1932

Abstract

Embryonic definitive hematopoiesis generates hematopoietic stem and progenitor cells (HSPCs) essential for establishment and maintenance of the adult blood system. This process requires the specification of a subset of vascular endothelial cells to become blood-forming, or hemogenic, and the subsequent endothelial-to-hematopoietic transition to generate HSPCs therefrom. The mechanisms that regulate these processes are under intensive investigation, as their recapitulation in vitro from human pluripotent stem cells has the potential to generate autologous HSPCs for clinical applications. In this review, we provide an overview of hemogenic endothelial cell development and highlight the molecular events that govern hemogenic specification of vascular endothelial cells and the generation of multilineage HSPCs from hemogenic endothelium. We also discuss the impact of hemogenic endothelial cell development on adult hematopoiesis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021119-034352
2021-02-10
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/physiol/83/1/annurev-physiol-021119-034352.html?itemId=/content/journals/10.1146/annurev-physiol-021119-034352&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Ferkowicz MJ, Yoder MC. 2005. Blood island formation: longstanding observations and modern interpretations. Exp. Hematol. 33:1041–47
    [Google Scholar]
  2. 2. 
    Palis J, Robertson S, Kennedy M, Wall C, Keller G 1999. Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development 126:5073–84
    [Google Scholar]
  3. 3. 
    Tober J, Koniski A, McGrath KE, Vemishetti R, Emerson R et al. 2007. The megakaryocyte lineage originates from hemangioblast precursors and is an integral component both of primitive and of definitive hematopoiesis. Blood 109:1433–41
    [Google Scholar]
  4. 4. 
    Perdiguero EG, Klapproth K, Schulz C, Busch K, Azzoni E et al. 2015. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518:547–51
    [Google Scholar]
  5. 5. 
    Lucitti JL, Jones EA, Huang C, Chen J, Fraser SE, Dickinson ME 2007. Vascular remodeling of the mouse yolk sac requires hemodynamic force. Development 134:3317–26
    [Google Scholar]
  6. 6. 
    Gritz E, Hirschi KK. 2016. Specification and function of hemogenic endothelium during embryogenesis. Cell. Mol. Life Sci. 73:1547–67
    [Google Scholar]
  7. 7. 
    Yoshimoto M, Porayette P, Glosson NL, Conway SJ, Carlesso N et al. 2012. Autonomous murine T-cell progenitor production in the extra-embryonic yolk sac before HSC emergence. Blood 119:5706–14
    [Google Scholar]
  8. 8. 
    Medvinsky A, Dzierzak E. 1996. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 86:897–906
    [Google Scholar]
  9. 9. 
    Coskun S, Chao H, Vasavada H, Heydari K, Gonzales N et al. 2014. Development of the fetal bone marrow niche and regulation of HSC quiescence and homing ability by emerging osteolineage cells. Cell Rep 9:581–90
    [Google Scholar]
  10. 10. 
    Jaffredo T, Gautier R, Brajeul V, Dieterlen-Lievre F 2000. Tracing the progeny of the aortic hemangioblast in the avian embryo. Dev. Biol. 224:204–14
    [Google Scholar]
  11. 11. 
    Zovein AC, Hofmann JJ, Lynch M, French WJ, Turlo KA et al. 2008. Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell 3:625–36
    [Google Scholar]
  12. 12. 
    Goldie LC, Lucitti JL, Dickinson ME, Hirschi KK 2008. Cell signaling directing the formation and function of hemogenic endothelium during murine embryogenesis. Blood 112:3194–204
    [Google Scholar]
  13. 13. 
    Marcelo KL, Sills TM, Coskun S, Vasavada H, Sanglikar S et al. 2013. Hemogenic endothelial cell specification requires c-Kit, Notch signaling, and p27-mediated cell-cycle control. Dev. Cell 27:504–15
    [Google Scholar]
  14. 14. 
    Kissa K, Herbomel P. 2010. Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature 464:112–15
    [Google Scholar]
  15. 15. 
    Bertrand JY, Chi NC, Santoso B, Teng S, Stainier DY, Traver D 2010. Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 464:108–11
    [Google Scholar]
  16. 16. 
    Boisset JC, van Cappellen W, Andrieu-Soler C, Galjart N, Dzierzak E, Robin C 2010. In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature 464:116–20
    [Google Scholar]
  17. 17. 
    Eilken HM, Nishikawa S, Schroeder T 2009. Continuous single-cell imaging of blood generation from haemogenic endothelium. Nature 457:896–900
    [Google Scholar]
  18. 18. 
    Rafii S, Kloss CC, Butler JM, Ginsberg M, Gars E et al. 2013. Human ESC-derived hemogenic endothelial cells undergo distinct waves of endothelial to hematopoietic transition. Blood 121:770–80
    [Google Scholar]
  19. 19. 
    Hirschi KK. 2012. Hemogenic endothelium during development and beyond. Blood 119:4823–27
    [Google Scholar]
  20. 20. 
    Cumano A, Ferraz JC, Klaine M, Di Santo JP, Godin I 2001. Intraembryonic, but not yolk sac hematopoietic precursors, isolated before circulation, provide long-term multilineage reconstitution. Immunity 15:477–85
    [Google Scholar]
  21. 21. 
    Chen MJ, Li Y, De Obaldia ME, Yang Q, Yzaguirre AD et al. 2011. Erythroid/myeloid progenitors and hematopoietic stem cells originate from distinct populations of endothelial cells. Cell Stem Cell 9:541–52
    [Google Scholar]
  22. 22. 
    Goldie LC, Lucitti JL, Dickinson ME, Hirschi KK 2008. Cell signaling directing the formation and function of hemogenic endothelium during murine embryogenesis. Blood 112:3194–204
    [Google Scholar]
  23. 23. 
    Kabrun N, Buhring HJ, Choi K, Ullrich A, Risau W, Keller G 1997. Flk-1 expression defines a population of early embryonic hematopoietic precursors. Development 124:2039–48
    [Google Scholar]
  24. 24. 
    Nishikawa SI, Nishikawa S, Hirashima M, Matsuyoshi N, Kodama H 1998. Progressive lineage analysis by cell sorting and culture identifies FLK1+VE-cadherin+ cells at a diverging point of endothelial and hemopoietic lineages. Development 125:1747–57
    [Google Scholar]
  25. 25. 
    Anderson H, Patch TC, Reddy PN, Hagedorn EJ, Kim PG et al. 2015. Hematopoietic stem cells develop in the absence of endothelial cadherin 5 expression. Blood 126:2811–20
    [Google Scholar]
  26. 26. 
    Swiers G, Rode C, Azzoni E, de Bruijn MF 2013. A short history of hemogenic endothelium. Blood Cells Mol. Dis. 51:206–12
    [Google Scholar]
  27. 27. 
    Nadin BM, Goodell MA, Hirschi KK 2003. Phenotype and hematopoietic potential of side population cells throughout embryonic development. Blood 102:2436–43
    [Google Scholar]
  28. 28. 
    Nishikawa SI, Nishikawa S, Kawamoto H, Yoshida H, Kizumoto M et al. 1998. In vitro generation of lymphohematopoietic cells from endothelial cells purified from murine embryos. Immunity 8:761–69
    [Google Scholar]
  29. 29. 
    Fang JS, Gritz EC, Marcelo KL, Hirschi KK 2016. Isolation of murine embryonic hemogenic endothelial cells. J. Vis. Exp. 112:e54150
    [Google Scholar]
  30. 30. 
    Rybtsov S, Sobiesiak M, Taoudi S, Souilhol C, Senserrich J et al. 2011. Hierarchical organization and early hematopoietic specification of the developing HSC lineage in the AGM region. J. Exp. Med. 208:1305–15
    [Google Scholar]
  31. 31. 
    Velten L, Haas SF, Raffel S, Blaszkiewicz S, Islam S et al. 2017. Human haematopoietic stem cell lineage commitment is a continuous process. Nat. Cell Biol. 19:271–81
    [Google Scholar]
  32. 32. 
    Swiers G, Baumann C, O'Rourke J, Giannoulatou E, Taylor S et al. 2013. Early dynamic fate changes in haemogenic endothelium characterized at the single-cell level. Nat. Commun. 4:2924
    [Google Scholar]
  33. 33. 
    Zhou F, Li X, Wang W, Zhu P, Zhou J et al. 2016. Tracing haematopoietic stem cell formation at single-cell resolution. Nature 533:487–92
    [Google Scholar]
  34. 34. 
    Baron CS, Kester L, Klaus A, Boisset JC, Thambyrajah R et al. 2018. Single-cell transcriptomics reveal the dynamic of haematopoietic stem cell production in the aorta. Nat. Commun. 9:2517
    [Google Scholar]
  35. 35. 
    Marcelo KL, Goldie LC, Hirschi KK 2013. Regulation of endothelial cell differentiation and specification. Circ. Res. 112:1272–87
    [Google Scholar]
  36. 36. 
    Bohnsack BL, Lai L, Dolle P, Hirschi KK 2004. Signaling hierarchy downstream of retinoic acid that independently regulates vascular remodeling and endothelial cell proliferation. Genes Dev 18:1345–58
    [Google Scholar]
  37. 37. 
    Lai L, Bohnsack BL, Niederreither K, Hirschi KK 2003. Retinoic acid regulates endothelial cell proliferation during vasculogenesis. Development 130:6465–74
    [Google Scholar]
  38. 38. 
    Chanda B, Ditadi A, Iscove NN, Keller G 2013. Retinoic acid signaling is essential for embryonic hematopoietic stem cell development. Cell 155:215–27
    [Google Scholar]
  39. 39. 
    Lancrin C, Sroczynska P, Stephenson C, Allen T, Kouskoff V, Lacaud G 2009. The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage. Nature 457:892–95
    [Google Scholar]
  40. 40. 
    Porcher C, Swat W, Rockwell K, Fujiwara Y, Alt FW, Orkin SH 1996. The T cell leukemia oncoprotein SCL/tal-1 is essential for development of all hematopoietic lineages. Cell 86:47–57
    [Google Scholar]
  41. 41. 
    Van Handel B, Montel-Hagen A, Sasidharan R, Nakano H, Ferrari R et al. 2012. Scl represses cardiomyogenesis in prospective hemogenic endothelium and endocardium. Cell 150:590–605
    [Google Scholar]
  42. 42. 
    Gering M, Patient R. 2010. Notch signalling and haematopoietic stem cell formation during embryogenesis. J. Cell. Physiol. 222:11–16
    [Google Scholar]
  43. 43. 
    Chen X, Hartman A, Guo S 2015. Choosing cell fate through a dynamic cell cycle. Curr. Stem Cell Rep. 1:129–38
    [Google Scholar]
  44. 44. 
    Aggarwal R, Lu J, Pompili VJ, Das H 2012. Hematopoietic stem cells: transcriptional regulation, ex vivo expansion and clinical application. Curr. Mol. Med. 12:34–49
    [Google Scholar]
  45. 45. 
    Bachs O, Gallastegui E, Orlando S, Bigas A, Morante-Redolat JM et al. 2018. Role of p27Kip1 as a transcriptional regulator. Oncotarget 9:26259–78
    [Google Scholar]
  46. 46. 
    Montagner S, Dehó L, Monticelli S 2014. MicroRNAs in hematopoietic development. BMC Immunol 15:14
    [Google Scholar]
  47. 47. 
    Small EM, Olson EN. 2011. Pervasive roles of microRNAs in cardiovascular biology. Nature 469:336–42
    [Google Scholar]
  48. 48. 
    Kasper DM, Hintzen J, Wu Y, Ghersi J, Mandl HK et al. 2020. The N-glycome regulates the endothelial-to-hematopoietic transition. Science 370:118691
    [Google Scholar]
  49. 49. 
    Berger RP, Dookwah M, Steet R, Dalton S 2016. Glycosylation and stem cells: regulatory roles and application of iPSCs in the study of glycosylation-related disorders. Bioessays 38:1255–65
    [Google Scholar]
  50. 50. 
    McGinnis W, Krumlauf R. 1992. Homeobox genes and axial patterning. Cell 68:283–302
    [Google Scholar]
  51. 51. 
    Iacovino M, Chong D, Szatmari I, Hartweck L, Rux D et al. 2011. HoxA3 is an apical regulator of haemogenic endothelium. Nat. Cell Biol. 13:72–78
    [Google Scholar]
  52. 52. 
    Bahrami SB, Veiseh M, Dunn AA, Boudreau NJ 2011. Temporal changes in Hox gene expression accompany endothelial cell differentiation of embryonic stem cells. Cell Adhes. Migr. 5:133–41
    [Google Scholar]
  53. 53. 
    Sanghez V, Luzzi A, Clarke D, Kee D, Beuder S et al. 2017. Notch activation is required for downregulation of HoxA3-dependent endothelial cell phenotype during blood formation. PLOS ONE 12:e0186818
    [Google Scholar]
  54. 54. 
    Oshima M, Endoh M, Endo TA, Toyoda T, Nakajima-Takagi Y et al. 2011. Genome-wide analysis of target genes regulated by HoxB4 in hematopoietic stem and progenitor cells developing from embryonic stem cells. Blood 117:e142–50
    [Google Scholar]
  55. 55. 
    Teichweyde N, Kasperidus L, Carotta S, Kouskoff V, Lacaud G et al. 2018. HOXB4 promotes hemogenic endothelium formation without perturbing endothelial cell development. Stem Cell Rep 10:875–89
    [Google Scholar]
  56. 56. 
    Kyba M, Perlingeiro RC, Daley GQ 2002. HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell 109:29–37
    [Google Scholar]
  57. 57. 
    Chan KM, Bonde S, Klump H, Zavazava N 2008. Hematopoiesis and immunity of HOXB4-transduced embryonic stem cell-derived hematopoietic progenitor cells. Blood 111:2953–61
    [Google Scholar]
  58. 58. 
    Swiers G, de Bruijn M, Speck NA 2010. Hematopoietic stem cell emergence in the conceptus and the role of Runx1. Int. J. Dev. Biol. 54:1151–63
    [Google Scholar]
  59. 59. 
    Wang Q, Stacy T, Binder M, Marin-Padilla M, Sharpe AH, Speck NA 1996. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. PNAS 93:3444–49
    [Google Scholar]
  60. 60. 
    Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR 1996. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84:321–30
    [Google Scholar]
  61. 61. 
    North T, Gu TL, Stacy T, Wang Q, Howard L et al. 1999. Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. Development 126:2563–75
    [Google Scholar]
  62. 62. 
    Burns CE, Traver D, Mayhall E, Shepard JL, Zon LI 2005. Hematopoietic stem cell fate is established by the Notch-Runx pathway. Genes Dev 19:2331–42
    [Google Scholar]
  63. 63. 
    Kalev-Zylinska ML, Horsfield JA, Flores MV, Postlethwait JH, Vitas MR et al. 2002. Runx1 is required for zebrafish blood and vessel development and expression of a human RUNX1-CBF2T1 transgene advances a model for studies of leukemogenesis. Development 129:2015–30
    [Google Scholar]
  64. 64. 
    Li Z, Chen MJ, Stacy T, Speck NA 2006. Runx1 function in hematopoiesis is required in cells that express Tek. Blood 107:106–10
    [Google Scholar]
  65. 65. 
    Lam EY, Hall CJ, Crosier PS, Crosier KE, Flores MV 2010. Live imaging of Runx1 expression in the dorsal aorta tracks the emergence of blood progenitors from endothelial cells. Blood 116:909–14
    [Google Scholar]
  66. 66. 
    Chen MJ, Yokomizo T, Zeigler BM, Dzierzak E, Speck NA 2009. Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 457:887–91
    [Google Scholar]
  67. 67. 
    Nottingham WT, Jarratt A, Burgess M, Speck CL, Cheng JF et al. 2007. Runx1-mediated hematopoietic stem-cell emergence is controlled by a Gata/Ets/SCL-regulated enhancer. Blood 110:4188–97
    [Google Scholar]
  68. 68. 
    Lizama CO, Hawkins JS, Schmitt CE, Bos FL, Zape JP et al. 2015. Repression of arterial genes in hemogenic endothelium is sufficient for haematopoietic fate acquisition. Nat. Commun. 6:7739
    [Google Scholar]
  69. 69. 
    Hoogenkamp M, Lichtinger M, Krysinska H, Lancrin C, Clarke D et al. 2009. Early chromatin unfolding by RUNX1: a molecular explanation for differential requirements during specification versus maintenance of the hematopoietic gene expression program. Blood 114:299–309
    [Google Scholar]
  70. 70. 
    Lancrin C, Mazan M, Stefanska M, Patel R, Lichtinger M et al. 2012. GFI1 and GFI1B control the loss of endothelial identity of hemogenic endothelium during hematopoietic commitment. Blood 120:314–22
    [Google Scholar]
  71. 71. 
    Thambyrajah R, Mazan M, Patel R, Moignard V, Stefanska M et al. 2016. GFI1 proteins orchestrate the emergence of haematopoietic stem cells through recruitment of LSD1. Nat. Cell Biol. 18:21–32
    [Google Scholar]
  72. 72. 
    Robin C, Ottersbach K, Durand C, Peeters M, Vanes L et al. 2006. An unexpected role for IL-3 in the embryonic development of hematopoietic stem cells. Dev. Cell 11:171–80
    [Google Scholar]
  73. 73. 
    Narula J, Williams CJ, Tiwari A, Marks-Bluth J, Pimanda JE, Igoshin OA 2013. Mathematical model of a gene regulatory network reconciles effects of genetic perturbations on hematopoietic stem cell emergence. Dev. Biol. 379:258–69
    [Google Scholar]
  74. 74. 
    Patterson LJ, Gering M, Eckfeldt CE, Green AR, Verfaillie CM et al. 2007. The transcription factors Scl and Lmo2 act together during development of the hemangioblast in zebrafish. Blood 109:2389–98
    [Google Scholar]
  75. 75. 
    Kim PG, Albacker CE, Lu YF, Jang IH, Lim Y et al. 2013. Signaling axis involving Hedgehog, Notch, and Scl promotes the embryonic endothelial-to-hematopoietic transition. PNAS 110:E141–50
    [Google Scholar]
  76. 76. 
    Robb L, Lyons I, Li R, Hartley L, Kontgen F et al. 1995. Absence of yolk sac hematopoiesis from mice with a targeted disruption of the scl gene. PNAS 92:7075–79
    [Google Scholar]
  77. 77. 
    Qian F, Zhen F, Xu J, Huang M, Li W, Wen Z 2007. Distinct functions for different scl isoforms in zebrafish primitive and definitive hematopoiesis. PLOS Biol 5:e132
    [Google Scholar]
  78. 78. 
    Ren X, Gomez GA, Zhang B, Lin S 2010. Scl isoforms act downstream of etsrp to specify angioblasts and definitive hematopoietic stem cells. Blood 115:5338–46
    [Google Scholar]
  79. 79. 
    Wang M, Wang H, Wen Y, Chen X, Liu X et al. 2018. MEIS2 regulates endothelial to hematopoietic transition of human embryonic stem cells by targeting TAL1. Stem Cell Res. Ther. 9:340
    [Google Scholar]
  80. 80. 
    Ling KW, Ottersbach K, van Hamburg JP, Oziemlak A, Tsai FY et al. 2004. GATA-2 plays two functionally distinct roles during the ontogeny of hematopoietic stem cells. J. Exp. Med. 200:871–82
    [Google Scholar]
  81. 81. 
    Huang K, Gao J, Du J, Ma N, Zhu Y et al. 2016. Generation and analysis of GATA2w/eGFP human ESCs reveal ITGB3/CD61 as a reliable marker for defining hemogenic endothelial cells during hematopoiesis. Stem Cell Rep 7:854–68
    [Google Scholar]
  82. 82. 
    Tsai FY, Keller G, Kuo FC, Weiss M, Chen J et al. 1994. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature 371:221–26
    [Google Scholar]
  83. 83. 
    de Pater E, Kaimakis P, Vink CS, Yokomizo T, Yamada-Inagawa T et al. 2013. Gata2 is required for HSC generation and survival. J. Exp. Med. 210:2843–50
    [Google Scholar]
  84. 84. 
    Gao X, Johnson KD, Chang YI, Boyer ME, Dewey CN et al. 2013. Gata2 cis-element is required for hematopoietic stem cell generation in the mammalian embryo. J. Exp. Med. 210:2833–42
    [Google Scholar]
  85. 85. 
    Eich C, Arlt J, Vink CS, Kartalaei PS, Kaimakis P et al. 2018. In vivo single cell analysis reveals Gata2 dynamics in cells transitioning to hematopoietic fate. J. Exp. Med. 215:233–48
    [Google Scholar]
  86. 86. 
    Butko E, Distel M, Pouget C, Weijts B, Kobayashi I et al. 2015. Gata2b is a restricted early regulator of hemogenic endothelium in the zebrafish embryo. Development 142:1050–61
    [Google Scholar]
  87. 87. 
    Kaimakis P, de Pater E, Eich C, Kartalaei PS, Kauts ML et al. 2016. Functional and molecular characterization of mouse Gata2-independent hematopoietic progenitors. Blood 127:1426–37
    [Google Scholar]
  88. 88. 
    Pandolfi PP, Roth ME, Karis A, Leonard MW, Dzierzak E et al. 1995. Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nat. Genet. 11:40–44
    [Google Scholar]
  89. 89. 
    Fitch SR, Kimber GM, Wilson NK, Parker A, Mirshekar-Syahkal B et al. 2012. Signaling from the sympathetic nervous system regulates hematopoietic stem cell emergence during embryogenesis. Cell Stem Cell 11:554–66
    [Google Scholar]
  90. 90. 
    Robert-Moreno A, Guiu J, Ruiz-Herguido C, Lopez ME, Ingles-Esteve J et al. 2008. Impaired embryonic haematopoiesis yet normal arterial development in the absence of the Notch ligand Jagged1. EMBO J 27:1886–95
    [Google Scholar]
  91. 91. 
    Jang IH, Lu YF, Zhao L, Wenzel PL, Kume T et al. 2015. Notch1 acts via Foxc2 to promote definitive hematopoiesis via effects on hemogenic endothelium. Blood 125:1418–26
    [Google Scholar]
  92. 92. 
    Kumano K, Chiba S, Kunisato A, Sata M, Saito T et al. 2003. Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells. Immunity 18:699–711
    [Google Scholar]
  93. 93. 
    Gerri C, Marass M, Rossi A, Stainier DYR 2018. Hif-1α and Hif-2α regulate hemogenic endothelium and hematopoietic stem cell formation in zebrafish. Blood 131:963–73
    [Google Scholar]
  94. 94. 
    Hadland BK, Huppert SS, Kanungo J, Xue Y, Jiang R et al. 2004. A requirement for Notch1 distinguishes 2 phases of definitive hematopoiesis during development. Blood 104:3097–105
    [Google Scholar]
  95. 95. 
    Krebs LT, Shutter JR, Tanigaki K, Honjo T, Stark KL, Gridley T 2004. Haploinsufficient lethality and formation of arteriovenous malformations in Notch pathway mutants. Genes Dev 18:2469–73
    [Google Scholar]
  96. 96. 
    Duarte A, Hirashima M, Benedito R, Trindade A, Diniz P et al. 2004. Dosage-sensitive requirement for mouse Dll4 in artery development. Genes Dev 18:2474–78
    [Google Scholar]
  97. 97. 
    Robert-Moreno A, Espinosa L, de la Pompa JL, Bigas A 2005. RBPjκ-dependent Notch function regulates Gata2 and is essential for the formation of intra-embryonic hematopoietic cells. Development 132:1117–26
    [Google Scholar]
  98. 98. 
    Gama-Norton L, Ferrando E, Ruiz-Herguido C, Liu Z, Guiu J et al. 2015. Notch signal strength controls cell fate in the haemogenic endothelium. Nat. Commun. 6:8510
    [Google Scholar]
  99. 99. 
    Uenishi GI, Jung HS, Kumar A, Park MA, Hadland BK et al. 2018. NOTCH signaling specifies arterial-type definitive hemogenic endothelium from human pluripotent stem cells. Nat. Commun. 9:1828
    [Google Scholar]
  100. 100. 
    Ayllon V, Bueno C, Ramos-Mejia V, Navarro-Montero O, Prieto C et al. 2015. The Notch ligand DLL4 specifically marks human hematoendothelial progenitors and regulates their hematopoietic fate. Leukemia 29:1741–53
    [Google Scholar]
  101. 101. 
    Guiu J, Shimizu R, D'Altri T, Fraser ST, Hatakeyama J et al. 2013. Hes repressors are essential regulators of hematopoietic stem cell development downstream of Notch signaling. J. Exp. Med. 210:71–84
    [Google Scholar]
  102. 102. 
    Guiu J, Bergen DJ, De Pater E, Islam AB, Ayllon V et al. 2014. Identification of Cdca7 as a novel Notch transcriptional target involved in hematopoietic stem cell emergence. J. Exp. Med. 211:2411–23
    [Google Scholar]
  103. 103. 
    Nakagawa M, Ichikawa M, Kumano K, Goyama S, Kawazu M et al. 2006. AML1/Runx1 rescues Notch1-null mutation-induced deficiency of para-aortic splanchnopleural hematopoiesis. Blood 108:3329–34
    [Google Scholar]
  104. 104. 
    Clements WK, Kim AD, Ong KG, Moore JC, Lawson ND, Traver D 2011. A somitic Wnt16/Notch pathway specifies haematopoietic stem cells. Nature 474:220–24
    [Google Scholar]
  105. 105. 
    Kobayashi I, Kobayashi-Sun J, Kim AD, Pouget C, Fujita N et al. 2014. Jam1a–Jam2a interactions regulate haematopoietic stem cell fate through Notch signalling. Nature 512:319–23
    [Google Scholar]
  106. 106. 
    Lee Y, Manegold JE, Kim AD, Pouget C, Stachura DL et al. 2014. FGF signalling specifies haematopoietic stem cells through its regulation of somitic Notch signalling. Nat. Commun. 5:5583
    [Google Scholar]
  107. 107. 
    Nguyen PD, Hollway GE, Sonntag C, Miles LB, Hall TE et al. 2014. Haematopoietic stem cell induction by somite-derived endothelial cells controlled by meox1. . Nature 512:314–18
    [Google Scholar]
  108. 108. 
    Mucenski ML, McLain K, Kier AB, Swerdlow SH, Schreiner CM et al. 1991. A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis. Cell 65:677–89
    [Google Scholar]
  109. 109. 
    Zhang Y, Jin H, Li L, Qin FX, Wen Z 2011. cMyb regulates hematopoietic stem/progenitor cell mobilization during zebrafish hematopoiesis. Blood 118:4093–101
    [Google Scholar]
  110. 110. 
    Soza-Ried C, Hess I, Netuschil N, Schorpp M, Boehm T 2010. Essential role of c-myb in definitive hematopoiesis is evolutionarily conserved. PNAS 107:17304–8
    [Google Scholar]
  111. 111. 
    Mukai HY, Motohashi H, Ohneda O, Suzuki N, Nagano M, Yamamoto M 2006. Transgene insertion in proximity to the c-myb gene disrupts erythroid-megakaryocytic lineage bifurcation. Mol. Cell. Biol. 26:7953–65
    [Google Scholar]
  112. 112. 
    Takakura N, Watanabe T, Suenobu S, Yamada Y, Noda T et al. 2000. A role for hematopoietic stem cells in promoting angiogenesis. Cell 102:199–209
    [Google Scholar]
  113. 113. 
    Jing L, Tamplin OJ, Chen MJ, Deng Q, Patterson S et al. 2015. Adenosine signaling promotes hematopoietic stem and progenitor cell emergence. J. Exp. Med. 212:649–63
    [Google Scholar]
  114. 114. 
    Diaz MF, Li N, Lee HJ, Adamo L, Evans SM et al. 2015. Biomechanical forces promote blood development through prostaglandin E2 and the cAMP–PKA signaling axis. J. Exp. Med. 212:665–80
    [Google Scholar]
  115. 115. 
    Saxena S, Ronn RE, Guibentif C, Moraghebi R, Woods NB 2016. Cyclic AMP signaling through Epac axis modulates human hemogenic endothelium and enhances hematopoietic cell generation. Stem Cell Rep 6:692–703
    [Google Scholar]
  116. 116. 
    Costa G, Mazan A, Gandillet A, Pearson S, Lacaud G, Kouskoff V 2012. SOX7 regulates the expression of VE-cadherin in the haemogenic endothelium at the onset of haematopoietic development. Development 139:1587–98
    [Google Scholar]
  117. 117. 
    Gandillet A, Serrano AG, Pearson S, Lie ALM, Lacaud G, Kouskoff V 2009. Sox7-sustained expression alters the balance between proliferation and differentiation of hematopoietic progenitors at the onset of blood specification. Blood 114:4813–22
    [Google Scholar]
  118. 118. 
    Clarke RL, Yzaguirre AD, Yashiro-Ohtani Y, Bondue A, Blanpain C et al. 2013. The expression of Sox17 identifies and regulates haemogenic endothelium. Nat. Cell Biol. 15:502–10
    [Google Scholar]
  119. 119. 
    Serrano AG, Gandillet A, Pearson S, Lacaud G, Kouskoff V 2010. Contrasting effects of Sox17- and Sox18-sustained expression at the onset of blood specification. Blood 115:3895–8
    [Google Scholar]
  120. 120. 
    Corada M, Orsenigo F, Morini MF, Pitulescu ME, Bhat G et al. 2013. Sox17 is indispensable for acquisition and maintenance of arterial identity. Nat. Commun. 4:2609
    [Google Scholar]
  121. 121. 
    Kim I, Saunders TL, Morrison SJ 2007. Sox17 dependence distinguishes the transcriptional regulation of fetal from adult hematopoietic stem cells. Cell 130:470–83
    [Google Scholar]
  122. 122. 
    Nakajima-Takagi Y, Osawa M, Oshima M, Takagi H, Miyagi S et al. 2013. Role of SOX17 in hematopoietic development from human embryonic stem cells. Blood 121:447–58
    [Google Scholar]
  123. 123. 
    Richter J, Traver D, Willert K 2017. The role of Wnt signaling in hematopoietic stem cell development. Crit. Rev. Biochem. Mol. Biol. 52:414–24
    [Google Scholar]
  124. 124. 
    Chen B, Dodge ME, Tang W, Lu J, Ma Z et al. 2009. Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat. Chem. Biol. 5:100–7
    [Google Scholar]
  125. 125. 
    Goessling W, North TE, Loewer S, Lord AM, Lee S et al. 2009. Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell 136:1136–47
    [Google Scholar]
  126. 126. 
    Grainger S, Richter J, Palazon RE, Pouget C, Lonquich B et al. 2016. Wnt9a is required for the aortic amplification of nascent hematopoietic stem cells. Cell Rep 17:1595–606
    [Google Scholar]
  127. 127. 
    Woll PS, Morris JK, Painschab MS, Marcus RK, Kohn AD et al. 2008. Wnt signaling promotes hematoendothelial cell development from human embryonic stem cells. Blood 111:122–31
    [Google Scholar]
  128. 128. 
    Gertow K, Hirst CE, Yu QC, Ng ES, Pereira LA et al. 2013. WNT3A promotes hematopoietic or mesenchymal differentiation from hESCs depending on the time of exposure. Stem Cell Rep 1:53–65
    [Google Scholar]
  129. 129. 
    Ruiz-Herguido C, Guiu J, D'Altri T, Ingles-Esteve J, Dzierzak E et al. 2012. Hematopoietic stem cell development requires transient Wnt/β-catenin activity. J. Exp. Med. 209:1457–68
    [Google Scholar]
  130. 130. 
    Sturgeon CM, Ditadi A, Awong G, Kennedy M, Keller G 2014. Wnt signaling controls the specification of definitive and primitive hematopoiesis from human pluripotent stem cells. Nat. Biotechnol. 32:554–61
    [Google Scholar]
  131. 131. 
    Li Y, Esain V, Teng L, Xu J, Kwan W et al. 2014. Inflammatory signaling regulates embryonic hematopoietic stem and progenitor cell production. Genes Dev 28:2597–612
    [Google Scholar]
  132. 132. 
    Espin-Palazon R, Stachura DL, Campbell CA, Garcia-Moreno D, Del Cid N et al. 2014. Proinflammatory signaling regulates hematopoietic stem cell emergence. Cell 159:1070–85
    [Google Scholar]
  133. 133. 
    Sawamiphak S, Kontarakis Z, Stainier DY 2014. Interferon gamma signaling positively regulates hematopoietic stem cell emergence. Dev. Cell 31:640–53
    [Google Scholar]
  134. 134. 
    He Q, Zhang C, Wang L, Zhang P, Ma D et al. 2015. Inflammatory signaling regulates hematopoietic stem and progenitor cell emergence in vertebrates. Blood 125:1098–106
    [Google Scholar]
  135. 135. 
    Stachura DL, Svoboda O, Campbell CA, Espin-Palazon R, Lau RP et al. 2013. The zebrafish granulocyte colony-stimulating factors (Gcsfs): 2 paralogous cytokines and their roles in hematopoietic development and maintenance. Blood 122:3918–28
    [Google Scholar]
  136. 136. 
    Monteiro R, Pinheiro P, Joseph N, Peterkin T, Koth J et al. 2016. Transforming growth factor β drives hemogenic endothelium programming and the transition to hematopoietic stem cells. Dev. Cell 38:358–70
    [Google Scholar]
  137. 137. 
    Wilkinson RN, Pouget C, Gering M, Russell AJ, Davies SG et al. 2009. Hedgehog and Bmp polarize hematopoietic stem cell emergence in the zebrafish dorsal aorta. Dev. Cell 16:909–16
    [Google Scholar]
  138. 138. 
    Kirmizitas A, Meiklejohn S, Ciau-Uitz A, Stephenson R, Patient R 2017. Dissecting BMP signaling input into the gene regulatory networks driving specification of the blood stem cell lineage. PNAS 114:5814–21
    [Google Scholar]
  139. 139. 
    McReynolds LJ, Gupta S, Figueroa ME, Mullins MC, Evans T 2007. Smad1 and Smad5 differentially regulate embryonic hematopoiesis. Blood 110:3881–90
    [Google Scholar]
  140. 140. 
    Lan Y, He W, Li Z, Wang Y, Wang J et al. 2014. Endothelial Smad4 restrains the transition to hematopoietic progenitors via suppression of ERK activation. Blood 123:2161–71
    [Google Scholar]
  141. 141. 
    Adamo L, Naveiras O, Wenzel PL, McKinney-Freeman S, Mack PJ et al. 2009. Biomechanical forces promote embryonic haematopoiesis. Nature 459:1131–35
    [Google Scholar]
  142. 142. 
    North TE, Goessling W, Peeters M, Li P, Ceol C et al. 2009. Hematopoietic stem cell development is dependent on blood flow. Cell 137:736–48
    [Google Scholar]
  143. 143. 
    Challen GA, Boles NC, Chambers SM, Goodell MA 2010. Distinct hematopoietic stem cell subtypes are differentially regulated by TGF-β1. Cell Stem Cell 6:265–78
    [Google Scholar]
  144. 144. 
    Huang K, Du J, Ma N, Liu J, Wu P et al. 2015. GATA2−/− human ESCs undergo attenuated endothelial to hematopoietic transition and thereafter granulocyte commitment. Cell Regen 4:4
    [Google Scholar]
  145. 145. 
    Pelosi E, Castelli G, Martin-Padura I, Bordoni V, Santoro S et al. 2012. Human haemato-endothelial precursors: cord blood CD34+ cells produce haemogenic endothelium. PLOS ONE 7:e51109
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-021119-034352
Loading
/content/journals/10.1146/annurev-physiol-021119-034352
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error