1932

Abstract

Despite mounting evidence implicating inflammation in cardiovascular diseases, attempts at clinical translation have shown mixed results. Recent preclinical studies have reenergized this field and provided new insights into how to favorably modulate cardiac macrophage function in the context of acute myocardial injury and chronic disease. In this review, we discuss the origins and roles of cardiac macrophage populations in the steady-state and diseased heart, focusing on the human heart and mouse models of ischemia, hypertensive heart disease, and aortic stenosis. Specific attention is given to delineating the roles of tissue-resident and recruited monocyte-derived macrophage subsets. We also highlight emerging concepts of monocyte plasticity and heterogeneity among monocyte-derived macrophages, describe possible mechanisms by which infiltrating monocytes acquire unique macrophage fates, and discuss the putative impact of these populations on cardiac remodeling. Finally, we discuss strategies to target inflammatory macrophage populations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021119-034412
2020-02-10
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/physiol/82/1/annurev-physiol-021119-034412.html?itemId=/content/journals/10.1146/annurev-physiol-021119-034412&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Dick SA, Epelman S. 2016. Chronic heart failure and inflammation: What do we really know?. Circ. Res. 119:159–76
    [Google Scholar]
  2. 2. 
    Moore KJ, Koplev S, Fisher EA, Tabas I, Björkegren JLM et al. 2018. Macrophage trafficking, inflammatory resolution, and genomics in atherosclerosis: JACC macrophage in CVD series (part 2). J. Am. Coll. Cardiol. 72:2181–97
    [Google Scholar]
  3. 3. 
    Ueland T, Gullestad L, Nymo SH, Yndestad A, Aukrust P, Askevold ET 2015. Inflammatory cytokines as biomarkers in heart failure. Clin. Chim. Acta 443:71–77
    [Google Scholar]
  4. 4. 
    DuBrock HM, AbouEzzeddine OF, Redfield MM 2018. High-sensitivity C-reactive protein in heart failure with preserved ejection fraction. PLOS ONE 13:e0201836
    [Google Scholar]
  5. 5. 
    Kalogeropoulos A, Georgiopoulou V, Psaty BM, Rodondi N, Smith AL et al. 2010. Inflammatory markers and incident heart failure risk in older adults: the Health ABC (Health, Aging, and Body Composition) study. J. Am. Coll. Cardiol. 55:2129–37
    [Google Scholar]
  6. 6. 
    Nymo SH, Hulthe J, Ueland T, McMurray J, Wikstrand J et al. 2014. Inflammatory cytokines in chronic heart failure: interleukin-8 is associated with adverse outcome. Results from CORONA. Eur. J. Heart Fail. 16:68–75
    [Google Scholar]
  7. 7. 
    Panahi M, Papanikolaou A, Torabi A, Zhang JG, Khan H et al. 2018. Immunomodulatory interventions in myocardial infarction and heart failure: a systematic review of clinical trials and meta-analysis of IL-1 inhibition. Cardiovasc. Res. 114:1445–61
    [Google Scholar]
  8. 8. 
    Mann DL, McMurray JJ, Packer M, Swedberg K, Borer JS et al. 2004. Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation 109:1594–602
    [Google Scholar]
  9. 9. 
    Chung ES, Packer M, Lo KH, Fasanmade AA, Willerson JT et al. 2003. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-α, in patients with moderate-to-severe heart failure: results of the Anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation 107:3133–40
    [Google Scholar]
  10. 10. 
    Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH et al. 2017. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377:1119–31
    [Google Scholar]
  11. 11. 
    Ridker PM, MacFadyen JG, Everett BM, Libby P, Thuren T, Glynn RJ 2018. Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial. Lancet 391:319–28
    [Google Scholar]
  12. 12. 
    Tardif JC, Tanguay JF, Wright SR, Duchatelle V, Petroni T et al. 2013. Effects of the P-selectin antagonist inclacumab on myocardial damage after percutaneous coronary intervention for non-ST-segment elevation myocardial infarction: results of the SELECT-ACS trial. J. Am. Coll. Cardiol. 61:2048–55
    [Google Scholar]
  13. 13. 
    Stähli BE, Gebhard C, Duchatelle V, Cournoyer D, Petroni T et al. 2016. Effects of the P-selectin antagonist inclacumab on myocardial damage after percutaneous coronary intervention according to timing of infusion: insights from the SELECT-ACS trial. J. Am. Heart Assoc. 5:e004255
    [Google Scholar]
  14. 14. 
    Ramos GC, van den Berg A, Nunes-Silva V, Weirather J, Peters L et al. 2017. Myocardial aging as a T-cell-mediated phenomenon. PNAS 114:E2420.e9
    [Google Scholar]
  15. 15. 
    Epelman S, Lavine KJ, Beaudin AE, Sojka DK, Carrero JA et al. 2014. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40:91–104
    [Google Scholar]
  16. 16. 
    Pinto AR, Paolicelli R, Salimova E, Gospocic J, Slonimsky E et al. 2012. An abundant tissue macrophage population in the adult murine heart with a distinct alternatively-activated macrophage profile. PLOS ONE 7:e36814
    [Google Scholar]
  17. 17. 
    Hilgendorf I, Gerhardt LM, Tan TC, Winter C, Holderried TA et al. 2014. Ly-6Chigh monocytes depend on Nr4a1 to balance both inflammatory and reparative phases in the infarcted myocardium. Circ. Res. 114:1611–22
    [Google Scholar]
  18. 18. 
    Nahrendorf M, Swirski FK. 2016. Abandoning M1/M2 for a network model of macrophage function. Circ. Res. 119:414–17
    [Google Scholar]
  19. 19. 
    Walter W, Alonso-Herranz L, Trappetti V, Crespo I, Ibberson M et al. 2018. Deciphering the dynamic transcriptional and post-transcriptional networks of macrophages in the healthy heart and after myocardial injury. Cell Rep 23:622–36
    [Google Scholar]
  20. 20. 
    Varga T, Mounier R, Horvath A, Cuvellier S, Dumont F et al. 2016. Highly dynamic transcriptional signature of distinct macrophage subsets during sterile inflammation, resolution, and tissue repair. J. Immunol. 196:4771–82
    [Google Scholar]
  21. 21. 
    Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H et al. 2014. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159:1312–26
    [Google Scholar]
  22. 22. 
    Lavine KJ, Pinto AR, Epelman S, Kopecky BJ, Clemente-Casares X et al. 2018. The macrophage in cardiac homeostasis and disease: JACC macrophage in CVD series (part 4). J. Am. Coll. Cardiol. 72:2213–30
    [Google Scholar]
  23. 23. 
    Ensan S, Li A, Besla R, Degousee N, Cosme J et al. 2016. Self-renewing resident arterial macrophages arise from embryonic CX3CR1+ precursors and circulating monocytes immediately after birth. Nat. Immunol. 17:159–68
    [Google Scholar]
  24. 24. 
    Röszer T. 2018. Understanding the biology of self-renewing macrophages. Cells 7:103
    [Google Scholar]
  25. 25. 
    Gentek R, Molawi K, Sieweke MH 2014. Tissue macrophage identity and self-renewal. Immunol. Rev. 262:56–73
    [Google Scholar]
  26. 26. 
    Williams JW, Giannarelli C, Rahman A, Randolph GJ, Kovacic JC 2018. Macrophage biology, classification, and phenotype in cardiovascular disease: JACC macrophage in CVD series (part 1). J. Am. Coll. Cardiol. 72:2166–80
    [Google Scholar]
  27. 27. 
    Hulsmans M, Clauss S, Xiao L, Aguirre AD, King KR et al. 2017. Macrophages facilitate electrical conduction in the heart. Cell 169:510–22.e20
    [Google Scholar]
  28. 28. 
    Heidt T, Courties G, Dutta P, Sager HB, Sebas M et al. 2014. Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction. Circ. Res. 115:284–95
    [Google Scholar]
  29. 29. 
    Sager HB, Hulsmans M, Lavine KJ, Moreira MB, Heidt T et al. 2016. Proliferation and recruitment contribute to myocardial macrophage expansion in chronic heart failure. Circ. Res. 119:853–64
    [Google Scholar]
  30. 30. 
    Dick SA, Macklin JA, Nejat S, Momen A, Clemente-Casares X et al. 2019. Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction. Nat. Immunol. 20:29–39
    [Google Scholar]
  31. 31. 
    Stevens SM, von Gise A, VanDusen N, Zhou B, Pu WT 2016. Epicardium is required for cardiac seeding by yolk sac macrophages, precursors of resident macrophages of the adult heart. Dev. Biol. 413:153–59
    [Google Scholar]
  32. 32. 
    Bajpai G, Bredemeyer A, Li W, Zaitsev K, Koenig AL et al. 2019. Tissue resident CCR2− and CCR2+ cardiac macrophages differentially orchestrate monocyte recruitment and fate specification following myocardial injury. Circ. Res. 124:263–78
    [Google Scholar]
  33. 33. 
    Lavine KJ, Epelman S, Uchida K, Weber KJ, Nichols CG et al. 2014. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. PNAS 111:16029–34
    [Google Scholar]
  34. 34. 
    Leid J, Carrelha J, Boukarabila H, Epelman S, Jacobsen SE, Lavine KJ 2016. Primitive embryonic macrophages are required for coronary development and maturation. Circ. Res. 118:1498–511
    [Google Scholar]
  35. 35. 
    Sun Z, Zhou D, Xie X, Wang S, Wang Z et al. 2016. Cross-talk between macrophages and atrial myocytes in atrial fibrillation. Basic Res. Cardiol. 111:63
    [Google Scholar]
  36. 36. 
    Bajpai G, Schneider C, Wong N, Bredemeyer A, Hulsmans M et al. 2018. The human heart contains distinct macrophage subsets with divergent origins and functions. Nat. Med. 24:1234–45
    [Google Scholar]
  37. 37. 
    Kalogeris T, Baines CP, Krenz M, Korthuis RJ 2012. Cell biology of ischemia/reperfusion injury. Int. Rev. Cell Mol. Biol. 298:229–317
    [Google Scholar]
  38. 38. 
    Glezeva N, Voon V, Watson C, Horgan S, McDonald K et al. 2015. Exaggerated inflammation and monocytosis associate with diastolic dysfunction in heart failure with preserved ejection fraction: evidence of M2 macrophage activation in disease pathogenesis. J. Card. Fail. 21:167–77
    [Google Scholar]
  39. 39. 
    Nakayama H, Otsu K. 2013. Translation of hemodynamic stress to sterile inflammation in the heart. Trends Endocrinol. Metab. 24:546–53
    [Google Scholar]
  40. 40. 
    Oka T, Hikoso S, Yamaguchi O, Taneike M, Takeda T et al. 2012. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 485:251–55
    [Google Scholar]
  41. 41. 
    Nishida K, Otsu K. 2017. Sterile inflammation and degradation systems in heart failure. Circ. J. 81:622–28
    [Google Scholar]
  42. 42. 
    Nakayama H, Otsu K. 2018. Mitochondrial DNA as an inflammatory mediator in cardiovascular diseases. Biochem. J. 475:839–52
    [Google Scholar]
  43. 43. 
    Krychtiuk KA, Wurm R, Ruhittel S, Lenz M, Huber K et al. 2019. Release of mitochondrial DNA is associated with mortality in severe acute heart failure. Eur. Heart J. Acute Cardiovasc. Care. https://doi.org/10.1177/2048872618823405
    [Crossref] [Google Scholar]
  44. 44. 
    Dhondup Y, Ueland T, Dahl CP, Askevold ET, Sandanger O et al. 2016. Low circulating levels of mitochondrial and high levels of nuclear DNA predict mortality in chronic heart failure. J. Card. Fail. 22:823–28
    [Google Scholar]
  45. 45. 
    Cao DJ, Schiattarella GG, Villalobos E, Jiang N, May HI et al. 2018. Cytosolic DNA sensing promotes macrophage transformation and governs myocardial ischemic injury. Circulation 137:2613–34
    [Google Scholar]
  46. 46. 
    Li W, Hsiao HM, Higashikubo R, Saunders BT, Bharat A et al. 2016. Heart-resident CCR2+ macrophages promote neutrophil extravasation through TLR9/MyD88/CXCL5 signaling. JCI Insight 1:e87315
    [Google Scholar]
  47. 47. 
    King KR, Aguirre AD, Ye YX, Sun Y, Roh JD et al. 2017. IRF3 and type I interferons fuel a fatal response to myocardial infarction. Nat. Med. 23:1481–87
    [Google Scholar]
  48. 48. 
    Yang L, Cai X, Liu J, Jia Z, Jiao J et al. 2013. CpG-ODN attenuates pathological cardiac hypertrophy and heart failure by activation of PI3Kα-Akt signaling. PLOS ONE 8:e62373
    [Google Scholar]
  49. 49. 
    Velten M, Duerr GD, Pessies T, Schild J, Lohner R et al. 2012. Priming with synthetic oligonucleotides attenuates pressure overload-induced inflammation and cardiac hypertrophy in mice. Cardiovasc. Res. 96:422–32
    [Google Scholar]
  50. 50. 
    Chen CJ, Kono H, Golenbock D, Reed G, Akira S, Rock KL 2007. Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat. Med. 13:851–56
    [Google Scholar]
  51. 51. 
    Ehrentraut H, Ehrentraut SF, Boehm O, El Aissati S, Foltz F et al. 2015. Tlr4 deficiency protects against cardiac pressure overload induced hyperinflammation. PLOS ONE 10:e0142921
    [Google Scholar]
  52. 52. 
    Ehrentraut H, Weber C, Ehrentraut S, Schwederski M, Boehm O et al. 2011. The Toll-like receptor 4-antagonist eritoran reduces murine cardiac hypertrophy. Eur. J. Heart Fail. 13:602–10
    [Google Scholar]
  53. 53. 
    Higashikuni Y, Tanaka K, Kato M, Nureki O, Hirata Y et al. 2013. Toll-like receptor-2 mediates adaptive cardiac hypertrophy in response to pressure overload through interleukin-1β upregulation via nuclear factor κB activation. J. Am. Heart Assoc. 2:e000267
    [Google Scholar]
  54. 54. 
    Matsuda S, Umemoto S, Yoshimura K, Itoh S, Murata T et al. 2015. Angiotensin activates MCP-1 and induces cardiac hypertrophy and dysfunction via Toll-like receptor 4. J. Atheroscler. Thromb. 22:833–44
    [Google Scholar]
  55. 55. 
    Wang L, Li YL, Zhang CC, Cui W, Wang X et al. 2014. Inhibition of Toll-like receptor 2 reduces cardiac fibrosis by attenuating macrophage-mediated inflammation. Cardiovasc. Res. 101:383–92
    [Google Scholar]
  56. 56. 
    Han J, Zou C, Mei L, Zhang Y, Qian Y et al. 2017. MD2 mediates angiotensin II-induced cardiac inflammation and remodeling via directly binding to Ang II and activating TLR4/NF-κB signaling pathway. Basic Res. Cardiol. 112:9
    [Google Scholar]
  57. 57. 
    Strand ME, Herum KM, Rana ZA, Skrbic B, Askevold ET et al. 2013. Innate immune signaling induces expression and shedding of the heparan sulfate proteoglycan syndecan-4 in cardiac fibroblasts and myocytes, affecting inflammation in the pressure-overloaded heart. FEBS J 280:2228–47
    [Google Scholar]
  58. 58. 
    Honsho S, Nishikawa S, Amano K, Zen K, Adachi Y et al. 2009. Pressure-mediated hypertrophy and mechanical stretch induces IL-1 release and subsequent IGF-1 generation to maintain compensative hypertrophy by affecting Akt and JNK pathways. Circ. Res. 105:1149–58
    [Google Scholar]
  59. 59. 
    Leychenko A, Konorev E, Jijiwa M, Matter ML 2011. Stretch-induced hypertrophy activates NFκB-mediated VEGF secretion in adult cardiomyocytes. PLOS ONE 6:e29055
    [Google Scholar]
  60. 60. 
    Shiojima I, Sato K, Izumiya Y, Schiekofer S, Ito M et al. 2005. Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J. Clin. Investig. 115:2108–18
    [Google Scholar]
  61. 61. 
    Oka T, Akazawa H, Naito AT, Komuro I 2014. Angiogenesis and cardiac hypertrophy: maintenance of cardiac function and causative roles in heart failure. Circ. Res. 114:565–71
    [Google Scholar]
  62. 62. 
    Kehat I, Molkentin JD. 2010. Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation 122:2727–35
    [Google Scholar]
  63. 63. 
    Volz HC, Laohachewin D, Seidel C, Lasitschka F, Keilbach K et al. 2012. S100A8/A9 aggravates post-ischemic heart failure through activation of RAGE-dependent NF-κB signaling. Basic Res. Cardiol. 107:250
    [Google Scholar]
  64. 64. 
    Ramasamy R, Schmidt AM. 2012. Receptor for advanced glycation end products (RAGE) and implications for the pathophysiology of heart failure. Curr. Heart Fail. Rep. 9:107–16
    [Google Scholar]
  65. 65. 
    Uderhardt S, Martins AJ, Tsang JS, Lammermann T, Germain RN 2019. Resident macrophages cloak tissue microlesions to prevent neutrophil-driven inflammatory damage. Cell 177:541–55.e17
    [Google Scholar]
  66. 66. 
    Aurora AB, Porrello ER, Tan W, Mahmoud AI, Hill JA et al. 2014. Macrophages are required for neonatal heart regeneration. J. Clin. Investig. 124:1382–92
    [Google Scholar]
  67. 67. 
    Liao X, Shen Y, Zhang R, Sugi K, Vasudevan NT et al. 2018. Distinct roles of resident and nonresident macrophages in nonischemic cardiomyopathy. PNAS 115:E4661–69
    [Google Scholar]
  68. 68. 
    Clemente-Casares X, Hosseinzadeh S, Barbu I, Dick SA, Macklin JA et al. 2017. A CD103+ conventional dendritic cell surveillance system prevents development of overt heart failure during subclinical viral myocarditis. Immunity 47:974–89.e8
    [Google Scholar]
  69. 69. 
    Li W, Feng G, Gauthier JM, Lokshina I, Higashikubo R et al. 2019. Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation. J. Clin. Investig. 129:2293–2304
    [Google Scholar]
  70. 70. 
    Dutta P, Sager HB, Stengel KR, Naxerova K, Courties G et al. 2015. Myocardial infarction activates CCR2+ hematopoietic stem and progenitor cells. Cell Stem Cell 16:477–87
    [Google Scholar]
  71. 71. 
    Wang NP, Erskine J, Zhang WW, Zheng RH, Zhang LH et al. 2017. Recruitment of macrophages from the spleen contributes to myocardial fibrosis and hypertension induced by angiotensin II. J. Renin-Angiotensin Aldosterone Syst. 18: https://doi.org/10.1177/1470320317706653
    [Crossref] [Google Scholar]
  72. 72. 
    Prabhu SD. 2018. The cardiosplenic axis is essential for the pathogenesis of ischemic heart failure. Trans. Am. Clin. Climatol. Assoc. 129:202–14
    [Google Scholar]
  73. 73. 
    Ismahil MA, Hamid T, Bansal SS, Patel B, Kingery JR, Prabhu SD 2014. Remodeling of the mononuclear phagocyte network underlies chronic inflammation and disease progression in heart failure: critical importance of the cardiosplenic axis. Circ. Res. 114:266–82
    [Google Scholar]
  74. 74. 
    Emami H, Singh P, MacNabb M, Vucic E, Lavender Z et al. 2015. Splenic metabolic activity predicts risk of future cardiovascular events: demonstration of a cardiosplenic axis in humans. JACC Cardiovasc. Imaging 8:121–30
    [Google Scholar]
  75. 75. 
    Burns J, Sivananthan MU, Ball SG, Mackintosh AF, Mary DA, Greenwood JP 2007. Relationship between central sympathetic drive and magnetic resonance imaging-determined left ventricular mass in essential hypertension. Circulation 115:1999–2005
    [Google Scholar]
  76. 76. 
    Kiriazis H, Wang K, Xu Q, Gao XM, Ming Z et al. 2008. Knockout of β1- and β2-adrenoceptors attenuates pressure overload-induced cardiac hypertrophy and fibrosis. Br. J. Pharmacol. 153:684–92
    [Google Scholar]
  77. 77. 
    Verloop WL, Beeftink MM, Santema BT, Bots ML, Blankestijn PJ et al. 2015. A systematic review concerning the relation between the sympathetic nervous system and heart failure with preserved left ventricular ejection fraction. PLOS ONE 10:e0117332
    [Google Scholar]
  78. 78. 
    Horckmans M, Ring L, Duchene J, Santovito D, Schloss MJ et al. 2017. Neutrophils orchestrate post-myocardial infarction healing by polarizing macrophages towards a reparative phenotype. Eur. Heart J. 38:187–97
    [Google Scholar]
  79. 79. 
    Yang W, Tao Y, Wu Y, Zhao X, Ye W et al. 2019. Neutrophils promote the development of reparative macrophages mediated by ROS to orchestrate liver repair. Nat. Commun. 10:1076
    [Google Scholar]
  80. 80. 
    Puhl SL, Steffens S. 2019. Neutrophils in post-myocardial infarction inflammation: Damage versus resolution. Front. Cardiovasc. Med. 6:25
    [Google Scholar]
  81. 81. 
    Geng S, Zhang Y, Lee C, Li L 2019. Novel reprogramming of neutrophils modulates inflammation resolution during atherosclerosis. Sci. Adv. 5:eaav2309
    [Google Scholar]
  82. 82. 
    Mouton AJ, DeLeon-Pennell KY, Rivera Gonzalez OJ, Flynn ER, Freeman TC et al. 2018. Mapping macrophage polarization over the myocardial infarction time continuum. Basic Res. Cardiol. 113:26
    [Google Scholar]
  83. 83. 
    Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T et al. 2007. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med. 204:3037–47
    [Google Scholar]
  84. 84. 
    Hayasaki T, Kaikita K, Okuma T, Yamamoto E, Kuziel WA et al. 2006. CC chemokine receptor-2 deficiency attenuates oxidative stress and infarct size caused by myocardial ischemia-reperfusion in mice. Circ. J. 70:342–51
    [Google Scholar]
  85. 85. 
    Kaikita K, Hayasaki T, Okuma T, Kuziel WA, Ogawa H, Takeya M 2004. Targeted deletion of CC chemokine receptor 2 attenuates left ventricular remodeling after experimental myocardial infarction. Am. J. Pathol. 165:439–47
    [Google Scholar]
  86. 86. 
    Struthers M, Pasternak A. 2010. CCR2 antagonists. Curr. Top. Med. Chem. 10:1278–98
    [Google Scholar]
  87. 87. 
    Weisheit C, Zhang Y, Faron A, Kopke O, Weisheit G et al. 2014. Ly6Clow and not Ly6Chigh macrophages accumulate first in the heart in a model of murine pressure-overload. PLOS ONE 9:e112710
    [Google Scholar]
  88. 88. 
    Patel B, Ismahil MA, Hamid T, Bansal SS, Prabhu SD 2017. Mononuclear phagocytes are dispensable for cardiac remodeling in established pressure-overload heart failure. PLOS ONE 12:e0170781
    [Google Scholar]
  89. 89. 
    Patel B, Bansal SS, Ismahil MA, Hamid T, Rokosh G et al. 2018. CCR2+ monocyte-derived infiltrating macrophages are required for adverse cardiac remodeling during pressure overload. JACC Basic Transl. Sci. 3:230–44
    [Google Scholar]
  90. 90. 
    Howangyin KY, Zlatanova I, Pinto C, Ngkelo A, Cochain C et al. 2016. Myeloid-epithelial-reproductive receptor tyrosine kinase and milk fat globule epidermal growth factor 8 coordinately improve remodeling after myocardial infarction via local delivery of vascular endothelial growth factor. Circulation 133:826–39
    [Google Scholar]
  91. 91. 
    Deng KQ, Li J, She ZG, Gong J, Cheng WL et al. 2017. Restoration of circulating MFGE8 (milk fat globule-EGF factor 8) attenuates cardiac hypertrophy through inhibition of Akt pathway. Hypertension 70:770–79
    [Google Scholar]
  92. 92. 
    Anzai A, Choi JL, He S, Fenn AM, Nairz M et al. 2017. The infarcted myocardium solicits GM-CSF for the detrimental oversupply of inflammatory leukocytes. J. Exp. Med. 214:3293–310
    [Google Scholar]
  93. 93. 
    Lee JS, Jeong SJ, Kim S, Chalifour L, Yun TJ et al. 2018. Conventional dendritic cells impair recovery after myocardial infarction. J. Immunol. 201:1784–98
    [Google Scholar]
  94. 94. 
    Nagai T, Honda S, Sugano Y, Matsuyama TA, Ohta-Ogo K et al. 2014. Decreased myocardial dendritic cells is associated with impaired reparative fibrosis and development of cardiac rupture after myocardial infarction in humans. J. Am. Heart Assoc. 3:e000839
    [Google Scholar]
  95. 95. 
    Anzai A, Anzai T, Nagai S, Maekawa Y, Naito K et al. 2012. Regulatory role of dendritic cells in postinfarction healing and left ventricular remodeling. Circulation 125:1234–45
    [Google Scholar]
  96. 96. 
    Nevers T, Salvador AM, Grodecki-Pena A, Knapp A, Velazquez F et al. 2015. Left ventricular T-cell recruitment contributes to the pathogenesis of heart failure. Circ. Heart Fail. 8:776–87
    [Google Scholar]
  97. 97. 
    Laroumanie F, Douin-Echinard V, Pozzo J, Lairez O, Tortosa F et al. 2014. CD4+ T cells promote the transition from hypertrophy to heart failure during chronic pressure overload. Circulation 129:2111–24
    [Google Scholar]
  98. 98. 
    Weirather J, Hofmann UD, Beyersdorf N, Ramos GC, Vogel B et al. 2014. Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation. Circ. Res. 115:55–67
    [Google Scholar]
  99. 99. 
    Hofmann U, Beyersdorf N, Weirather J, Podolskaya A, Bauersachs J et al. 2012. Activation of CD4+ T lymphocytes improves wound healing and survival after experimental myocardial infarction in mice. Circulation 125:1652–63
    [Google Scholar]
  100. 100. 
    Gröschel C, Sasse A, Röhrborn C, Monecke S, Didié M et al. 2017. T helper cells with specificity for an antigen in cardiomyocytes promote pressure overload-induced progression from hypertrophy to heart failure. Sci. Rep. 7:15998
    [Google Scholar]
  101. 101. 
    Choo EH, Lee JH, Park EH, Park HE, Jung NC et al. 2017. Infarcted myocardium-primed dendritic cells improve remodeling and cardiac function after myocardial infarction by modulating the regulatory T cell and macrophage polarization. Circulation 135:1444–57
    [Google Scholar]
  102. 102. 
    Bajpai G, Schneider C, Wong N, Bredemeyer A, Hulsmans M et al. 2018. The human heart contains distinct macrophage subsets with divergent origins and functions. Nat. Med. 24:1234–45
    [Google Scholar]
  103. 103. 
    Yang Z, Day YJ, Toufektsian MC, Xu Y, Ramos SI et al. 2006. Myocardial infarct-sparing effect of adenosine A2A receptor activation is due to its action on CD4+ T lymphocytes. Circulation 114:2056–64
    [Google Scholar]
  104. 104. 
    Yan X, Zhang H, Fan Q, Hu J, Tao R et al. 2017. Dectin-2 deficiency modulates Th1 differentiation and improves wound healing after myocardial infarction. Circ. Res. 120:1116–29
    [Google Scholar]
  105. 105. 
    Han YL, Li YL, Jia LX, Cheng JZ, Qi YF et al. 2012. Reciprocal interaction between macrophages and T cells stimulates IFN-γ and MCP-1 production in Ang II-induced cardiac inflammation and fibrosis. PLOS ONE 7:e35506
    [Google Scholar]
  106. 106. 
    Matsumoto K, Ogawa M, Suzuki J, Hirata Y, Nagai R, Isobe M 2011. Regulatory T lymphocytes attenuate myocardial infarction-induced ventricular remodeling in mice. Int. Heart J. 52:382–87
    [Google Scholar]
  107. 107. 
    Kanellakis P, Dinh TN, Agrotis A, Bobik A 2011. CD4+CD25+Foxp3+ regulatory T cells suppress cardiac fibrosis in the hypertensive heart. J. Hypertens. 29:1820–28
    [Google Scholar]
  108. 108. 
    Kvakan H, Kleinewietfeld M, Qadri F, Park JK, Fischer R et al. 2009. Regulatory T cells ameliorate angiotensin II-induced cardiac damage. Circulation 119:2904–12
    [Google Scholar]
  109. 109. 
    Dobaczewski M, Xia Y, Bujak M, Gonzalez-Quesada C, Frangogiannis NG 2010. CCR5 signaling suppresses inflammation and reduces adverse remodeling of the infarcted heart, mediating recruitment of regulatory T cells. Am. J. Pathol. 176:2177–87
    [Google Scholar]
  110. 110. 
    Zamilpa R, Kanakia R, Cigarroa J, Dai Q, Escobar GP et al. 2011. CC chemokine receptor 5 deletion impairs macrophage activation and induces adverse remodeling following myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 300:H1418–26
    [Google Scholar]
  111. 111. 
    Majmudar MD, Keliher EJ, Heidt T, Leuschner F, Truelove J et al. 2013. Monocyte-directed RNAi targeting CCR2 improves infarct healing in atherosclerosis-prone mice. Circulation 127:2038–46
    [Google Scholar]
  112. 112. 
    Heo GS, Kopecky B, Sultan D, Ou M, Feng G et al. 2019. Molecular imaging visualizes recruitment of inflammatory monocytes and macrophages to the injured heart. Circ. Res. 124:881–90
    [Google Scholar]
  113. 113. 
    Fernandez A, Vermeren M, Humphries D, Subiros-Funosas R, Barth N et al. 2017. Chemical modulation of in vivo macrophage function with subpopulation-specific fluorescent prodrug conjugates. ACS Cent. Sci. 3:995–1005
    [Google Scholar]
  114. 114. 
    Amici SA, Dong J, Guerau-de-Arellano M 2017. Molecular mechanisms modulating the phenotype of macrophages and microglia. Front. Immunol. 8:1520
    [Google Scholar]
  115. 115. 
    Suntharalingam G, Perry MR, Ward S, Brett SJ, Castello-Cortes A et al. 2006. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N. Engl. J. Med. 355:1018–28
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-021119-034412
Loading
/content/journals/10.1146/annurev-physiol-021119-034412
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error