1932

Abstract

Cardiac fibrosis is a pathological condition that occurs after injury and during aging. Currently, there are limited means to effectively reduce or reverse fibrosis. Key to identifying methods for curbing excess deposition of extracellular matrix is a better understanding of the cardiac fibroblast, the cell responsible for collagen production. In recent years, the diversity and functions of these enigmatic cells have been gradually revealed. In this review, I outline current approaches for identifying and classifying cardiac fibroblasts. An emphasis is placed on new insights into the heterogeneity of these cells as determined by lineage tracing and single-cell sequencing in development, adult, and disease states. These recent advances in our understanding of the fibroblast provide a platform for future development of novel therapeutics to combat cardiac fibrosis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021119-034527
2020-02-10
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/physiol/82/1/annurev-physiol-021119-034527.html?itemId=/content/journals/10.1146/annurev-physiol-021119-034527&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Eghbali M, Weber KT. 1990. Collagen and the myocardium: fibrillar structure, biosynthesis and degradation in relation to hypertrophy and its regression. Mol. Cell. Biochem. 96:1–14
    [Google Scholar]
  2. 2. 
    Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR et al. 2018. Heart disease and stroke statistics—2018 update. A report from the American Heart Association. Circulation 137:e67–492
    [Google Scholar]
  3. 3. 
    Gourdie RG, Dimmeler S, Kohl P 2016. Novel therapeutic strategies targeting fibroblasts and fibrosis in heart disease. Nat. Rev. Drug Discov. 15:620–38
    [Google Scholar]
  4. 4. 
    Pinto AR, Ilinykh A, Ivey MJ, Kuwabara JT, D'Antoni ML et al. 2016. Revisiting cardiac cellular composition. Circ. Res. 118:400–9
    [Google Scholar]
  5. 5. 
    Ali SR, Ranjbarvaziri S, Talkhabi M, Zhao P, Subat A et al. 2014. Developmental heterogeneity of cardiac fibroblasts does not predict pathological proliferation and activation. Circ. Res. 115:625–35
    [Google Scholar]
  6. 6. 
    Smith CL, Baek ST, Sung CY, Tallquist MD 2011. Epicardial-derived cell epithelial-to-mesenchymal transition and fate specification require PDGF receptor signaling. Circ. Res. 108:e15–26
    [Google Scholar]
  7. 7. 
    Moore-Morris T, Guimarães-Camboa N, Banerjee I, Zambon AC, Kisseleva T et al. 2014. Resident fibroblast lineages mediate pressure overload-induced cardiac fibrosis. J. Clin. Investig. 124:2921–34
    [Google Scholar]
  8. 8. 
    Acharya A, Baek ST, Huang G, Eskiocak B, Goetsch S et al. 2012. The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors. Development 139:2139–49
    [Google Scholar]
  9. 9. 
    Song K, Nam YJ, Luo X, Qi X, Tan W et al. 2012. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485:599–604
    [Google Scholar]
  10. 10. 
    Kanisicak O, Khalil H, Ivey MJ, Karch J, Maliken BD et al. 2016. Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nat. Commun. 7:12260
    [Google Scholar]
  11. 11. 
    Cleutjens JP, Kandala JC, Guarda E, Guntaka RV, Weber KT 1995. Regulation of collagen degradation in the rat myocardium after infarction. J. Mol. Cell. Cardiol. 27:1281–92
    [Google Scholar]
  12. 12. 
    Armulik A, Genove G, Betsholtz C 2011. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev. Cell 21:193–215
    [Google Scholar]
  13. 13. 
    Guimarães-Camboa N, Cattaneo P, Sun Y, Moore-Morris T, Gu Y et al. 2017. Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo. Cell Stem Cell 20:345–59.e5
    [Google Scholar]
  14. 14. 
    Yoshida T, Owens GK. 2005. Molecular determinants of vascular smooth muscle cell diversity. Circ. Res. 96:280–91
    [Google Scholar]
  15. 15. 
    Miano JM, Cserjesi P, Ligon KL, Periasamy M, Olson EN 1994. Smooth muscle myosin heavy chain exclusively marks the smooth muscle lineage during mouse embryogenesis. Circ. Res. 75:803–12
    [Google Scholar]
  16. 16. 
    Swonger JM, Liu JS, Ivey MJ, Tallquist MD 2016. Genetic tools for identifying and manipulating fibroblasts in the mouse. Differentiation 92:66–83
    [Google Scholar]
  17. 17. 
    Kuwabara JT, Tallquist MD. 2017. Tracking adventitial fibroblast contribution to disease: a review of current methods to identify resident fibroblasts. Arterioscler. Thromb. Vasc. Biol. 37:1598–607
    [Google Scholar]
  18. 18. 
    Camelliti P, Borg TK, Kohl P 2005. Structural and functional characterisation of cardiac fibroblasts. Cardiovasc. Res. 65:40–51
    [Google Scholar]
  19. 19. 
    Driesen RB, Nagaraju CK, Abi-Char J, Coenen T, Lijnen PJ et al. 2014. Reversible and irreversible differentiation of cardiac fibroblasts. Cardiovasc. Res. 101:411–22
    [Google Scholar]
  20. 20. 
    Yu J, Seldin MM, Fu K, Li S, Lam L et al. 2018. Topological arrangement of cardiac fibroblasts regulates cellular plasticity. Circ. Res. 123:73–85
    [Google Scholar]
  21. 21. 
    Hookway TA, Matthys OB, Mendoza-Camacho FN, Rains S, Sepulveda JE et al. 2019. Phenotypic variation between stromal cells differentially impacts engineered cardiac tissue function. Tissue Eng. A 25: https://doi.org/10.1089/ten.tea.2018.0362
    [Crossref] [Google Scholar]
  22. 22. 
    Doll S, Dressen M, Geyer PE, Itzhak DN, Braun C et al. 2017. Region and cell-type resolved quantitative proteomic map of the human heart. Nat. Commun. 8:1469
    [Google Scholar]
  23. 23. 
    Stenmark KR, Yeager ME, El Kasmi KC, Nozik-Grayck E, Gerasimovskaya EV et al. 2013. The adventitia: essential regulator of vascular wall structure and function. Annu. Rev. Physiol. 75:23–47
    [Google Scholar]
  24. 24. 
    Passman JN, Dong XR, Wu SP, Maguire CT, Hogan KA et al. 2008. A sonic hedgehog signaling domain in the arterial adventitia supports resident Sca1+ smooth muscle progenitor cells. PNAS 105:9349–54
    [Google Scholar]
  25. 25. 
    Kramann R, Schneider RK, DiRocco DP, Machado F, Fleig S et al. 2015. Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell 16:51–66
    [Google Scholar]
  26. 26. 
    Kramann R, Goettsch C, Wongboonsin J, Iwata H, Schneider RK et al. 2016. Adventitial MSC-like cells are progenitors of vascular smooth muscle cells and drive vascular calcification in chronic kidney disease. Cell Stem Cell 19:628–42
    [Google Scholar]
  27. 27. 
    Zahid S, Cochet H, Boyle PM, Schwarz EL, Whyte KN et al. 2016. Patient-derived models link re-entrant driver localization in atrial fibrillation to fibrosis spatial pattern. Cardiovasc. Res. 110:443–54
    [Google Scholar]
  28. 28. 
    Marrouche NF, Wilber D, Hindricks G, Jais P, Akoum N et al. 2014. Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: the DECAAF study. JAMA 311:498–506
    [Google Scholar]
  29. 29. 
    Hanna N, Cardin S, Leung TK, Nattel S 2004. Differences in atrial versus ventricular remodeling in dogs with ventricular tachypacing-induced congestive heart failure. Cardiovasc. Res. 63:236–44
    [Google Scholar]
  30. 30. 
    Burstein B, Libby E, Calderone A, Nattel S 2008. Differential behaviors of atrial versus ventricular fibroblasts: a potential role for platelet-derived growth factor in atrial-ventricular remodeling differences. Circulation 117:1630–41
    [Google Scholar]
  31. 31. 
    Kolditz DP, Wijffels MC, Blom NA, van der Laarse A, Hahurij ND et al. 2008. Epicardium-derived cells in development of annulus fibrosis and persistence of accessory pathways. Circulation 117:1508–17
    [Google Scholar]
  32. 32. 
    Wu B, Wang Y, Xiao F, Butcher JT, Yutzey KE, Zhou B 2017. Developmental mechanisms of aortic valve malformation and disease. Annu. Rev. Physiol. 79:21–41
    [Google Scholar]
  33. 33. 
    Liu AC, Joag VR, Gotlieb AI 2007. The emerging role of valve interstitial cell phenotypes in regulating heart valve pathobiology. Am. J. Pathol. 171:1407–18
    [Google Scholar]
  34. 34. 
    Mikawa T, Gourdie RG. 1996. Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev. Biol. 174:221–32
    [Google Scholar]
  35. 35. 
    Dettman RW, Denetclaw W Jr, Ordahl CP, Bristow J 1998. Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Dev. Biol 193:169–81
    [Google Scholar]
  36. 36. 
    Gittenberger-de Groot AC, Vrancken Peeters MP, Mentink MM, Gourdie RG, Poelmann RE 1998. Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ. Res. 82:1043–52
    [Google Scholar]
  37. 37. 
    Zhou B, Ma Q, Rajagopal S, Wu SM, Domian I et al. 2008. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454:109–13
    [Google Scholar]
  38. 38. 
    Zhou B, von Gise A, Ma Q, Hu YW, Pu WT 2010. Genetic fate mapping demonstrates contribution of epicardium-derived cells to the annulus fibrosis of the mammalian heart. Dev. Biol. 338:251–61
    [Google Scholar]
  39. 39. 
    Wessels A, van den Hoff MJ, Adamo RF, Phelps AL, Lockhart MM et al. 2012. Epicardially derived fibroblasts preferentially contribute to the parietal leaflets of the atrioventricular valves in the murine heart. Dev. Biol. 366:111–24
    [Google Scholar]
  40. 40. 
    Sampaio-Pinto V, Rodrigues SC, Laundos TL, Silva ED, Vasques-Novoa F et al. 2018. Neonatal apex resection triggers cardiomyocyte proliferation, neovascularization and functional recovery despite local fibrosis. Stem Cell Rep 10:860–74
    [Google Scholar]
  41. 41. 
    Lighthouse JK, Burke RM, Velasquez LS, Dirkx RA Jr, Aiezza A 2nd et al. 2019. Exercise promotes a cardioprotective gene program in resident cardiac fibroblasts. JCI Insight 4:e92098
    [Google Scholar]
  42. 42. 
    Skelly DA, Squiers GT, McLellan MA, Bolisetty MT, Robson P et al. 2018. Single-cell transcriptional profiling reveals cellular diversity and intercommunication in the mouse heart. Cell Rep 22:600–10
    [Google Scholar]
  43. 43. 
    Farbehi N, Patrick R, Dorison A, Xaymardan M, Janbandhu V et al. 2019. Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular and immune cells in health and injury. eLife 8:e43882
    [Google Scholar]
  44. 44. 
    Chong JJ, Chandrakanthan V, Xaymardan M, Asli NS, Li J et al. 2011. Adult cardiac-resident MSC-like stem cells with a proepicardial origin. Cell Stem Cell 9:527–40
    [Google Scholar]
  45. 45. 
    Noseda M, Harada M, McSweeney S, Leja T, Belian E et al. 2015. PDGFRα demarcates the cardiogenic clonogenic Sca1+ stem/progenitor cell in adult murine myocardium. Nat. Commun. 6:6930
    [Google Scholar]
  46. 46. 
    Lombardi R, Chen SN, Ruggiero A, Gurha P, Czernuszewicz GZ et al. 2016. Cardiac fibro-adipocyte progenitors express desmosome proteins and preferentially differentiate to adipocytes upon deletion of the desmoplakin gene. Circ. Res. 119:41–54
    [Google Scholar]
  47. 47. 
    Lemos DR, Babaeijandaghi F, Low M, Chang CK, Lee ST et al. 2015. Nilotinib reduces muscle fibrosis in chronic muscle injury by promoting TNF-mediated apoptosis of fibro/adipogenic progenitors. Nat. Med. 21:786–94
    [Google Scholar]
  48. 48. 
    Joe AW, Yi L, Natarajan A, Le Grand F, So L et al. 2010. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat. Cell Biol. 12:153–63
    [Google Scholar]
  49. 49. 
    DeLaughter DM, Bick AG, Wakimoto H, McKean D, Gorham JM et al. 2016. Single-cell resolution of temporal gene expression during heart development. Dev. Cell 39:480–90
    [Google Scholar]
  50. 50. 
    Xiao Y, Hill MC, Zhang M, Martin TJ, Morikawa Y et al. 2018. Hippo signaling plays an essential role in cell state transitions during cardiac fibroblast development. Dev. Cell 45:153–69.e6
    [Google Scholar]
  51. 51. 
    Cui Y, Zheng Y, Liu X, Yan L, Fan X et al. 2019. Single-cell transcriptome analysis maps the developmental track of the human heart. Cell Rep 26:1934–50.e5
    [Google Scholar]
  52. 52. 
    Hu P, Liu J, Zhao J, Wilkins BJ, Lupino K et al. 2018. Single-nucleus transcriptomic survey of cell diversity and functional maturation in postnatal mammalian hearts. Genes Dev 32:1344–57
    [Google Scholar]
  53. 53. 
    Ivey MJ, Kuwabara JT, Pai JT, Moore RE, Sun Z, Tallquist MD 2018. Resident fibroblast expansion during cardiac growth and remodeling. J. Mol. Cell. Cardiol. 114:161–74
    [Google Scholar]
  54. 54. 
    Fu X, Khalil H, Kanisicak O, Boyer JG, Vagnozzi RJ et al. 2018. Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart. J. Clin. Investig. 128:2127–43
    [Google Scholar]
  55. 55. 
    Schafer S, Viswanathan S, Widjaja AA, Lim WW, Moreno-Moral A et al. 2017. IL-11 is a crucial determinant of cardiovascular fibrosis. Nature 552:110–15
    [Google Scholar]
  56. 56. 
    Kretzschmar K, Post Y, Bannier-Helaouet M, Mattiotti A, Drost J et al. 2018. Profiling proliferative cells and their progeny in damaged murine hearts. PNAS 115:E12245–54
    [Google Scholar]
  57. 57. 
    Maruyama S, Nakamura K, Papanicolaou KN, Sano S, Shimizu I et al. 2016. Follistatin-like 1 promotes cardiac fibroblast activation and protects the heart from rupture. EMBO Mol Med 8:949–66
    [Google Scholar]
  58. 58. 
    Prabhu SD, Frangogiannis NG. 2016. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ. Res. 119:91–112
    [Google Scholar]
  59. 59. 
    Nakaya M, Watari K, Tajima M, Nakaya T, Matsuda S et al. 2017. Cardiac myofibroblast engulfment of dead cells facilitates recovery after myocardial infarction. J. Clin. Investig. 127:383–401
    [Google Scholar]
  60. 60. 
    Rossini A, Zacheo A, Mocini D, Totta P, Facchiano A et al. 2008. HMGB1-stimulated human primary cardiac fibroblasts exert a paracrine action on human and murine cardiac stem cells. J. Mol. Cell. Cardiol. 44:683–93
    [Google Scholar]
  61. 61. 
    Turner NA, Das A, Warburton P, O'Regan DJ, Ball SG, Porter KE 2009. Interleukin-1α stimulates proinflammatory cytokine expression in human cardiac myofibroblasts. Am. J. Physiol. Heart Circ. Physiol. 297:H1117–27
    [Google Scholar]
  62. 62. 
    Tomita K, Takashina M, Mizuno N, Sakata K, Hattori K et al. 2015. Cardiac fibroblasts: contributory role in septic cardiac dysfunction. J. Surg. Res. 193:874–87
    [Google Scholar]
  63. 63. 
    Ma F, Li Y, Jia L, Han Y, Cheng J et al. 2012. Macrophage-stimulated cardiac fibroblast production of IL-6 is essential for TGF β/Smad activation and cardiac fibrosis induced by angiotensin II. PLOS ONE 7:e35144
    [Google Scholar]
  64. 64. 
    LaFramboise WA, Scalise D, Stoodley P, Graner SR, Guthrie RD et al. 2007. Cardiac fibroblasts influence cardiomyocyte phenotype in vitro. Am. J. Physiol. Cell Physiol. 292:C1799–808
    [Google Scholar]
  65. 65. 
    Humeres C, Vivar R, Boza P, Muñoz C, Bolivar S et al. 2016. Cardiac fibroblast cytokine profiles induced by proinflammatory or profibrotic stimuli promote monocyte recruitment and modulate macrophage M1/M2 balance in vitro. J. Mol. Cell. Cardiol. 101:69–80
    [Google Scholar]
  66. 66. 
    Anzai A, Choi JL, He S, Fenn AM, Nairz M et al. 2017. The infarcted myocardium solicits GM-CSF for the detrimental oversupply of inflammatory leukocytes. J. Exp. Med. 214:3293–310
    [Google Scholar]
  67. 67. 
    Boza P, Ayala P, Vivar R, Humeres C, Cáceres FT et al. 2016. Expression and function of toll-like receptor 4 and inflammasomes in cardiac fibroblasts and myofibroblasts: IL-1β synthesis, secretion, and degradation. Mol. Immunol. 74:96–105
    [Google Scholar]
  68. 68. 
    Mouton AJ, Ma Y, Gonzalez OJR, Daseke MJ 2nd, Flynn ER et al. 2019. Fibroblast polarization over the myocardial infarction time continuum shifts roles from inflammation to angiogenesis. Basic Res. Cardiol. 114:6
    [Google Scholar]
  69. 69. 
    Muñoz-Rodríguez C, Fernández S, Osorio JM, Olivares F, Anfossi R et al. 2018. Expression and function of TLR4- induced B1R bradykinin receptor on cardiac fibroblasts. Toxicol. Appl. Pharmacol. 351:46–56
    [Google Scholar]
  70. 70. 
    Turner NA. 2016. Inflammatory and fibrotic responses of cardiac fibroblasts to myocardial damage associated molecular patterns (DAMPs). J. Mol. Cell. Cardiol. 94:189–200
    [Google Scholar]
  71. 71. 
    Twardowski RL, Black LD 3rd 2014. Cardiac fibroblasts support endothelial cell proliferation and sprout formation but not the development of multicellular sprouts in a fibrin gel co-culture model. Ann. Biomed. Eng. 42:1074–84
    [Google Scholar]
  72. 72. 
    Nehls V, Herrmann R, Hühnken M, Palmetshofer A 1998. Contact-dependent inhibition of angiogenesis by cardiac fibroblasts in three-dimensional fibrin gels in vitro: implications for microvascular network remodeling and coronary collateral formation. Cell Tissue Res 293:479–88
    [Google Scholar]
  73. 73. 
    Gladka MM, Molenaar B, de Ruiter H, van der Elst S, Tsui H et al. 2018. Single-cell sequencing of the healthy and diseased heart reveals cytoskeleton-associated protein 4 as a new modulator of fibroblasts activation. Circulation 138:166–80
    [Google Scholar]
  74. 74. 
    Hoare M, Narita M. 2013. Transmitting senescence to the cell neighbourhood. Nat. Cell Biol. 15:887–89
    [Google Scholar]
  75. 75. 
    Meyer K, Hodwin B, Ramanujam D, Engelhardt S, Sarikas A 2016. Essential role for premature senescence of myofibroblasts in myocardial fibrosis. J. Am. Coll. Cardiol. 67:2018–28
    [Google Scholar]
  76. 76. 
    Sawaki D, Czibik G, Pini M, Ternacle J, Suffee N et al. 2018. Visceral adipose tissue drives cardiac aging through modulation of fibroblast senescence by osteopontin production. Circulation 138:809–22
    [Google Scholar]
  77. 77. 
    Zhu F, Li Y, Zhang J, Piao C, Liu T et al. 2013. Senescent cardiac fibroblast is critical for cardiac fibrosis after myocardial infarction. PLOS ONE 8:e74535
    [Google Scholar]
  78. 78. 
    Sokolova M, Vinge LE, Alfsnes K, Olsen MB, Eide L et al. 2017. Palmitate promotes inflammatory responses and cellular senescence in cardiac fibroblasts. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862:234–45
    [Google Scholar]
  79. 79. 
    Mollmann H, Nef HM, Kostin S, von Kalle C, Pilz I et al. 2006. Bone marrow-derived cells contribute to infarct remodelling. Cardiovasc. Res. 71:661–71
    [Google Scholar]
  80. 80. 
    Haudek SB, Xia Y, Huebener P, Lee JM, Carlson S et al. 2006. Bone marrow-derived fibroblast precursors mediate ischemic cardiomyopathy in mice. PNAS 103:18284–89
    [Google Scholar]
  81. 81. 
    Haudek SB, Cheng J, Du J, Wang Y, Hermosillo-Rodriguez J et al. 2010. Monocytic fibroblast precursors mediate fibrosis in angiotensin-II-induced cardiac hypertrophy. J. Mol. Cell. Cardiol. 49:499–507
    [Google Scholar]
  82. 82. 
    Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR et al. 2007. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat. Med. 13:952–61
    [Google Scholar]
  83. 83. 
    Ruiz-Villalba A, Simon AM, Pogontke C, Castillo MI, Abizanda G et al. 2015. Interacting resident epicardium-derived fibroblasts and recruited bone marrow cells form myocardial infarction scar. J. Am. Coll. Cardiol. 65:2057–66
    [Google Scholar]
  84. 84. 
    Moore-Morris T, Cattaneo P, Guimarães-Camboa N, Bogomolovas J, Cedenilla M et al. 2018. Infarct fibroblasts do not derive from bone marrow lineages. Circ. Res. 122:583–90
    [Google Scholar]
  85. 85. 
    Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O 2013. Type-1 pericytes participate in fibrous tissue deposition in aged skeletal muscle. Am. J. Physiol. Cell Physiol. 305:C1098–113
    [Google Scholar]
  86. 86. 
    Birbrair A, Zhang T, Files DC, Mannava S, Smith T et al. 2014. Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Res. Ther. 5:122
    [Google Scholar]
  87. 87. 
    Santini MP, Forte E, Harvey RP, Kovacic JC 2016. Developmental origin and lineage plasticity of endogenous cardiac stem cells. Development 143:1242–58
    [Google Scholar]
  88. 88. 
    Chen G, Bracamonte-Baran W, Diny NL, Hou X, Talor MV et al. 2018. Sca-1+ cardiac fibroblasts promote development of heart failure. Eur. J. Immunol. 48:1522–38
    [Google Scholar]
  89. 89. 
    Chong JJ, Reinecke H, Iwata M, Torok-Storb B, Stempien-Otero A, Murry CE 2013. Progenitor cells identified by PDGFR-α expression in the developing and diseased human heart. Stem Cells Dev 22:1932–43
    [Google Scholar]
  90. 90. 
    Pillai IC, Li S, Romay M, Lam L, Lu Y et al. 2017. Cardiac fibroblasts adopt osteogenic fates and can be targeted to attenuate pathological heart calcification. Cell Stem Cell 20:218–32.e5
    [Google Scholar]
  91. 91. 
    Ubil E, Duan J, Pillai IC, Rosa-Garrido M, Wu Y et al. 2014. Mesenchymal-endothelial transition contributes to cardiac neovascularization. Nature 514:585–90
    [Google Scholar]
  92. 92. 
    He L, Huang X, Kanisicak O, Li Y, Wang Y et al. 2017. Preexisting endothelial cells mediate cardiac neovascularization after injury. J. Clin. Investig. 127:2968–81
    [Google Scholar]
  93. 93. 
    Zangi L, Oliveira MS, Ye LY, Ma Q, Sultana N et al. 2017. Insulin-like growth factor 1 receptor-dependent pathway drives epicardial adipose tissue formation after myocardial injury. Circulation 135:59–72
    [Google Scholar]
  94. 94. 
    Yamaguchi Y, Cavallero S, Patterson M, Shen H, Xu J et al. 2015. Adipogenesis and epicardial adipose tissue: a novel fate of the epicardium induced by mesenchymal transformation and PPARγ activation. PNAS 112:2070–75
    [Google Scholar]
  95. 95. 
    Liu Q, Huang X, Oh JH, Lin RZ, Duan S et al. 2014. Epicardium-to-fat transition in injured heart. Cell Res 24:1367–69
    [Google Scholar]
  96. 96. 
    Jonsson MKB, Hartman RJG, Ackers-Johnson M, Tan WLW, Lim B et al. 2016. A transcriptomic and epigenomic comparison of fetal and adult human cardiac fibroblasts reveals novel key transcription factors in adult cardiac fibroblasts. JACC Basic Transl. Sci. 1:590–602
    [Google Scholar]
  97. 97. 
    Park S, Ranjbarvaziri S, Lay FD, Zhao P, Miller MJ et al. 2018. Genetic regulation of fibroblast activation and proliferation in cardiac fibrosis. Circulation 138:1224–35
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-021119-034527
Loading
/content/journals/10.1146/annurev-physiol-021119-034527
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error