huang CL. 85.  2006. Antagonistic regulation of ROMK by long and kidney-specific WNK1 isoforms. PNAS 103:1615–20 [Google Scholar]
  86. Wade JB, Fang L, Liu J, Li D, Yang CL. 86.  et al. 2006. WNK1 kinase isoform switch regulates renal potassium excretion. PNAS 103:8558–63 [Google Scholar]
  87. Cope G, Murthy M, Golbang AP, Hamad A, Liu CH. 87.  et al. 2006. WNK1 affects surface expression of the ROMK potassium channel independent of WNK4. J. Am. Soc. Nephrol. 17:1867–74 [Google Scholar]
  88. Kahle KT, Wilson FH, Leng Q, Lalioti MD, O'Connell AD. 88.  et al. 2003. WNK4 regulates the balance between renal NaCl reabsorption and K+ secretion. Nat. Genet. 35:372–76 [Google Scholar]
  89. Leng Q, Kahle KT, Rinehart J, MacGregor GG, Wilson FH. 89.  et al. 2006. WNK3, a kinase related to genes mutated in hereditary hypertension with hyperkalaemia, regulates the K+ channel ROMK1 (Kir1.1). J. Physiol. 571:275–86 [Google Scholar]
  90. Elvira B, Munoz C, Borras J, Chen H, Warsi J. 90.  et al. 2014. SPAK and OSR1 dependent down-regulation of murine renal outer medullary K channel ROMK1. Kidney Blood Press. Res. 39:353–60 [Google Scholar]
  91. O'Reilly M, Marshall E, Speirs HJ, Brown RW. 91.  2003. WNK1, a gene within a novel blood pressure control pathway, tissue-specifically generates radically different isoforms with and without a kinase domain. J. Am. Soc. Nephrol. 14:2447–56 [Google Scholar]
  92. Delaloy C, Lu J, Houot AM, Disse-Nicodeme S, Gasc JM. 92.  et al. 2003. Multiple promoters in the WNK1 gene: One controls expression of a kidney-specific kinase-defective isoform. Mol. Cell. Biol. 23:9208–21 [Google Scholar]
  93. He G, Wang HR, Huang SK, Huang CL. 93.  2007. Intersectin links WNK kinases to endocytosis of ROMK1. J. Clin. Investig. 117:1078–87 [Google Scholar]
  94. Lin DH, Yue P, Zhang C, Wang WH. 94.  2014. MicroRNA-194 (miR-194) regulates ROMK channel activity by targeting intersectin 1. Am. J. Physiol. Ren. Physiol. 306:F53–60 [Google Scholar]
  95. Liu Y, Song X, Shi Y, Shi Z, Niu W. 95.  et al. 2015. WNK1 activates large-conductance Ca2+-activated K+ channels through modulation of ERK1/2 signaling. J. Am. Soc. Nephrol. 26:844–54 [Google Scholar]
  96. Liu Z, Wang HR, Huang CL. 96.  2009. Regulation of ROMK channel and K+ homeostasis by kidney-specific WNK1 kinase. J. Biol. Chem. 284:12198–206 [Google Scholar]
  97. Cheng CJ, Baum M, Huang CL. 97.  2013. Kidney-specific WNK1 regulates sodium reabsorption and potassium secretion in mouse cortical collecting duct. Am. J. Physiol. Ren. Physiol. 304:F397–402 [Google Scholar]
  98. Hadchouel J, Soukaseum C, Busst C, Zhou XO, Baudrie V. 98.  et al. 2010. Decreased ENaC expression compensates the increased NCC activity following inactivation of the kidney-specific isoform of WNK1 and prevents hypertension. PNAS 107:18109–14 [Google Scholar]
  99. Vidal-Petiot E, Cheval L, Faugeroux J, Malard T, Doucet A. 99.  et al. 2012. A new methodology for quantification of alternatively spliced exons reveals a highly tissue-specific expression pattern of WNK1 isoforms. PLOS ONE 7:e37751 [Google Scholar]
  100. Grimm PR, Lazo-Fernandez Y, Delpire E, Wall SM, Dorsey SG. 100.  et al. 2015. Integrated compensatory network is activated in the absence of NCC phosphorylation. J. Clin. Investig. 125:2136–50 [Google Scholar]
  101. Louis-Dit-Picard H, Barc J, Trujillano D, Miserey-Lenkei S, Bouatia-Naji N. 101.  et al. 2012. KLHL3 mutations cause familial hyperkalemic hypertension by impairing ion transport in the distal nephron. Nat. Genet. 44:456–60S1–3 [Google Scholar]
  102. Wakabayashi M, Mori T, Isobe K, Sohara E, Susa K. 102.  et al. 2013. Impaired KLHL3-mediated ubiquitination of WNK4 causes human hypertension. Cell Rep. 3:858–68 [Google Scholar]
  103. Wei Y, Bloom P, Lin D, Gu R, Wang WH. 103.  2001. Effect of dietary K intake on apical small-conductance K channel in CCD: role of protein tyrosine kinase. Am. J. Physiol. Ren. Physiol. 281:F206–12 [Google Scholar]
  104. Chen P, Guzman JP, Leong PK, Yang LE, Perianayagam A. 104.  et al. 2006. Modest dietary K+ restriction provokes insulin resistance of cellular K+ uptake and phosphorylation of renal outer medulla K+ channel without fall in plasma K+ concentration. Am. J. Physiol. Cell Physiol. 290:C1355–63 [Google Scholar]
  105. Lin DH, Sterling H, Lerea KM, Welling P, Jin L. 105.  et al. 2002. K depletion increases protein tyrosine kinase-mediated phosphorylation of ROMK. Am. J. Physiol. Ren. Physiol. 283:F671–77 [Google Scholar]
  106. Wei Y, Bloom P, Gu R, Wang W. 106.  2000. Protein-tyrosine phosphatase reduces the number of apical small conductance K+ channels in the rat cortical collecting duct. J. Biol. Chem. 275:20502–7 [Google Scholar]
  107. Babilonia E, Lin D, Zhang Y, Wei Y, Yue P, Wang WH. 107.  2007. Role of gp91phox -containing NADPH oxidase in mediating the effect of K restriction on ROMK channels and renal K excretion. J. Am. Soc. Nephrol. 18:2037–45 [Google Scholar]
  108. Babilonia E, Li D, Wang Z, Sun P, Lin DH. 108.  et al. 2006. Mitogen-activated protein kinases inhibit the ROMK (Kir 1.1)-like small conductance K channels in the cortical collecting duct. J. Am. Soc. Nephrol. 17:2687–96 [Google Scholar]
  109. Zhang X, Lin DH, Jin Y, Wang KS, Zhang Y. 109.  et al. 2007. Inhibitor of growth 4 (ING4) is up-regulated by a low K intake and suppresses renal outer medullary K channels (ROMK) by MAPK stimulation. PNAS 104:9517–22 [Google Scholar]
  110. Frindt G, Li H, Sackin H, Palmer LG. 110.  2013. Inhibition of ROMK channels by low extracellular K+ and oxidative stress. Am. J. Physiol. Ren. Physiol. 305:F208–15 [Google Scholar]
  111. Siraskar B, Huang DY, Pakladok T, Siraskar G, Sopjani M. 111.  et al. 2013. Downregulation of the renal outer medullary K+ channel ROMK by the AMP-activated protein kinase. Pflugers Arch. 465:233–45 [Google Scholar]
  112. Jin Y, Wang Y, Wang ZJ, Lin DH, Wang WH. 112.  2009. Inhibition of angiotensin type 1 receptor impairs renal ability of K conservation in response to K restriction. Am. J. Physiol. Ren. Physiol. 296:F1179–84 [Google Scholar]
  113. Wei Y, Liao Y, Zavilowitz B, Ren J, Liu W. 113.  et al. 2014. Angiotensin II type 2 receptor regulates ROMK-like K+ channel activity in the renal cortical collecting duct during high dietary K+ adaptation. Am. J. Physiol. Ren. Physiol. 307:F833–43 [Google Scholar]
  114. Yang L, Frindt G, Palmer LG. 114.  2010. Magnesium modulates ROMK channel-mediated potassium secretion. J. Am. Soc. Nephrol. 21:2109–16 [Google Scholar]
  115. Huang CL, Kuo E. 115.  2007. Mechanism of hypokalemia in magnesium deficiency. J. Am. Soc. Nephrol. 18:2649–52 [Google Scholar]
  116. Grimm PR, Sansom SC. 116.  2007. BK channels in the kidney. Curr. Opin. Nephrol. Hypertens. 16:430–36 [Google Scholar]
  117. Woda CB, Bragin A, Kleyman TR, Satlin LM. 117.  2001. Flow-dependent K+ secretion in the cortical collecting duct is mediated by a maxi-K channel. Am. J. Physiol. Ren. Physiol. 280:F786–93 [Google Scholar]
  118. Knaus HG, Eberhart A, Glossmann H, Munujos P, Kaczorowski GJ, Garcia ML. 118.  1994. Pharmacology and structure of high conductance calcium-activated potassium channels. Cell. Signal. 6:861–70 [Google Scholar]
  119. Uebele VN, Lagrutta A, Wade T, Figueroa DJ, Liu Y. 119.  et al. 2000. Cloning and functional expression of two families of β-subunits of the large conductance calcium-activated K+ channel. J. Biol. Chem. 275:23211–18 [Google Scholar]
  120. Xia XM, Ding JP, Zeng XH, Duan KL, Lingle CJ. 120.  2000. Rectification and rapid activation at low Ca2+ of Ca2+-activated, voltage-dependent BK currents: consequences of rapid inactivation by a novel β subunit. J. Neurosci. 20:4890–903 [Google Scholar]
  121. Brenner R, Jegla TJ, Wickenden A, Liu Y, Aldrich RW. 121.  2000. Cloning and functional characterization of novel large conductance calcium-activated potassium channel β subunits, hKCNMB3 and hKCNMB4. J. Biol. Chem. 275:6453–61 [Google Scholar]
  122. Pluznick JL, Wei P, Grimm PR, Sansom SC. 122.  2005. BK-β1 subunit: immunolocalization in the mammalian connecting tubule and its role in the kaliuretic response to volume expansion. Am. J. Physiol. Ren. Physiol. 288:F846–54 [Google Scholar]
  123. Grimm PR, Foutz RM, Brenner R, Sansom SC. 123.  2007. Identification and localization of BK-β subunits in the distal nephron of the mouse kidney. Am. J. Physiol. Ren. Physiol. 293:F350–59 [Google Scholar]
  124. Najjar F, Zhou H, Morimoto T, Bruns JB, Li HS. 124.  et al. 2005. Dietary K+ regulates apical membrane expression of maxi-K channels in rabbit cortical collecting duct. Am. J. Physiol. Ren. Physiol. 289:F922–32 [Google Scholar]
  125. Pacha J, Frindt G, Sackin H, Palmer LG. 125.  1991. Apical maxi K channels in intercalated cells of CCT. Am. J. Physiol. 261:F696–705 [Google Scholar]
  126. Li D, Wang Z, Sun P, Jin Y, Lin DH. 126.  et al. 2006. Inhibition of MAPK stimulates the Ca2+-dependent big-conductance K channels in cortical collecting duct. PNAS 103:19569–74 [Google Scholar]
  127. Wen D, Cornelius RJ, Yuan Y, Sansom SC. 127.  2013. Regulation of BK-α expression in the distal nephron by aldosterone and urine pH. Am. J. Physiol. Ren. Physiol. 305:F463–76 [Google Scholar]
  128. Cornelius RJ, Wen D, Hatcher LI, Sansom SC. 128.  2012. Bicarbonate promotes BK-α/β4-mediated K excretion in the renal distal nephron. Am. J. Physiol. Ren. Physiol. 303:F1563–71 [Google Scholar]
  129. Holtzclaw JD, Grimm PR, Sansom SC. 129.  2010. Intercalated cell BK-α/β4 channels modulate sodium and potassium handling during potassium adaptation. J. Am. Soc. Nephrol. 21:634–45 [Google Scholar]
  130. Liu W, Schreck C, Coleman RA, Wade JB, Hernandez Y. 130.  et al. 2011. Role of NKCC in BK channel-mediated net K+ secretion in the CCD. Am. J. Physiol. Ren. Physiol. 301:F1088–97 [Google Scholar]
  131. Eladari D, Chambrey R, Picard N, Hadchouel J. 131.  2014. Electroneutral absorption of NaCl by the aldosterone-sensitive distal nephron: implication for normal electrolytes homeostasis and blood pressure regulation. Cell. Mol. Life Sci. 71:2879–95 [Google Scholar]
  132. Rieg T, Vallon V, Sausbier M, Sausbier U, Kaissling B. 132.  et al. 2007. The role of the BK channel in potassium homeostasis and flow-induced renal potassium excretion. Kidney Int. 72:566–73 [Google Scholar]
  133. Stokes JB. 133.  1982. Consequences of potassium recycling in the renal medulla: effects of ion transport by the medullary thick ascending limb of Henle's loop. J. Clin. Investig. 70:219–29 [Google Scholar]
  134. Cornelius RJ, Wen D, Li H, Yuan Y, Wang-France J. 134.  et al. 2015. Low Na, high K diet and the role of aldosterone in BK-mediated K excretion. PLOS ONE 10:e0115515 [Google Scholar]
  135. Liu W, Morimoto T, Woda C, Kleyman TR, Satlin LM. 135.  2007. Ca2+ dependence of flow-stimulated K secretion in the mammalian cortical collecting duct. Am. J. Physiol. Ren. Physiol. 293:F227–35 [Google Scholar]
  136. Latorre R, Morera FJ, Zaelzer C. 136.  2010. Allosteric interactions and the modular nature of the voltage- and Ca2+-activated (BK) channel. J. Physiol. 588:3141–48 [Google Scholar]
  137. Holtzclaw JD, Cornelius RJ, Hatcher LI, Sansom SC. 137.  2011. Coupled ATP and potassium efflux from intercalated cells. Am. J. Physiol. Ren. Physiol. 300:F1319–26 [Google Scholar]
  138. Carrisoza-Gaytan R, Liu Y, Flores D, Else C, Lee HG. 138.  et al. 2014. Effects of biomechanical forces on signaling in the cortical collecting duct (CCD). Am. J. Physiol. Ren. Physiol. 307:F195–204 [Google Scholar]
  139. Flores D, Liu Y, Liu W, Satlin LM, Rohatgi R. 139.  2012. Flow-induced prostaglandin E2 release regulates Na and K transport in the collecting duct. Am. J. Physiol. Ren. Physiol. 303:F632–38 [Google Scholar]
  140. Liu W, Murcia NS, Duan Y, Weinbaum S, Yoder BK. 140.  et al. 2005. Mechanoregulation of intracellular Ca2+ concentration is attenuated in collecting duct of monocilium-impaired orpk mice. Am. J. Physiol. Ren. Physiol. 289:F978–88 [Google Scholar]
  141. Berrout J, Jin M, Mamenko M, Zaika O, Pochynyuk O, O'Neil RG. 141.  2012. Function of transient receptor potential cation channel subfamily V member 4 (TRPV4) as a mechanical transducer in flow-sensitive segments of renal collecting duct system. J. Biol. Chem. 287:8782–91 [Google Scholar]
  142. Liu W, Wei Y, Sun P, Wang WH, Kleyman TR, Satlin LM. 142.  2009. Mechanoregulation of BK channel activity in the mammalian cortical collecting duct: role of protein kinases A and C. Am. J. Physiol. Ren. Physiol. 297:F904–15 [Google Scholar]
  143. Sun P, Liu W, Lin DH, Yue P, Kemp R. 143.  et al. 2009. Epoxyeicosatrienoic acid activates BK channels in the cortical collecting duct. J. Am. Soc. Nephrol. 20:513–23 [Google Scholar]
  144. Khuri RN, Strieder WN, Giebisch G. 144.  1975. Effects of flow rate and potassium intake on distal tubular potassium transfer. Am. J. Physiol. 228:1249–61 [Google Scholar]
  145. Estilo G, Liu W, Pastor-Soler N, Mitchell P, Carattino MD. 145.  et al. 2008. Effect of aldosterone on BK channel expression in mammalian cortical collecting duct. Am. J. Physiol. Ren. Physiol. 295:F780–88 [Google Scholar]
  146. Wang Z, Subramanya AR, Satlin LM, Pastor-Soler NM, Carattino MD, Kleyman TR. 146.  2013. Regulation of large-conductance Ca2+-activated K+ channels by WNK4 kinase. Am. J. Physiol. Cell Physiol. 305:C846–53 [Google Scholar]
  147. Yue P, Zhang C, Lin DH, Sun P, Wang WH. 147.  2013. WNK4 inhibits Ca2+-activated big-conductance potassium channels (BK) via mitogen-activated protein kinase-dependent pathway. Biochim. Biophys. Acta 1833:2101–10 [Google Scholar]
/content/journals/10.1146/annurev-physiol-021115-105423
Loading
/content/journals/10.1146/annurev-physiol-021115-105423
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error