1932

Abstract

The bone morphogenetic protein (BMP) pathway is essential for the morphogenesis of multiple organs in the digestive system. Abnormal BMP signaling has also been associated with disease initiation and progression in the gastrointestinal (GI) tract and associated organs. Recent studies using animal models, tissue organoids, and human pluripotent stem cells have significantly expanded our understanding of the roles played by BMPs in the development and homeostasis of GI organs. It is clear that BMP signaling regulates GI function and disease progression that involve stem/progenitor cells and inflammation in a tissue-specific manner. In this review we discuss these new findings with a focus on the esophagus, stomach, and intestine.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021119-034500
2020-02-10
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/physiol/82/1/annurev-physiol-021119-034500.html?itemId=/content/journals/10.1146/annurev-physiol-021119-034500&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Eblaghie MC, Reedy M, Oliver T, Mishina Y, Hogan BL 2006. Evidence that autocrine signaling through Bmpr1a regulates the proliferation, survival and morphogenetic behavior of distal lung epithelial cells. Dev. Biol. 29167–82
  2. 2. 
    Weaver M, Dunn NR, Hogan BL 2000. Bmp4 and Fgf10 play opposing roles during lung bud morphogenesis. Development 1272695–704
  3. 3. 
    Dudley AT, Lyons KM, Robertson EJ 1995. A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev 92795–807
  4. 4. 
    De Santa Barbara P, Williams J, Goldstein AM, Doyle AM, Nielsen C et al. 2005. Bone morphogenetic protein signaling pathway plays multiple roles during gastrointestinal tract development. Dev. Dyn. 234312–22
  5. 5. 
    Heldin CH, Miyazono K, ten Dijke P 1997. TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature 390465–71
  6. 6. 
    Derynck R, Zhang YE. 2003. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 425577–84
  7. 7. 
    Yu PB, Beppu H, Kawai N, Li E, Bloch KD 2005. Bone morphogenetic protein (BMP) type II receptor deletion reveals BMP ligand-specific gain of signaling in pulmonary artery smooth muscle cells. J. Biol. Chem. 28024443–50
  8. 8. 
    Saltis J. 1996. TGF-β: receptors and cell cycle arrest. Mol. Cell. Endocrinol. 116227–32
  9. 9. 
    Brown MA, Zhao Q, Baker KA, Naik C, Chen C et al. 2005. Crystal structure of BMP-9 and functional interactions with pro-region and receptors. J. Biol. Chem. 28025111–18
  10. 10. 
    David L, Mallet C, Mazerbourg S, Feige JJ, Bailly S 2007. Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells. Blood 1091953–61
  11. 11. 
    Scharpfenecker M, van Dinther M, Liu Z, van Bezooijen RL, Zhao Q et al. 2007. BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. J. Cell Sci. 120964–72
  12. 12. 
    Nishitoh H, Ichijo H, Kimura M, Matsumoto T, Makishima F et al. 1996. Identification of type I and type II serine/threonine kinase receptors for growth/differentiation factor-5. J. Biol. Chem. 27121345–52
  13. 13. 
    Yamashita H, ten Dijke P, Huylebroeck D, Sampath TK, Andries M et al. 1995. Osteogenic protein-1 binds to activin type II receptors and induces certain activin-like effects. J. Cell Biol. 130217–26
  14. 14. 
    Rosenzweig BL, Imamura T, Okadome T, Cox GN, Yamashita H et al. 1995. Cloning and characterization of a human type II receptor for bone morphogenetic proteins. PNAS 927632–36
  15. 15. 
    Chen D, Zhao M, Mundy GR 2004. Bone morphogenetic proteins. Growth Factors 22233–41
  16. 16. 
    Kawabata M, Chytil A, Moses HL 1995. Cloning of a novel type II serine/threonine kinase receptor through interaction with the type I transforming growth factor-β receptor. J. Biol. Chem. 2705625–30
  17. 17. 
    Aykul S, Martinez-Hackert E. 2016. Transforming growth factor-β family ligands can function as antagonists by competing for type II receptor binding. J. Biol. Chem. 29110792–804
  18. 18. 
    Schmierer B, Hill CS. 2007. TGFβ-SMAD signal transduction: molecular specificity and functional flexibility. Nat. Rev. Mol. Cell Biol. 8970–82
  19. 19. 
    Miyazono K, Kamiya Y, Morikawa M 2010. Bone morphogenetic protein receptors and signal transduction. J. Biochem. 14735–51
  20. 20. 
    Sieber C, Kopf J, Hiepen C, Knaus P 2009. Recent advances in BMP receptor signaling. Cytokine Growth Factor Rev 20343–55
  21. 21. 
    Shi Y, Massague J. 2003. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113685–700
  22. 22. 
    Yanagita M. 2005. BMP antagonists: their roles in development and involvement in pathophysiology. Cytokine Growth Factor Rev 16309–17
  23. 23. 
    Hata A, Lagna G, Massague J, Hemmati-Brivanlou A 1998. Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor. Genes Dev 12186–97
  24. 24. 
    Bai S, Cao X. 2002. A nuclear antagonistic mechanism of inhibitory Smads in transforming growth factor-β signaling. J. Biol. Chem. 2774176–82
  25. 25. 
    Bai S, Shi X, Yang X, Cao X 2000. Smad6 as a transcriptional corepressor. J. Biol. Chem. 2758267–70
  26. 26. 
    Hanyu A, Ishidou Y, Ebisawa T, Shimanuki T, Imamura T, Miyazono K 2001. The N domain of Smad7 is essential for specific inhibition of transforming growth factor-β signaling. J. Cell Biol. 1551017–27
  27. 27. 
    Murakami G, Watabe T, Takaoka K, Miyazono K, Imamura T 2003. Cooperative inhibition of bone morphogenetic protein signaling by Smurf1 and inhibitory Smads. Mol. Biol. Cell 142809–17
  28. 28. 
    Hill CS. 2016. Transcriptional control by the SMADs. Cold Spring Harb. Perspect. Biol. 8 https://doi.org/10.1101/cshperspect.a022079
    [Crossref]
  29. 29. 
    Yamaguchi K, Nagai S, Ninomiya-Tsuji J, Nishita M, Tamai K et al. 1999. XIAP, a cellular member of the inhibitor of apoptosis protein family, links the receptors to TAB1-TAK1 in the BMP signaling pathway. EMBO J 18179–87
  30. 30. 
    Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I et al. 1995. Identification of a member of the MAPKKK family as a potential mediator of TGF-β signal transduction. Science 2702008–11
  31. 31. 
    Shibuya H, Yamaguchi K, Shirakabe K, Tonegawa A, Gotoh Y et al. 1996. TAB1: an activator of the TAK1 MAPKKK in TGF-β signal transduction. Science 2721179–82
  32. 32. 
    Kishimoto K, Matsumoto K, Ninomiya-Tsuji J 2000. TAK1 mitogen-activated protein kinase kinase kinase is activated by autophosphorylation within its activation loop. J. Biol. Chem. 2757359–64
  33. 33. 
    Shirakabe K, Yamaguchi K, Shibuya H, Irie K, Matsuda S et al. 1997. TAK1 mediates the ceramide signaling to stress-activated protein kinase/c-Jun N-terminal kinase. J. Biol. Chem. 2728141–44
  34. 34. 
    Sano Y, Harada J, Tashiro S, Gotoh-Mandeville R, Maekawa T, Ishii S 1999. ATF-2 is a common nuclear target of Smad and TAK1 pathways in transforming growth factor-β signaling. J. Biol. Chem. 2748949–57
  35. 35. 
    Monje P, Hernández-Losa J, Lyons RJ, Castellone MD, Gutkind JS 2005. Regulation of the transcriptional activity of c-Fos by ERK. A novel role for the prolyl isomerase PIN1. J. Biol. Chem. 28035081–84
  36. 36. 
    Grapin-Botton A, Melton DA. 2000. Endoderm development: from patterning to organogenesis. Trends Genet 16124–30
  37. 37. 
    Zorn AM, Wells JM. 2009. Vertebrate endoderm development and organ formation. Annu. Rev. Cell Dev. Biol. 25221–51
  38. 38. 
    Gregorieff A, Clevers H. 2005. Wnt signaling in the intestinal epithelium: from endoderm to cancer. Genes Dev 19877–90
  39. 39. 
    Hansson M, Olesen DR, Peterslund JM, Engberg N, Kahn M et al. 2009. A late requirement for Wnt and FGF signaling during activin-induced formation of foregut endoderm from mouse embryonic stem cells. Dev. Biol. 330286–304
  40. 40. 
    Johannesson M, Ståhlberg A, Ameri J, Sand FW, Norrman K, Semb H 2009. FGF4 and retinoic acid direct differentiation of hESCs into PDX1-expressing foregut endoderm in a time- and concentration-dependent manner. PLOS ONE 4e4794
  41. 41. 
    Kim BM, Buchner G, Miletich I, Sharpe PT, Shivdasani RA 2005. The stomach mesenchymal transcription factor Barx1 specifies gastric epithelial identity through inhibition of transient Wnt signaling. Dev. Cell 8611–22
  42. 42. 
    Madison BB, Braunstein K, Kuizon E, Portman K, Qiao XT, Gumucio DL 2005. Epithelial hedgehog signals pattern the intestinal crypt-villus axis. Development 132279–89
  43. 43. 
    Roberts DJ. 2000. Molecular mechanisms of development of the gastrointestinal tract. Dev. Dyn. 219109–20
  44. 44. 
    van Es JH, van Gijn ME, Riccio O, van den Born M, Vooijs M et al. 2005. Notch/γ-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435959–63
  45. 45. 
    Sherwood RI, Chen TY, Melton DA 2009. Transcriptional dynamics of endodermal organ formation. Dev. Dyn. 23829–42
  46. 46. 
    Wells JM, Melton DA. 1999. Vertebrate endoderm development. Annu. Rev. Cell Dev. Biol. 15393–410
  47. 47. 
    Dessimoz J, Opoka R, Kordich JJ, Grapin-Botton A, Wells JM 2006. FGF signaling is necessary for establishing gut tube domains along the anterior-posterior axis in vivo. Mech. Dev. 12342–55
  48. 48. 
    van den Brink GR. 2007. Hedgehog signaling in development and homeostasis of the gastrointestinal tract. Physiol. Rev. 871343–75
  49. 49. 
    Davis S, Miura S, Hill C, Mishina Y, Klingensmith J 2004. BMP receptor IA is required in the mammalian embryo for endodermal morphogenesis and ectodermal patterning. Dev. Biol. 27047–63
  50. 50. 
    Tiso N, Filippi A, Pauls S, Bortolussi M, Argenton F 2002. BMP signalling regulates anteroposterior endoderm patterning in zebrafish. Mech. Dev. 11829–37
  51. 51. 
    McLin VA, Henning SJ, Jamrich M 2009. The role of the visceral mesoderm in the development of the gastrointestinal tract. Gastroenterology 1362074–91
  52. 52. 
    Roberts DJ, Smith DM, Goff DJ, Tabin CJ 1998. Epithelial-mesenchymal signaling during the regionalization of the chick gut. Development 1252791–801
  53. 53. 
    Roberts DJ, Johnson RL, Burke AC, Nelson CE, Morgan BA, Tabin C 1995. Sonic hedgehog is an endodermal signal inducing Bmp-4 and Hox genes during induction and regionalization of the chick hindgut. Development 1213163–74
  54. 54. 
    Smith DM, Nielsen C, Tabin CJ, Roberts DJ 2000. Roles of BMP signaling and Nkx2.5 in patterning at the chick midgut-foregut boundary. Development 1273671–81
  55. 55. 
    Torihashi S, Hattori T, Hasegawa H, Kurahashi M, Ogaeri T, Fujimoto T 2009. The expression and crucial roles of BMP signaling in development of smooth muscle progenitor cells in the mouse embryonic gut. Differentiation 77277–89
  56. 56. 
    Que J, Okubo T, Goldenring JR, Nam KT, Kurotani R et al. 2007. Multiple dose-dependent roles for Sox2 in the patterning and differentiation of anterior foregut endoderm. Development 1342521–31
  57. 57. 
    Que J, Choi M, Ziel JW, Klingensmith J, Hogan BL 2006. Morphogenesis of the trachea and esophagus: current players and new roles for noggin and Bmps. Differentiation 74422–37
  58. 58. 
    Marsh AJ, Wellesley D, Burge D, Ashton M, Browne C et al. 2000. Interstitial deletion of chromosome 17 (del(17)(q22q23.3)) confirms a link with oesophageal atresia. J. Med. Genet. 37701–4
  59. 59. 
    Li Y, Litingtung Y, Ten Dijke P, Chiang C 2007. Aberrant Bmp signaling and notochord delamination in the pathogenesis of esophageal atresia. Dev. Dyn. 236746–54
  60. 60. 
    Minoo P, Su G, Drum H, Bringas P, Kimura S 1999. Defects in tracheoesophageal and lung morphogenesis in Nkx2.1−/− mouse embryos. Dev. Biol. 20960–71
  61. 61. 
    Zhang YC, Jiang M, Kim E, Lin SJ, Liu KC et al. 2017. Development and stem cells of the esophagus. Semin. Cell Dev. Biol. 6625–35
  62. 62. 
    Jacobs IJ, Ku WY, Que J 2012. Genetic and cellular mechanisms regulating anterior foregut and esophageal development. Dev. Biol. 36954–64
  63. 63. 
    Que J. 2015. The initial establishment and epithelial morphogenesis of the esophagus: a new model of tracheal-esophageal separation and transition of simple columnar into stratified squamous epithelium in the developing esophagus. Wiley Interdiscip. Rev. Dev. Biol. 4419–30
  64. 64. 
    Zhang YC, Yang Y, Jiang M, Huang SX, Zhang WW et al. 2018. 3D modeling of esophageal development using human PSC-derived basal progenitors reveals a critical role for notch signaling. Cell Stem Cell 23516–29.e5
  65. 65. 
    Rodriguez P, Da Silva S, Oxburgh L, Wang F, Hogan BL, Que J 2010. BMP signaling in the development of the mouse esophagus and forestomach. Development 1374171–76
  66. 66. 
    Trisno SL, Philo KED, McCracken KW, Cata EM, Ruiz-Torres S et al. 2018. Esophageal organoids from human pluripotent stem cells delineate Sox2 functions during esophageal specification. Cell Stem Cell 23501–15.e7
  67. 67. 
    Jiang M, Ku WY, Zhou Z, Dellon ES, Falk GW et al. 2015. BMP-driven NRF2 activation in esophageal basal cell differentiation and eosinophilic esophagitis. J. Clin. Investig. 1251557–68
  68. 68. 
    Milano F, van Baal JW, Buttar NS, Rygiel AM, de Kort F et al. 2007. Bone morphogenetic protein 4 expressed in esophagitis induces a columnar phenotype in esophageal squamous cells. Gastroenterology 1322412–21
  69. 69. 
    Vaughan TL, Fitzgerald RC. 2015. Precision prevention of oesophageal adenocarcinoma. Nat. Rev. Gastroenterol. Hepatol. 12243–48
  70. 70. 
    Lagergren J, Lagergren P. 2013. Recent developments in esophageal adenocarcinoma. CA Cancer J. Clin. 63232–48
  71. 71. 
    Edgren G, Adami HO, Weiderpass E, Nyren O 2013. A global assessment of the oesophageal adenocarcinoma epidemic. Gut 621406–14
  72. 72. 
    Hvid-Jensen F, Pedersen L, Drewes AM, Sorensen HT, Funch-Jensen P 2011. Incidence of adenocarcinoma among patients with Barrett's esophagus. N. Engl. J. Med. 3651375–83
  73. 73. 
    McDonald SA, Lavery D, Wright NA, Jansen M 2015. Barrett oesophagus: lessons on its origins from the lesion itself. Nat. Rev. Gastroenterol. Hepatol. 1250–60
  74. 74. 
    Castillo D, Puig S, Iglesias M, Seoane A, de Bolos C et al. 2012. Activation of the BMP4 pathway and early expression of CDX2 characterize non-specialized columnar metaplasia in a human model of Barrett's esophagus. J. Gastrointest. Surg. 16227–37
  75. 75. 
    Zhou G, Sun YG, Wang HB, Wang WQ, Wang XW, Fang DC 2009. Acid and bile salt up-regulate BMP4 expression in human esophageal epithelium cells. Scand. J. Gastroenterol. 44926–32
  76. 76. 
    Wang DH, Clemons NJ, Miyashita T, Dupuy AJ, Zhang W et al. 2010. Aberrant epithelial-mesenchymal hedgehog signaling characterizes Barrett's metaplasia. Gastroenterology 1381810–22
  77. 77. 
    van Baal JWPM, Verbeek RE, Bus P, Fassan M, Souza RF et al. 2013. microRNA-145 in Barrett's oesophagus: regulating BMP4 signalling via GATA6. Gut 62664–75
  78. 78. 
    Mari L, Milano F, Parikh K, Straub D, Everts V et al. 2014. A pSMAD/CDX2 complex is essential for the intestinalization of epithelial metaplasia. Cell Rep 71197–210
  79. 79. 
    Lee Y, Urbanska AM, Hayakawa Y, Wang H, Au AS et al. 2017. Gastrin stimulates a cholecystokinin-2-receptor-expressing cardia progenitor cell and promotes progression of Barrett's-like esophagus. Oncotarget 8203–14
  80. 80. 
    Quante M, Bhagat G, Abrams JA, Marache F, Good P et al. 2012. Bile acid and inflammation activate gastric cardia stem cells in a mouse model of Barrett-like metaplasia. Cancer Cell 2136–51
  81. 81. 
    Jiang M, Li HY, Zhang YC, Yang Y, Lu R et al. 2017. Transitional basal cells at the squamous-columnar junction generate Barrett's oesophagus. Nature 550529–33
  82. 82. 
    Maloum F, Allaire JM, Gagné-Sansfaçon J, Roy E, Belleville K et al. 2011. Epithelial BMP signaling is required for proper specification of epithelial cell lineages and gastric endocrine cells. Am. J. Physiol. Gastrointest. Liver Physiol. 300G1065–79
  83. 83. 
    Nam KT, O'Neal R, Lee YS, Lee YC, Coffey RJ, Goldenring JR 2012. Gastric tumor development in Smad3-deficient mice initiates from forestomach/glandular transition zone along the lesser curvature. Lab. Investig. 92883–95
  84. 84. 
    Wang K, Johnson A, Ali SM, Klempner SJ, Bekaii-Saab T et al. 2015. Comprehensive genomic profiling of advanced esophageal squamous cell carcinomas and esophageal adenocarcinomas reveals similarities and differences. Oncologist 201132–39
  85. 85. 
    Dulak AM, Stojanov P, Peng S, Lawrence MS, Fox C et al. 2013. Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nat. Genet. 45478–86
  86. 86. 
    Raida M, Sarbia M, Clement JH, Adam S, Gabbert HE, Hoffken K 1999. Expression, regulation and clinical significance of bone morphogenetic protein 6 in esophageal squamous-cell carcinoma. Int. J. Cancer 8338–44
  87. 87. 
    Lau MC, Ng KY, Wong TL, Tong M, Lee TK et al. 2017. FSTL1 promotes metastasis and chemoresistance in esophageal squamous cell carcinoma through NFκB-BMP signaling cross-talk. Cancer Res 775886–99
  88. 88. 
    Kolterud A, Grosse AS, Zacharias WJ, Walton KD, Kretovich KE et al. 2009. Paracrine Hedgehog signaling in stomach and intestine: new roles for Hedgehog in gastrointestinal patterning. Gastroenterology 137618–28
  89. 89. 
    Spencer-Dene B, Sala FG, Bellusci S, Gschmeissner S, Stamp G, Dickson C 2006. Stomach development is dependent on fibroblast growth factor 10/fibroblast growth factor receptor 2b-mediated signaling. Gastroenterology 1301233–44
  90. 90. 
    Shinohara M, Mao M, Keeley TM, El-Zaatari M, Lee HJ et al. 2010. Bone morphogenetic protein signaling regulates gastric epithelial cell development and proliferation in mice. Gastroenterology 1392050–60.e2
  91. 91. 
    Demitrack ES, Gifford GB, Keeley TM, Horita N, Todisco A et al. 2017. NOTCH1 and NOTCH2 regulate epithelial cell proliferation in mouse and human gastric corpus. Am. J. Physiol. Gastrointest. Liver Physiol. 312G133–44
  92. 92. 
    Smith DM, Grasty RC, Theodosiou NA, Tabin CJ, Nascone-Yoder NM 2000. Evolutionary relationships between the amphibian, avian, and mammalian stomachs. Evol. Dev. 2348–59
  93. 93. 
    Moniot B, Biau S, Faure S, Nielsen CM, Berta P et al. 2004. SOX9 specifies the pyloric sphincter epithelium through mesenchymal-epithelial signals. Development 1313795–804
  94. 94. 
    Smith DM, Tabin CJ. 1999. BMP signalling specifies the pyloric sphincter. Nature 402748–49
  95. 95. 
    Phillips RJ, Powley TL. 2007. Innervation of the gastrointestinal tract: patterns of aging. Auton. Neurosci. 1361–19
  96. 96. 
    Faure S, McKey J, Sagnol S, de Santa Barbara P 2015. Enteric neural crest cells regulate vertebrate stomach patterning and differentiation. Development 142331–42
  97. 97. 
    Goldenring JR, Nomura S. 2006. Differentiation of the gastric mucosa III. Animal models of oxyntic atrophy and metaplasia. Am. J. Physiol. Gastrointest. Liver Physiol. 291G999–1004
  98. 98. 
    Yiangou L, Ross ADB, Goh KJ, Vallier L 2018. Human pluripotent stem cell-derived endoderm for modeling development and clinical applications. Cell Stem Cell 22485–99
  99. 99. 
    McCracken KW, Cata EM, Crawford CM, Sinagoga KL, Schumacher M et al. 2014. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature 516400–4
  100. 100. 
    Maric I, Poljak L, Zoricic S, Bobinac D, Bosukonda D et al. 2003. Bone morphogenetic protein-7 reduces the severity of colon tissue damage and accelerates the healing of inflammatory bowel disease in rats. J. Cell Physiol. 196258–64
  101. 101. 
    Blessing M, Nanney LB, King LE, Hogan BL 1995. Chemical skin carcinogenesis is prevented in mice by the induced expression of a TGF-β related transgene. Teratogenes. Carcinogenes. Mutagenes. 1511–21
  102. 102. 
    Maric I, Kucic N, Turk Wensveen T, Smoljan I, Grahovac B et al. 2012. BMP signaling in rats with TNBS-induced colitis following BMP7 therapy. Am. J. Physiol. Gastrointest. Liver Physiol. 302G1151–62
  103. 103. 
    Wroblewski LE, Peek RM Jr., Wilson KT 2010. Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clin. Microbiol. Rev. 23713–39
  104. 104. 
    Bleuming SA, Kodach LL, Garcia Leon MJ, Richel DJ, Peppelenbosch MP et al. 2006. Altered bone morphogenetic protein signalling in the Helicobacter pylori-infected stomach. J. Pathol. 209190–97
  105. 105. 
    Takabayashi H, Shinohara M, Mao M, Phaosawasdi P, El-Zaatari M et al. 2014. Anti-inflammatory activity of bone morphogenetic protein signaling pathways in stomachs of mice. Gastroenterology 147396–406.e7
  106. 106. 
    Nagasako T, Sugiyama T, Mizushima T, Miura Y, Kato M, Asaka M 2003. Up-regulated Smad5 mediates apoptosis of gastric epithelial cells induced by Helicobacter pylori infection. J. Biol. Chem. 2784821–25
  107. 107. 
    Ye W, Takabayashi H, Yang Y, Mao M, Hibdon ES et al. 2018. Regulation of gastric Lgr5+ve cell homeostasis by bone morphogenetic protein (BMP) signaling and inflammatory stimuli. Cell. Mol. Gastroenterol. Hepatol. 5523–38
  108. 108. 
    Barros R, Pereira B, Duluc I, Azevedo M, Mendes N et al. 2008. Key elements of the BMP/SMAD pathway co-localize with CDX2 in intestinal metaplasia and regulate CDX2 expression in human gastric cell lines. J. Pathol. 215411–20
  109. 109. 
    Camilo V, Barros R, Sousa S, Magalhães AM, Lopes T et al. 2012. Helicobacter pylori and the BMP pathway regulate CDX2 and SOX2 expression in gastric cells. Carcinogenesis 331985–92
  110. 110. 
    Silberg DG, Sullivan J, Kang E, Swain GP, Moffett J et al. 2002. Cdx2 ectopic expression induces gastric intestinal metaplasia in transgenic mice. Gastroenterology 122689–96
  111. 111. 
    Mutoh H, Hakamata Y, Sato K, Eda A, Yanaka I et al. 2002. Conversion of gastric mucosa to intestinal metaplasia in Cdx2-expressing transgenic mice. Biochem. Biophys. Res. Commun. 294470–79
  112. 112. 
    Mutoh H, Sakurai S, Satoh K, Tamada K, Kita H et al. 2004. Development of gastric carcinoma from intestinal metaplasia in Cdx2-transgenic mice. Cancer Res 647740–47
  113. 113. 
    Halldórsdóttir AM, Sigurdardóttrir M, Jónasson JG, Oddsdóttir M, Magnússon J et al. 2003. Spasmolytic polypeptide-expressing metaplasia (SPEM) associated with gastric cancer in Iceland. Dig. Dis. Sci. 48431–41
  114. 114. 
    Goldenring JR, Nam KT, Wang TC, Mills JC, Wright NA 2010. Spasmolytic polypeptide-expressing metaplasia and intestinal metaplasia: time for reevaluation of metaplasias and the origins of gastric cancer. Gastroenterology 1382207–10
  115. 115. 
    Cancer Genome Atlas Res. Netw 2014. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513202–9
  116. 116. 
    Bleuming SA, He XC, Kodach LL, Hardwick JC, Koopman FA et al. 2007. Bone morphogenetic protein signaling suppresses tumorigenesis at gastric epithelial transition zones in mice. Cancer Res 678149–55
  117. 117. 
    Huh WJ, Mysorekar IU, Mills JC 2010. Inducible activation of Cre recombinase in adult mice causes gastric epithelial atrophy, metaplasia, and regenerative changes in the absence of “floxed” alleles. Am. J. Physiol. Gastrointest. Liver Physiol. 299G368–80
  118. 118. 
    Wen XZ, Miyake S, Akiyama Y, Yuasa Y 2004. BMP-2 modulates the proliferation and differentiation of normal and cancerous gastric cells. Biochem. Biophys. Res. Commun. 316100–6
  119. 119. 
    Wen XZ, Akiyama Y, Baylin SB, Yuasa Y 2006. Frequent epigenetic silencing of the bone morphogenetic protein 2 gene through methylation in gastric carcinomas. Oncogene 252666–73
  120. 120. 
    Park Y, Kim JW, Kim DS, Kim EB, Park SJ et al. 2008. The Bone Morphogenesis Protein-2 (BMP-2) is associated with progression to metastatic disease in gastric cancer. Cancer Res. Treat. 40127–32
  121. 121. 
    Kang MH, Oh SC, Lee HJ, Kang HN, Kim JL et al. 2011. Metastatic function of BMP-2 in gastric cancer cells: the role of PI3K/AKT, MAPK, the NF-κB pathway, and MMP-9 expression. Exp. Cell Res. 3171746–62
  122. 122. 
    Sier CF, Kubben FJ, Ganesh S, Heerding MM, Griffioen G et al. 1996. Tissue levels of matrix metalloproteinases MMP-2 and MMP-9 are related to the overall survival of patients with gastric carcinoma. Br. J. Cancer 74413–17
  123. 123. 
    Walton KD, Whidden M, Kolterud A, Shoffner SK, Czerwinski MJ et al. 2016. Villification in the mouse: Bmp signals control intestinal villus patterning. Development 143427–36
  124. 124. 
    Karlsson L, Lindahl P, Heath JK, Betsholtz C 2000. Abnormal gastrointestinal development in PDGF-A and PDGFR-(alpha) deficient mice implicates a novel mesenchymal structure with putative instructive properties in villus morphogenesis. Development 1273457–66
  125. 125. 
    Walton KD, Kolterud A, Czerwinski MJ, Bell MJ, Prakash A et al. 2012. Hedgehog-responsive mesenchymal clusters direct patterning and emergence of intestinal villi. PNAS 10915817–22
  126. 126. 
    Ramalho-Santos M, Melton DA, McMahon AP 2000. Hedgehog signals regulate multiple aspects of gastrointestinal development. Development 1272763–72
  127. 127. 
    Haramis AP, Begthel H, van den Born M, van Es J, Jonkheer S et al. 2004. De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science 3031684–86
  128. 128. 
    Shyer AE, Huycke TR, Lee C, Mahadevan L, Tabin CJ 2015. Bending gradients: how the intestinal stem cell gets its home. Cell 161569–80
  129. 129. 
    Savin T, Kurpios NA, Shyer AE, Florescu P, Liang H et al. 2011. On the growth and form of the gut. Nature 47657–62
  130. 130. 
    Nerurkar NL, Mahadevan L, Tabin CJ 2017. BMP signaling controls buckling forces to modulate looping morphogenesis of the gut. PNAS 1142277–82
  131. 131. 
    Auclair BA, Benoit YD, Rivard N, Mishina Y, Perreault N 2007. Bone morphogenetic protein signaling is essential for terminal differentiation of the intestinal secretory cell lineage. Gastroenterology 133887–96
  132. 132. 
    Jenny M, Uhl C, Roche C, Duluc I, Guillermin V et al. 2002. Neurogenin3 is differentially required for endocrine cell fate specification in the intestinal and gastric epithelium. EMBO J 216338–47
  133. 133. 
    Beumer J, Artegiani B, Post Y, Reimann F, Gribble F et al. 2018. Enteroendocrine cells switch hormone expression along the crypt-to-villus BMP signalling gradient. Nat. Cell Biol. 20909–16
  134. 134. 
    Múnera JO, Sundaram N, Rankin SA, Hill D, Watson C et al. 2017. Differentiation of human pluripotent stem cells into colonic organoids via transient activation of BMP signaling. Cell Stem Cell 2151–64.e6
  135. 135. 
    Sweet K, Willis J, Zhou XP, Gallione C, Sawada T et al. 2005. Molecular classification of patients with unexplained hamartomatous and hyperplastic polyposis. JAMA 2942465–73
  136. 136. 
    Chow E, Macrae F. 2005. A review of juvenile polyposis syndrome. J. Gastroenterol. Hepatol. 201634–40
  137. 137. 
    Howe JR, Bair JL, Sayed MG, Anderson ME, Mitros FA et al. 2001. Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis. Nat. Genet. 28184–87
  138. 138. 
    He XC, Zhang JW, Tong WG, Tawfik O, Ross J et al. 2004. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-β-catenin signaling. Nat. Genet. 361117–21
  139. 139. 
    Batts LE, Polk DB, Dubois RN, Kulessa H 2006. Bmp signaling is required for intestinal growth and morphogenesis. Dev. Dyn. 2351563–70
  140. 140. 
    Kuhn R, Schwenk F, Aguet M, Rajewsky K 1995. Inducible gene targeting in mice. Science 2691427–29
  141. 141. 
    Hahn JN, Falck VG, Jirik FR 2011. Smad4 deficiency in T cells leads to the Th17-associated development of premalignant gastroduodenal lesions in mice. J. Clin. Investig. 1214030–42
  142. 142. 
    Qi Z, Li Y, Zhao B, Xu C, Liu Y et al. 2017. BMP restricts stemness of intestinal Lgr5+ stem cells by directly suppressing their signature genes. Nat. Commun. 813824
  143. 143. 
    Allaire JM, Roy SA, Ouellet C, Lemieux E, Jones C et al. 2016. Bmp signaling in colonic mesenchyme regulates stromal microenvironment and protects from polyposis initiation. Int. J. Cancer 1382700–12
  144. 144. 
    Shoshkes-Carmel M, Wang YJ, Wangensteen KJ, Toth B, Kondo A et al. 2018. Subepithelial telocytes are an important source of Wnts that supports intestinal crypts. Nature 557242–46
  145. 145. 
    Alberici P, Jagmohan-Changur S, De Pater E, Van Der Valk M, Smits R et al. 2006. Smad4 haploinsufficiency in mouse models for intestinal cancer. Oncogene 251841–51
  146. 146. 
    Voorneveld PW, Kodach LL, Jacobs RJ, Liv N, Zonnevylle AC et al. 2014. Loss of SMAD4 alters BMP signaling to promote colorectal cancer cell metastasis via activation of Rho and ROCK. Gastroenterology 147196–208.e13
  147. 147. 
    Zhang Y, Chen X, Qiao M, Zhang BQ, Wang N et al. 2014. Bone morphogenetic protein 2 inhibits the proliferation and growth of human colorectal cancer cells. Oncol. Rep. 321013–20
  148. 148. 
    Lorente-Trigos A, Varnat F, Melotti A, Ruiz i Altaba A 2010. BMP signaling promotes the growth of primary human colon carcinomas in vivo. J. Mol. Cell Biol 2318–32
  149. 149. 
    Whissell G, Montagni E, Martinelli P, Hernando-Momblona X, Sevillano M et al. 2014. The transcription factor GATA6 enables self-renewal of colon adenoma stem cells by repressing BMP gene expression. Nat. Cell Biol. 16695–707
/content/journals/10.1146/annurev-physiol-021119-034500
Loading
/content/journals/10.1146/annurev-physiol-021119-034500
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error