1932

Abstract

The cardinal properties of adult tissue stem cells are self-renewal and the ability to generate diverse resident cell types. The daily losses of terminally differentiated intestinal, skin, and blood cells require “professional” stem cells to produce replacements. This occurs by continuous expansion of stem cells and their immediate progeny, followed by coordinated activation of divergent transcriptional programs to generate stable cells with diverse functions. Other tissues turn over slowly, if at all, and vary widely in strategies for facultative stem cell activity or interconversion among mature resident cell types (transdifferentiation). Cell fate potential is programmed in tissue-specific configurations of chromatin, which restrict the complement of available genes and regulatory elements, hence allowing specific cell types to arise. Using as a model the transcriptional and chromatin basis of cell differentiation and dedifferentiation in intestinal crypts, we discuss here how self-renewing and other tissues execute homeostatic and injury-responsive stem cell activity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021119-034520
2021-02-10
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/physiol/83/1/annurev-physiol-021119-034520.html?itemId=/content/journals/10.1146/annurev-physiol-021119-034520&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Post Y, Clevers H. 2019. Defining adult stem cell function at its simplest: the ability to replace lost cells through mitosis. Cell Stem Cell 25:174–83
    [Google Scholar]
  2. 2. 
    Cheng H, Leblond CP. 1974. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian theory of the origin of the four epithelial cell types. Am. J. Anat. 141:537–61
    [Google Scholar]
  3. 3. 
    Cairns J. 1975. Mutation selection and the natural history of cancer. Nature 255:197–200
    [Google Scholar]
  4. 4. 
    Potten CS, Hume WJ, Reid P, Cairns J 1978. The segregation of DNA in epithelial stem cells. Cell 15:899–906
    [Google Scholar]
  5. 5. 
    Orkin SH, Zon LI. 2008. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132:631–44
    [Google Scholar]
  6. 6. 
    Becker AJ, McCulloch CE, Till JE 1963. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 197:452–54
    [Google Scholar]
  7. 7. 
    Wu AM, Siminovitch L, Till JE, McCulloch EA 1968. Evidence for a relationship between mouse hemopoietic stem cells and cells forming colonies in culture. PNAS 59:1209–15
    [Google Scholar]
  8. 8. 
    Spangrude GJ, Heimfeld S, Weissman IL 1988. Purification and characterization of mouse hematopoietic stem cells. Science 241:58–62
    [Google Scholar]
  9. 9. 
    Blanpain C, Simons BD. 2013. Unravelling stem cell dynamics by lineage tracing. Nat. Rev. Mol. Cell Biol. 14:489–502
    [Google Scholar]
  10. 10. 
    Barker N, van Es JH, Kuipers J, Kujala P, van den Born M et al. 2007. Identification of stem cells in small intestine and colon by marker gene Lgr5. . Nature 449:1003–7
    [Google Scholar]
  11. 11. 
    Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N et al. 2009. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:262–65
    [Google Scholar]
  12. 12. 
    Sangiorgi E, Capecchi MR. 2008. Bmi1 is expressed in vivo in intestinal stem cells. Nat. Genet. 40:915–20
    [Google Scholar]
  13. 13. 
    Yan KS, Chia LA, Li X, Ootani A, Su J et al. 2012. The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations. PNAS 109:466–71
    [Google Scholar]
  14. 14. 
    Montgomery RK, Carlone DL, Richmond CA, Farilla L, Kranendonk ME et al. 2011. Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal stem cells. PNAS 108:179–84
    [Google Scholar]
  15. 15. 
    Takeda N, Jain R, LeBoeuf MR, Wang Q, Lu MM, Epstein JA 2011. Interconversion between intestinal stem cell populations in distinct niches. Science 334:1420–24
    [Google Scholar]
  16. 16. 
    Powell AE, Wang Y, Li Y, Poulin EJ, Means AL et al. 2012. The pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell 149:146–58
    [Google Scholar]
  17. 17. 
    Ayyaz A, Kumar S, Sangiorgi B, Ghoshal B, Gosio J et al. 2019. Single-cell transcriptomes of the regenerating intestine reveal a revival stem cell. Nature 569:121–25
    [Google Scholar]
  18. 18. 
    Tian H, Biehs B, Warming S, Leong KG, Rangell L et al. 2011. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature 478:255–59
    [Google Scholar]
  19. 19. 
    Buczacki SJ, Zecchini HI, Nicholson AM, Russell R, Vermeulen L et al. 2013. Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature 495:65–69
    [Google Scholar]
  20. 20. 
    van Es JH, Sato T, van de Wetering M, Lyubimova A, Yee Nee AN et al. 2012. Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat. Cell Biol. 14:1099–104
    [Google Scholar]
  21. 21. 
    Yan KS, Gevaert O, Zheng GXY, Anchang B, Probert CS et al. 2017. Intestinal enteroendocrine lineage cells possess homeostatic and injury-inducible stem cell activity. Cell Stem Cell 21:78–90
    [Google Scholar]
  22. 22. 
    Yu S, Tong K, Zhao Y, Balasubramanian I, Yap GS et al. 2018. Paneth cell multipotency induced by Notch activation following injury. Cell Stem Cell 23:46–59.e5
    [Google Scholar]
  23. 23. 
    Tetteh PW, Basak O, Farin HF, Wiebrands K, Kretzschmar K et al. 2016. Replacement of lost Lgr5-positive stem cells through plasticity of their enterocyte-lineage daughters. Cell Stem Cell 18:203–13
    [Google Scholar]
  24. 24. 
    Jadhav U, Saxena M, O'Neill NK, Saadatpour A, Yuan GC et al. 2017. Dynamic reorganization of chromatin accessibility signatures during dedifferentiation of secretory precursors into Lgr5+ intestinal stem cells. Cell Stem Cell 21:65–77
    [Google Scholar]
  25. 25. 
    Munoz J, Stange DE, Schepers AG, van de Wetering M, Koo BK et al. 2012. The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent ‘+4’ cell markers. EMBO J 31:3079–91
    [Google Scholar]
  26. 26. 
    Murata K, Jadhav U, Madha S, van Es J, Dean J et al. 2020. Ascl2-dependent cell dedifferentiation drives regeneration of ablated intestinal stem cells. Cell Stem Cell 26:377–90.e6
    [Google Scholar]
  27. 27. 
    Morrison SJ, Weissman IL. 1994. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1:661–73
    [Google Scholar]
  28. 28. 
    Akashi K, Traver D, Miyamoto T, Weissman IL 2000. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404:193–97
    [Google Scholar]
  29. 29. 
    Adolfsson J, Mansson R, Buza-Vidas N, Hultquist A, Liuba K et al. 2005. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell 121:295–306
    [Google Scholar]
  30. 30. 
    Rodriguez-Fraticelli AE, Wolock SL, Weinreb CS, Panero R, Patel SH et al. 2018. Clonal analysis of lineage fate in native haematopoiesis. Nature 553:212–16
    [Google Scholar]
  31. 31. 
    Sun J, Ramos A, Chapman B, Johnnidis JB, Le L et al. 2014. Clonal dynamics of native haematopoiesis. Nature 514:322–27
    [Google Scholar]
  32. 32. 
    Lin S, Nascimento EM, Gajera CR, Chen L, Neuhofer P et al. 2018. Distributed hepatocytes expressing telomerase repopulate the liver in homeostasis and injury. Nature 556:244–48
    [Google Scholar]
  33. 33. 
    Zajicek G, Oren R, Weinreb M Jr 1985. The streaming liver. Liver 5:293–300
    [Google Scholar]
  34. 34. 
    Miyajima A, Tanaka M, Itoh T 2014. Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Cell Stem Cell 14:561–74
    [Google Scholar]
  35. 35. 
    Furuyama K, Kawaguchi Y, Akiyama H, Horiguchi M, Kodama S et al. 2011. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat. Genet. 43:34–41
    [Google Scholar]
  36. 36. 
    Chen F, Jimenez RJ, Sharma K, Luu HY, Hsu BY et al. 2020. Broad distribution of hepatocyte proliferation in liver homeostasis and regeneration. Cell Stem Cell 26:27–33.e4
    [Google Scholar]
  37. 37. 
    Matsumoto T, Wakefield L, Tarlow BD, Grompe M 2020. In vivo lineage tracing of polyploid hepatocytes reveals extensive proliferation during liver regeneration. Cell Stem Cell 26:34–47.e3
    [Google Scholar]
  38. 38. 
    Tarlow BD, Pelz C, Naugler WE, Wakefield L, Wilson EM et al. 2014. Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes. Cell Stem Cell 15:605–18
    [Google Scholar]
  39. 39. 
    Yanger K, Zong Y, Maggs LR, Shapira SN, Maddipati R et al. 2013. Robust cellular reprogramming occurs spontaneously during liver regeneration. Genes Dev 27:719–24
    [Google Scholar]
  40. 40. 
    Raven A, Lu WY, Man TY, Ferreira-Gonzalez S, O'Duibhir E et al. 2017. Cholangiocytes act as facultative liver stem cells during impaired hepatocyte regeneration. Nature 547:350–54
    [Google Scholar]
  41. 41. 
    Deng X, Zhang X, Li W, Feng RX, Li L et al. 2018. Chronic liver injury induces conversion of biliary epithelial cells into hepatocytes. Cell Stem Cell 23:114–22.e3
    [Google Scholar]
  42. 42. 
    Michalopoulos GK, Barua L, Bowen WC 2005. Transdifferentiation of rat hepatocytes into biliary cells after bile duct ligation and toxic biliary injury. Hepatology 41:535–44
    [Google Scholar]
  43. 43. 
    Basil MC, Morrisey EE. 2020. Lung regeneration: a tale of mice and men. Semin. Cell Dev. Biol. 100:88–100
    [Google Scholar]
  44. 44. 
    Blanpain C, Fuchs E. 2014. Plasticity of epithelial stem cells in tissue regeneration. Science 344:1242281
    [Google Scholar]
  45. 45. 
    Kopp JL, Grompe M, Sander M 2016. Stem cells versus plasticity in liver and pancreas regeneration. Nat. Cell Biol. 18:238–45
    [Google Scholar]
  46. 46. 
    Basil MC, Katzen J, Engler AE, Guo M, Herriges MJ et al. 2020. The cellular and physiological basis for lung repair and regeneration: past, present, and future. Cell Stem Cell 26:482–502
    [Google Scholar]
  47. 47. 
    Leach JP, Morrisey EE. 2018. Repairing the lungs one breath at a time: How dedicated or facultative are you. Genes Dev 32:1461–71
    [Google Scholar]
  48. 48. 
    Sacco A, Doyonnas R, Kraft P, Vitorovic S, Blau HM 2008. Self-renewal and expansion of single transplanted muscle stem cells. Nature 456:502–6
    [Google Scholar]
  49. 49. 
    Giordani L, Parisi A, Le Grand F 2018. Satellite cell self-renewal. Curr. Top. Dev. Biol. 126:177–203
    [Google Scholar]
  50. 50. 
    van Es JH, van Gijn ME, Riccio O, van den Born M, Vooijs M et al. 2005. Notch/γ-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435:959–63
    [Google Scholar]
  51. 51. 
    Fre S, Huyghe M, Mourikis P, Robine S, Louvard D, Artavanis-Tsakonas S 2005. Notch signals control the fate of immature progenitor cells in the intestine. Nature 435:964–68
    [Google Scholar]
  52. 52. 
    Kim TH, Shivdasani RA. 2011. Genetic evidence that intestinal Notch functions vary regionally and operate through a common mechanism of Math1 repression. J. Biol. Chem. 286:11427–33
    [Google Scholar]
  53. 53. 
    Pellegrinet L, Rodilla V, Liu Z, Chen S, Koch U et al. 2011. Dll1- and dll4-mediated notch signaling are required for homeostasis of intestinal stem cells. Gastroenterology 140:1230–40.e7
    [Google Scholar]
  54. 54. 
    Yang Q, Bermingham NA, Finegold MJ, Zoghbi HY 2001. Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Science 294:2155–58
    [Google Scholar]
  55. 55. 
    Fre S, Hannezo E, Sale S, Huyghe M, Lafkas D et al. 2011. Notch lineages and activity in intestinal stem cells determined by a new set of knock-in mice. PLOS ONE 6:e25785
    [Google Scholar]
  56. 56. 
    Artavanis-Tsakonas S, Rand MD, Lake RJ 1999. Notch signaling: cell fate control and signal integration in development. Science 284:770–76
    [Google Scholar]
  57. 57. 
    Kim TH, Li F, Ferreiro-Neira I, Ho LL, Luyten A et al. 2014. Broadly permissive intestinal chromatin underlies lateral inhibition and cell plasticity. Nature 506:511–15
    [Google Scholar]
  58. 58. 
    Kim TH, Saadatpour A, Guo G, Saxena M, Cavazza A et al. 2016. Single-cell transcript profiles reveal multilineage priming in early progenitors derived from Lgr5+ intestinal stem cells. Cell Rep 16:2053–60
    [Google Scholar]
  59. 59. 
    Ritsma L, Ellenbroek SIJ, Zomer A, Snippert HJ, de Sauvage FJ et al. 2014. Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging. Nature 507:362–65
    [Google Scholar]
  60. 60. 
    He XC, Zhang J, Tong WG, Tawfik O, Ross J et al. 2004. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-β-catenin signaling. Nat. Genet. 36:1117–21
    [Google Scholar]
  61. 61. 
    McCarthy N, Manieri E, Storm EE, Saadatpour A, Luoma AM et al. 2020. Distinct mesenchymal cell populations generate the essential intestinal BMP signaling gradient. Cell Stem Cell 26:391–402.e5
    [Google Scholar]
  62. 62. 
    Haramis AP, Begthel H, van den Born M, van Es J, Jonkheer S et al. 2004. De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science 303:1684–86
    [Google Scholar]
  63. 63. 
    Batts LE, Polk DB, Dubois RN, Kulessa H 2006. Bmp signaling is required for intestinal growth and morphogenesis. Dev. Dyn. 235:1563–70
    [Google Scholar]
  64. 64. 
    Schaub JR, Huppert KA, Kurial SNT, Hsu BY, Cast AE et al. 2018. De novo formation of the biliary system by TGFβ-mediated hepatocyte transdifferentiation. Nature 557:247–51
    [Google Scholar]
  65. 65. 
    Kim TH, Shivdasani RA. 2011. Notch signaling in stomach epithelial stem cell homeostasis. J. Exp. Med. 208:677–88
    [Google Scholar]
  66. 66. 
    Mori M, Mahoney JE, Stupnikov MR, Paez-Cortez JR, Szymaniak AD et al. 2015. Notch3-Jagged signaling controls the pool of undifferentiated airway progenitors. Development 142:258–67
    [Google Scholar]
  67. 67. 
    Plasschaert LW, Zilionis R, Choo-Wing R, Savova V, Knehr J et al. 2018. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature 560:377–81
    [Google Scholar]
  68. 68. 
    Logan GJ, Wright MC, Kubicki AC, Maricich SM 2018. Notch pathway signaling in the skin antagonizes Merkel cell development. Dev. Biol. 434:207–14
    [Google Scholar]
  69. 69. 
    Shroyer NF, Wallis D, Venken KJ, Bellen HJ, Zoghbi HY 2005. Gfi1 functions downstream of Math1 to control intestinal secretory cell subtype allocation and differentiation. Genes Dev 19:2412–17
    [Google Scholar]
  70. 70. 
    Jenny M, Uhl C, Roche C, Duluc I, Guillermin V et al. 2002. Neurogenin3 is differentially required for endocrine cell fate specification in the intestinal and gastric epithelium. EMBO J 21:6338–47
    [Google Scholar]
  71. 71. 
    Deleted in proof
  72. 72. 
    Hu M, Krause D, Greaves M, Sharkis S, Dexter M et al. 1997. Multilineage gene expression precedes commitment in the hemopoietic system. Genes Dev 11:774–85
    [Google Scholar]
  73. 73. 
    Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A et al. 2009. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459:108–12
    [Google Scholar]
  74. 74. 
    Zaret KS, Mango SE. 2016. Pioneer transcription factors, chromatin dynamics, and cell fate control. Curr. Opin. Genet. Dev. 37:76–81
    [Google Scholar]
  75. 75. 
    Stadler MB, Murr R, Burger L, Ivanek R, Lienert F et al. 2011. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480:490–95
    [Google Scholar]
  76. 76. 
    Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ 2013. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10:1213–18
    [Google Scholar]
  77. 77. 
    Barski A, Cuddapah S, Cui K, Roh TY, Schones DE et al. 2007. High-resolution profiling of histone methylations in the human genome. Cell 129:823–37
    [Google Scholar]
  78. 78. 
    Kazakevych J, Sayols S, Messner B, Krienke C, Soshnikova N 2017. Dynamic changes in chromatin states during specification and differentiation of adult intestinal stem cells. Nucleic Acids Res 45:5770–84
    [Google Scholar]
  79. 79. 
    Kaaij LT, van de Wetering M, Fang F, Decato B, Molaro A et al. 2013. DNA methylation dynamics during intestinal stem cell differentiation reveals enhancers driving gene expression in the villus. Genome Biol 14:R50
    [Google Scholar]
  80. 80. 
    Sheaffer KL, Kim R, Aoki R, Elliott EN, Schug J et al. 2014. DNA methylation is required for the control of stem cell differentiation in the small intestine. Genes Dev 28:652–64
    [Google Scholar]
  81. 81. 
    Elliott EN, Sheaffer KL, Kaestner KH 2016. The ‘de novo’ DNA methyltransferase Dnmt3b compensates the Dnmt1-deficient intestinal epithelium. eLife 5:e12975
    [Google Scholar]
  82. 82. 
    Raab JR, Tulasi DY, Wager KE, Morowitz JM, Magness ST, Gracz AD 2020. Quantitative classification of chromatin dynamics reveals regulators of intestinal stem cell differentiation. Development 147:dev181966
    [Google Scholar]
  83. 83. 
    Rickels R, Herz HM, Sze CC, Cao K, Morgan MA et al. 2017. Histone H3K4 monomethylation catalyzed by Trr and mammalian COMPASS-like proteins at enhancers is dispensable for development and viability. Nat. Genet. 49:1647–53
    [Google Scholar]
  84. 84. 
    Dorighi KM, Swigut T, Henriques T, Bhanu NV, Scruggs BS et al. 2017. Mll3 and Mll4 facilitate enhancer RNA synthesis and transcription from promoters independently of H3K4 monomethylation. Mol. Cell 66:568–76.e4
    [Google Scholar]
  85. 85. 
    Lara-Astiaso D, Weiner A, Lorenzo-Vivas E, Zaretsky I, Jaitin DA et al. 2014. Chromatin state dynamics during blood formation. Science 345:943–49
    [Google Scholar]
  86. 86. 
    Luyten A, Zang C, Liu XS, Shivdasani RA 2014. Active enhancers are delineated de novo during hematopoiesis, with limited lineage fidelity among specified primary blood cells. Genes Dev 28:1827–39
    [Google Scholar]
  87. 87. 
    Robinson DCL, Dilworth FJ. 2018. Epigenetic regulation of adult myogenesis. Curr. Top. Dev. Biol. 126:235–84
    [Google Scholar]
  88. 88. 
    Waddington CH. 1957. The Strategy of the Genes London: George Allen & Unwin
  89. 89. 
    Nusse YM, Savage AK, Marangoni P, Rosendahl-Huber AKM, Landman TA et al. 2018. Parasitic helminths induce fetal-like reversion in the intestinal stem cell niche. Nature 559:109–13
    [Google Scholar]
  90. 90. 
    Yui S, Azzolin L, Maimets M, Pedersen MT, Fordham RP et al. 2018. YAP/TAZ-dependent reprogramming of colonic epithelium links ECM remodeling to tissue regeneration. Cell Stem Cell 22:35–49.e7
    [Google Scholar]
  91. 91. 
    Kaji K, Factor VM, Andersen JB, Durkin ME, Tomokuni A et al. 2016. DNMT1 is a required genomic regulator for murine liver histogenesis and regeneration. Hepatology 64:582–98
    [Google Scholar]
  92. 92. 
    Li W, Yang L, He Q, Hu C, Zhu L et al. 2019. A homeostatic Arid1a-dependent permissive chromatin state licenses hepatocyte responsiveness to liver injury-associated YAP signaling. Cell Stem Cell 25:54–68.e5
    [Google Scholar]
  93. 93. 
    Farin HF, Van Es JH, Clevers H 2012. Redundant sources of Wnt regulate intestinal stem cells and promote formation of Paneth cells. Gastroenterology 143:1518–29.e7
    [Google Scholar]
  94. 94. 
    Kabiri Z, Greicius G, Madan B, Biechele S, Zhong Z et al. 2014. Stroma provides an intestinal stem cell niche in the absence of epithelial Wnts. Development 141:2206–15
    [Google Scholar]
  95. 95. 
    Trentesaux C, Striedinger K, Pomerantz JH, Klein OD 2020. From gut to glutes: the critical role of niche signals in the maintenance and renewal of adult stem cells. Curr. Opin. Cell Biol. 63:88–101
    [Google Scholar]
  96. 96. 
    Margueron R, Reinberg D. 2011. The Polycomb complex PRC2 and its mark in life. Nature 469:343–49
    [Google Scholar]
  97. 97. 
    Montgomery ND, Yee D, Montgomery SA, Magnuson T 2007. Molecular and functional mapping of EED motifs required for PRC2-dependent histone methylation. J. Mol. Biol. 374:1145–57
    [Google Scholar]
  98. 98. 
    Pasini D, Bracken AP, Jensen MR, Lazzerini Denchi E, Helin K 2004. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J 23:4061–71
    [Google Scholar]
  99. 99. 
    Aranda S, Mas G, Di Croce L 2015. Regulation of gene transcription by Polycomb proteins. Sci. Adv. 1:e1500737
    [Google Scholar]
  100. 100. 
    Cohen I, Zhao D, Menon G, Nakayama M, Koseki H et al. 2019. PRC1 preserves epidermal tissue integrity independently of PRC2. Genes Dev 33:55–60
    [Google Scholar]
  101. 101. 
    Chiacchiera F, Rossi A, Jammula S, Piunti A, Scelfo A et al. 2016. Polycomb complex PRC1 preserves intestinal stem cell identity by sustaining Wnt/β-catenin transcriptional activity. Cell Stem Cell 18:91–103
    [Google Scholar]
  102. 102. 
    Cohen I, Bar C, Ezhkova E 2020. Activity of PRC1 and histone H2AK119 monoubiquitination: revising popular misconceptions. Bioessays 42:e1900192
    [Google Scholar]
  103. 103. 
    Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA et al. 2006. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441:349–53
    [Google Scholar]
  104. 104. 
    Riising EM, Comet I, Leblanc B, Wu X, Johansen JV, Helin K 2014. Gene silencing triggers polycomb repressive complex 2 recruitment to CpG islands genome wide. Mol. Cell 55:347–60
    [Google Scholar]
  105. 105. 
    Jadhav U, Nalapareddy K, Saxena M, O'Neill NK, Pinello L et al. 2016. Acquired tissue-specific promoter bivalency is a basis for PRC2 necessity in adult cells. Cell 165:1389–400
    [Google Scholar]
  106. 106. 
    Chiacchiera F, Rossi A, Jammula S, Zanotti M, Pasini D 2016. PRC2 preserves intestinal progenitors and restricts secretory lineage commitment. EMBO J 35:2301–14
    [Google Scholar]
  107. 107. 
    Ezhkova E, Lien WH, Stokes N, Pasolli HA, Silva JM, Fuchs E 2011. EZH1 and EZH2 cogovern histone H3K27 trimethylation and are essential for hair follicle homeostasis and wound repair. Genes Dev 25:485–98
    [Google Scholar]
  108. 108. 
    Xie H, Xu J, Hsu JH, Nguyen M, Fujiwara Y et al. 2014. Polycomb repressive complex 2 regulates normal hematopoietic stem cell function in a developmental-stage-specific manner. Cell Stem Cell 14:68–80
    [Google Scholar]
  109. 109. 
    Bracken AP, Kleine-Kohlbrecher D, Dietrich N, Pasini D, Gargiulo G et al. 2007. The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev 21:525–30
    [Google Scholar]
  110. 110. 
    Koppens MA, Bounova G, Gargiulo G, Tanger E, Janssen H et al. 2016. Deletion of polycomb repressive complex 2 from mouse intestine causes loss of stem cells. Gastroenterology 151:684–97.e12
    [Google Scholar]
  111. 111. 
    Jadhav U, Manieri E, Nalapareddy K, Madha S, Chakrabarti S et al. 2020. Replicational dilution of H3K27me3 in mammalian cells and the role of poised promoters. Mol. Cell 78:141–51.e5
    [Google Scholar]
  112. 112. 
    Bae WK, Kang K, Yu JH, Yoo KH, Factor VM et al. 2015. The methyltransferases enhancer of zeste homolog (EZH) 1 and EZH2 control hepatocyte homeostasis and regeneration. FASEB J 29:1653–62
    [Google Scholar]
  113. 113. 
    Juan AH, Derfoul A, Feng X, Ryall JG, Dell'Orso S et al. 2011. Polycomb EZH2 controls self-renewal and safeguards the transcriptional identity of skeletal muscle stem cells. Genes Dev 25:789–94
    [Google Scholar]
  114. 114. 
    Saxena M, San Roman AK, O'Neill NK, Sulahian R, Jadhav U, Shivdasani RA 2017. Transcription factor-dependent ‘anti-repressive’ mammalian enhancers exclude H3K27me3 from extended genomic domains. Genes Dev 31:2391–404
    [Google Scholar]
  115. 115. 
    Hon GC, Rajagopal N, Shen Y, McCleary DF, Yue F et al. 2013. Epigenetic memory at embryonic enhancers identified in DNA methylation maps from adult mouse tissues. Nat. Genet. 45:1198–206
    [Google Scholar]
  116. 116. 
    Jadhav U, Cavazza A, Banerjee KK, Xie H, O'Neill NK et al. 2019. Extensive recovery of embryonic enhancer and gene memory stored in hypomethylated enhancer DNA. Mol. Cell 74:542–54.e5
    [Google Scholar]
  117. 117. 
    Rada-Iglesias A, Bajpai R, Swigut T, Brugmann SA, Flynn RA, Wysocka J 2010. A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470:279–83
    [Google Scholar]
  118. 118. 
    Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW et al. 2010. Histone H3K27ac separates active from poised enhancers and predicts developmental state. PNAS 107:21931–36
    [Google Scholar]
  119. 119. 
    Banerjee KK, Saxena M, Kumar N, Chen L, Cavazza A et al. 2018. Enhancer, transcriptional, and cell fate plasticity precedes intestinal determination during endoderm development. Genes Dev 32:1430–42
    [Google Scholar]
  120. 120. 
    Chronis C, Fiziev P, Papp B, Butz S, Bonora G et al. 2017. Cooperative binding of transcription factors orchestrates reprogramming. Cell 168:442–59.e20
    [Google Scholar]
  121. 121. 
    Luna-Zurita L, Stirnimann CU, Glatt S, Kaynak BL, Thomas S et al. 2016. Complex interdependence regulates heterotypic transcription factor distribution and coordinates cardiogenesis. Cell 164:999–1014
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-021119-034520
Loading
/content/journals/10.1146/annurev-physiol-021119-034520
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error