1932

Abstract

Circadian rhythms are daily cycles in biological function that are ubiquitous in nature. Understood as a means for organisms to anticipate daily environmental changes, circadian rhythms are also important for orchestrating complex biological processes such as immunity. Nowhere is this more evident than in the respiratory system, where circadian rhythms in inflammatory lung disease have been appreciated since ancient times. In this focused review we examine how emerging research on circadian rhythms is being applied to the study of fundamental lung biology and respiratory disease. We begin with a general introduction to circadian rhythms and the molecular circadian clock that underpins them. We then focus on emerging data tying circadian clock function to immunologic activities within the respiratory system. We conclude by considering outstanding questions about biological timing in the lung and how a better command of chronobiology could inform our understanding of complex lung diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021119-034602
2020-02-10
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/physiol/82/1/annurev-physiol-021119-034602.html?itemId=/content/journals/10.1146/annurev-physiol-021119-034602&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Karamanou M, Androutsos G. 2011. Aretaeus of Cappadocia and the first clinical description of asthma. Am. J. Respir. Crit. Care Med. 184:1420–21
    [Google Scholar]
  2. 2. 
    Aretaeus 1861. The Extant Works of Aretaeus, the Cappadocian F Adams London: Sydenham Soc.
  3. 3. 
    Natl. Asthma Educ. Prev. Prog 2007. Guidelines for the diagnosis and management of asthma Expert Panel Rep. 3, US Dep. Health Hum. Serv Washington, DC: https://www.nhlbi.nih.gov/files/docs/guidelines/asthsumm.pdf
  4. 4. 
    Martin RJ. 1992. Circadian rhythms, nocturnal asthma, and management. Ann. Allergy 69:267–72
    [Google Scholar]
  5. 5. 
    Smolensky MH, Barnes PJ, Reinberg A, McGovern JP 1986. Chronobiology and asthma. I. Day-night differences in bronchial patency and dyspnea and circadian rhythm dependencies. J. Asthma 23:321–43
    [Google Scholar]
  6. 6. 
    Refinetti R. 2012. Integration of biological clocks and rhythms. Compr. Physiol. 2:1213–39
    [Google Scholar]
  7. 7. 
    Beaver LM, Gvakharia BO, Vollintine TS, Hege DM, Stanewsky R, Giebultowicz JM 2002. Loss of circadian clock function decreases reproductive fitness in males of Drosophila melanogaster. PNAS 99:2134–39
    [Google Scholar]
  8. 8. 
    Spoelstra K, Wikelski M, Daan S, Loudon AS, Hau M 2016. Natural selection against a circadian clock gene mutation in mice. PNAS 113:686–91
    [Google Scholar]
  9. 9. 
    Ouyang Y, Andersson CR, Kondo T, Golden SS, Johnson CH 1998. Resonating circadian clocks enhance fitness in cyanobacteria. PNAS 95:8660–64
    [Google Scholar]
  10. 10. 
    Silver AC, Arjona A, Walker WE, Fikrig E 2012. The circadian clock controls toll-like receptor 9-mediated innate and adaptive immunity. Immunity 36:251–61
    [Google Scholar]
  11. 11. 
    Long JE, Drayson MT, Taylor AE, Toellner KM, Lord JM, Phillips AC 2016. Morning vaccination enhances antibody response over afternoon vaccination: a cluster-randomised trial. Vaccine 34:2679–85
    [Google Scholar]
  12. 12. 
    Fortier EE, Rooney J, Dardente H, Hardy MP, Labrecque N, Cermakian N 2011. Circadian variation of the response of T cells to antigen. J. Immunol. 187:6291–300
    [Google Scholar]
  13. 13. 
    Bahrami-Nejad Z, Zhao ML, Tholen S, Hunerdosse D, Tkach KE et al. 2018. A transcriptional circuit filters oscillating circadian hormonal inputs to regulate fat cell differentiation. Cell Metab 27:854–68.e8
    [Google Scholar]
  14. 14. 
    Yang G, Chen L, Grant GR, Paschos G, Song WL et al. 2016. Timing of expression of the core clock gene Bmal1 influences its effects on aging and survival. Sci. Transl. Med. 8:324ra16
    [Google Scholar]
  15. 15. 
    Amano H, Fukuda Y, Yokoo T, Yamaoka K 2018. Interleukin-6 level among shift and night workers in Japan: cross-sectional analysis of the J-HOPE study. J. Atheroscler. Thromb. 25:1206–14
    [Google Scholar]
  16. 16. 
    Puttonen S, Viitasalo K, Härmä M 2011. Effect of shiftwork on systemic markers of inflammation. Chronobiol. Int. 28:528–35
    [Google Scholar]
  17. 17. 
    Kecklund G, Axelsson J. 2016. Health consequences of shift work and insufficient sleep. BMJ 355:i5210
    [Google Scholar]
  18. 18. 
    Papagiannakopoulos T, Bauer MR, Davidson SM, Heimann M, Subbaraj L et al. 2016. Circadian rhythm disruption promotes lung tumorigenesis. Cell Metab 24:324–31
    [Google Scholar]
  19. 19. 
    Rensing L, Meyer-Grahle U, Ruoff P 2001. Biological timing and the clock metaphor: oscillatory and hourglass mechanisms. Chronobiol. Int. 18:329–69
    [Google Scholar]
  20. 20. 
    Reinberg A, Smolensky MH. 1983. Biological Rhythms and Medicine: Cellular, Metabolic, Physiopathologic, and Pharmacologic Aspects New York: Springer
  21. 21. 
    Koukkari W, Sothern R. 2006. Introducing Biological Rhythms: A Primer on the Temporal Organization of Life, with Implications for Health, Society, Reproduction, and the Natural Environment New York: Springer Sci. Bus.
  22. 22. 
    Thaiss CA, Zeevi D, Levy M, Zilberman-Schapira G, Suez J et al. 2014. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159:514–29
    [Google Scholar]
  23. 23. 
    Adamovich Y, Ladeuix B, Sobel J, Manella G, Neufeld-Cohen A et al. 2019. Oxygen and carbon dioxide rhythms are circadian clock controlled and differentially directed by behavioral signals. Cell Metab 29:1092–1103.e3
    [Google Scholar]
  24. 24. 
    Spengler CM, Shea SA. 2000. Endogenous circadian rhythm of pulmonary function in healthy humans. Am. J. Respir. Crit. Care Med. 162:1038–46
    [Google Scholar]
  25. 25. 
    Clark TJ. 1987. Diurnal rhythm of asthma. Chest 91:137S–41S
    [Google Scholar]
  26. 26. 
    Ballard RD, Saathoff MC, Patel DK, Kelly PL, Martin RJ 1989. Effect of sleep on nocturnal bronchoconstriction and ventilatory patterns in asthmatics. J. Appl. Physiol. 67:243–49
    [Google Scholar]
  27. 27. 
    Catterall JR, Rhind GB, Stewart IC, Whyte KF, Shapiro CM, Douglas NJ 1986. Effect of sleep deprivation on overnight bronchoconstriction in nocturnal asthma. Thorax 41:676–80
    [Google Scholar]
  28. 28. 
    Casale R, Pasqualetti P. 1997. Cosinor analysis of circadian peak expiratory flow variability in normal subjects, passive smokers, heavy smokers, patients with chronic obstructive pulmonary disease and patients with interstitial lung disease. Respiration 64:251–56
    [Google Scholar]
  29. 29. 
    Casale R, Natali G, Colantonio D, Pasqualetti P 1992. Circadian rhythm of peak expiratory flow in children passively exposed and not exposed to cigarette smoke. Thorax 47:801–3
    [Google Scholar]
  30. 30. 
    Spengler CM, Czeisler CA, Shea SA 2000. An endogenous circadian rhythm of respiratory control in humans. J. Physiol. 526:Part 3683–94
    [Google Scholar]
  31. 31. 
    Butler MP, Smales C, Wu H, Hussain MV, Mohamed YA et al. 2015. The circadian system contributes to apnea lengthening across the night in obstructive sleep apnea. Sleep 38:1793–801
    [Google Scholar]
  32. 32. 
    Kondo S. 1993. Circadian variation of bronchial caliber and antigen-induced late asthmatic response. Chest 104:801–5
    [Google Scholar]
  33. 33. 
    Mohiuddin AA, Martin RJ. 1990. Circadian basis of the late asthmatic response. Am. Rev. Respir. Dis. 142:1153–57
    [Google Scholar]
  34. 34. 
    Ferraz E, Borges MC, Terra-Filho J, Martinez JA, Vianna EO 2006. Comparison of 4 am and 4 pm bronchial responsiveness to hypertonic saline in asthma. Lung 184:341–46
    [Google Scholar]
  35. 35. 
    Oosterhoff Y, Koeter GH, De Monchy JG, Postma DS 1993. Circadian variation in airway responsiveness to methacholine, propranolol, and AMP in atopic asthmatic subjects. Am. Rev. Respir. Dis. 147:512–17
    [Google Scholar]
  36. 36. 
    Davies RJ, Green M, Schofield NM 1976. Recurrent nocturnal asthma after exposure to grain dust. Am. Rev. Respir. Dis. 114:1011–19
    [Google Scholar]
  37. 37. 
    Kelly EA, Houtman JJ, Jarjour NN 2004. Inflammatory changes associated with circadian variation in pulmonary function in subjects with mild asthma. Clin. Exp. Allergy 34:227–33
    [Google Scholar]
  38. 38. 
    Huang RC. 2018. The discoveries of molecular mechanisms for the circadian rhythm: the 2017 Nobel Prize in Physiology or Medicine. Biomed. J. 41:5–8
    [Google Scholar]
  39. 39. 
    Mackey SR. 2007. Biological Rhythms Workshop IA: molecular basis of rhythms generation. Cold Spring Harb. Symp. Quant. Biol. 72:7–19
    [Google Scholar]
  40. 40. 
    Trott AJ, Menet JS. 2018. Regulation of circadian clock transcriptional output by CLOCK:BMAL1. PLOS Genet 14:e1007156
    [Google Scholar]
  41. 41. 
    Chen L, Yang G. 2014. PPARs integrate the mammalian clock and energy metabolism. PPAR Res 2014:653017
    [Google Scholar]
  42. 42. 
    Gachon F, Olela FF, Schaad O, Descombes P, Schibler U 2006. The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification. Cell Metab 4:25–36
    [Google Scholar]
  43. 43. 
    Storch KF, Paz C, Signorovitch J, Raviola E, Pawlyk B et al. 2007. Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information. Cell 130:730–41
    [Google Scholar]
  44. 44. 
    Patke A, Murphy PJ, Onat OE, Krieger AC, Ozcelik T et al. 2017. Mutation of the human circadian clock gene CRY1 in familial delayed sleep phase disorder. Cell 169:203–15.e13
    [Google Scholar]
  45. 45. 
    Toh KL, Jones CR, He Y, Eide EJ, Hinz WA et al. 2001. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291:1040–43
    [Google Scholar]
  46. 46. 
    Xu Y, Padiath QS, Shapiro RE, Jones CR, Wu SC et al. 2005. Functional consequences of a CKIδ mutation causing familial advanced sleep phase syndrome. Nature 434:640–44
    [Google Scholar]
  47. 47. 
    Liu AC, Tran HG, Zhang EE, Priest AA, Welsh DK, Kay SA 2008. Redundant function of REV-ERBα and β and non-essential role for Bmal1 cycling in transcriptional regulation of intracellular circadian rhythms. PLOS Genet 4:e1000023
    [Google Scholar]
  48. 48. 
    Nakajima M, Imai K, Ito H, Nishiwaki T, Murayama Y et al. 2005. Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308:414–15
    [Google Scholar]
  49. 49. 
    O'Neill JS, Reddy AB. 2011. Circadian clocks in human red blood cells. Nature 469:498–503
    [Google Scholar]
  50. 50. 
    Scrima R, Cela O, Merla G, Augello B, Rubino R et al. 2016. Clock-genes and mitochondrial respiratory activity: evidence of a reciprocal interplay. Biochim. Biophys. Acta 1857:1344–51
    [Google Scholar]
  51. 51. 
    Hughes ME, DiTacchio L, Hayes KR, Vollmers C, Pulivarthy S et al. 2009. Harmonics of circadian gene transcription in mammals. PLOS Genet 5:e1000442
    [Google Scholar]
  52. 52. 
    Perrin L, Loizides-Mangold U, Chanon S, Gobet C, Hulo N et al. 2018. Transcriptomic analyses reveal rhythmic and CLOCK-driven pathways in human skeletal muscle. eLife 7:e34114
    [Google Scholar]
  53. 53. 
    Koike N, Yoo SH, Huang HC, Kumar V, Lee C et al. 2012. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338:349–54
    [Google Scholar]
  54. 54. 
    Wang Y, Song L, Liu M, Ge R, Zhou Q et al. 2018. A proteomics landscape of circadian clock in mouse liver. Nat. Commun. 9:1553
    [Google Scholar]
  55. 55. 
    Kriebs A, Jordan SD, Soto E, Henriksson E, Sandate CR et al. 2017. Circadian repressors CRY1 and CRY2 broadly interact with nuclear receptors and modulate transcriptional activity. PNAS 114:8776–81
    [Google Scholar]
  56. 56. 
    Yang X, Lamia KA, Evans RM 2007. Nuclear receptors, metabolism, and the circadian clock. Cold Spring Harb. Symp. Quant. Biol. 72:387–94
    [Google Scholar]
  57. 57. 
    Raghuram S, Stayrook KR, Huang P, Rogers PM, Nosie AK et al. 2007. Identification of heme as the ligand for the orphan nuclear receptors REV-ERBα and REV-ERBβ. Nat. Struct. Mol. Biol. 14:1207–13
    [Google Scholar]
  58. 58. 
    Burris TP, Busby SA, Griffin PR 2012. Targeting orphan nuclear receptors for treatment of metabolic diseases and autoimmunity. Chem. Biol. 19:51–59
    [Google Scholar]
  59. 59. 
    Lipton JO, Yuan ED, Boyle LM, Ebrahimi-Fakhari D, Kwiatkowski E et al. 2015. The circadian protein BMAL1 regulates translation in response to S6K1-mediated phosphorylation. Cell 161:1138–51
    [Google Scholar]
  60. 60. 
    Wu R, Dang F, Li P, Wang P, Xu Q et al. 2019. The circadian protein Period2 suppresses mTORC1 activity via recruiting Tsc1 to mTORC1 complex. Cell Metab 29:653–67.e6
    [Google Scholar]
  61. 61. 
    Zhang EE, Liu Y, Dentin R, Pongsawakul PY, Liu AC et al. 2010. Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nat. Med. 16:1152–56
    [Google Scholar]
  62. 62. 
    Zhang Y, Fang B, Emmett MJ, Damle M, Sun Z et al. 2015. Discrete functions of nuclear receptor Rev-erbα couple metabolism to the clock. Science 348:1488–92
    [Google Scholar]
  63. 63. 
    Okabe T, Chavan R, Fonseca Costa SS, Brenna A, Ripperger JA, Albrecht U 2016. REV-ERBα influences the stability and nuclear localization of the glucocorticoid receptor. J. Cell Sci. 129:4143–54
    [Google Scholar]
  64. 64. 
    Lee Y, Kim K. 2012. Posttranslational and epigenetic regulation of the CLOCK/BMAL1 complex in the mammalian. Anim. Cells Syst. 16:1–10
    [Google Scholar]
  65. 65. 
    Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH et al. 2004. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. PNAS 101:5339–46
    [Google Scholar]
  66. 66. 
    Nagoshi E, Saini C, Bauer C, Laroche T, Naef F, Schibler U 2004. Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119:693–705
    [Google Scholar]
  67. 67. 
    Welsh DK, Yoo SH, Liu AC, Takahashi JS, Kay SA 2004. Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression. Curr. Biol. 14:2289–95
    [Google Scholar]
  68. 68. 
    Schibler U, Gotic I, Saini C, Gos P, Curie T et al. 2015. Clock-talk: interactions between central and peripheral circadian oscillators in mammals. Cold Spring Harb. Symp. Quant. Biol. 80:223–32
    [Google Scholar]
  69. 69. 
    Lehman MN, Silver R, Gladstone WR, Kahn RM, Gibson M, Bittman EL 1987. Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain. J. Neurosci. 7:1626–38
    [Google Scholar]
  70. 70. 
    Hughes ME, Hong HK, Chong JL, Indacochea AA, Lee SS et al. 2012. Brain-specific rescue of Clock reveals system-driven transcriptional rhythms in peripheral tissue. PLOS Genet 8:e1002835
    [Google Scholar]
  71. 71. 
    Kornmann B, Schaad O, Bujard H, Takahashi JS, Schibler U 2007. System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLOS Biol 5:e34
    [Google Scholar]
  72. 72. 
    Zhang Z, Hunter L, Wu G, Maidstone R, Mizoro Y et al. 2019. Genome-wide effect of pulmonary airway epithelial cell-specific Bmal1 deletion. FASEB J 33:6226–38
    [Google Scholar]
  73. 73. 
    Ruben MD, Wu G, Smith DF, Schmidt RE, Francey LJ et al. 2018. A database of tissue-specific rhythmically expressed human genes has potential applications in circadian medicine. Sci. Transl. Med. 10: eaat8806
    [Google Scholar]
  74. 74. 
    Anafi RC, Francey LJ, Hogenesch JB, Kim J 2017. CYCLOPS reveals human transcriptional rhythms in health and disease. PNAS 114:5312–17
    [Google Scholar]
  75. 75. 
    Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB 2014. A circadian gene expression atlas in mammals: implications for biology and medicine. PNAS 111:16219–24
    [Google Scholar]
  76. 76. 
    Mure LS, Le HD, Benegiamo G, Chang MW, Rios L et al. 2018. Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science 359: eaao0318
    [Google Scholar]
  77. 77. 
    Mavroudis PD, DuBois DC, Almon RR, Jusko WJ 2018. Daily variation of gene expression in diverse rat tissues. PLOS ONE 13:e0197258
    [Google Scholar]
  78. 78. 
    Beytebiere JR, Trott AJ, Greenwell BJ, Osborne CA, Vitet H et al. 2019. Tissue-specific BMAL1 cistromes reveal that rhythmic transcription is associated with rhythmic enhancer-enhancer interactions. Genes Dev 33:294–309
    [Google Scholar]
  79. 79. 
    Caratti G, Iqbal M, Hunter L, Kim D, Wang P et al. 2018. REVERBα couples the circadian clock to hepatic glucocorticoid action. J. Clin. Investig. 128:4454–71
    [Google Scholar]
  80. 80. 
    Haspel JA, Chettimada S, Shaik RS, Chu JH, Raby BA et al. 2014. Circadian rhythm reprogramming during lung inflammation. Nat. Commun. 5:4753
    [Google Scholar]
  81. 81. 
    Ramasamy A, Kuokkanen M, Vedantam S, Gajdos ZK, Couto Alves A et al. 2012. Genome-wide association studies of asthma in population-based cohorts confirm known and suggested loci and identify an additional association near HLA. PLOS ONE 7:e44008
    [Google Scholar]
  82. 82. 
    Moffatt MF, Gut IG, Demenais F, Strachan DP, Bouzigon E et al. 2010. A large-scale, consortium-based genomewide association study of asthma. N. Engl. J. Med. 363:1211–21
    [Google Scholar]
  83. 83. 
    Acevedo N, Saaf A, Soderhall C, Melen E, Mandelin J et al. 2013. Interaction between retinoid acid receptor-related orphan receptor alpha (RORA) and neuropeptide S receptor 1 (NPSR1) in asthma. PLOS ONE 8:e60111
    [Google Scholar]
  84. 84. 
    Franks TJ, Colby TV, Travis WD, Tuder RM, Reynolds HY et al. 2008. Resident cellular components of the human lung: current knowledge and goals for research on cell phenotyping and function. Proc. Am. Thorac. Soc. 5:763–66
    [Google Scholar]
  85. 85. 
    Ermert L, Duncker HR, Rosseau S, Schutte H, Seeger W 1994. Morphometric analysis of pulmonary intracapillary leukocyte pools in ex vivo-perfused rabbit lungs. Am. J. Physiol. 267:L64–70
    [Google Scholar]
  86. 86. 
    Granton E, Kim JH, Podstawka J, Yipp BG 2018. The lung microvasculature is a functional immune niche. Trends Immunol 39:890–99
    [Google Scholar]
  87. 87. 
    Pezuk P, Mohawk JA, Wang LA, Menaker M 2012. Glucocorticoids as entraining signals for peripheral circadian oscillators. Endocrinology 153:4775–83
    [Google Scholar]
  88. 88. 
    Buhr ED, Yoo SH, Takahashi JS 2010. Temperature as a universal resetting cue for mammalian circadian oscillators. Science 330:379–85
    [Google Scholar]
  89. 89. 
    Bando H, Nishio T, van der Horst GT, Masubuchi S, Hisa Y, Okamura H 2007. Vagal regulation of respiratory clocks in mice. J. Neurosci. 27:4359–65
    [Google Scholar]
  90. 90. 
    Gibbs J, Ince L, Matthews L, Mei J, Bell T et al. 2014. An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action. Nat. Med. 20:919–26
    [Google Scholar]
  91. 91. 
    Ince LM, Zhang Z, Beesley S, Vonslow RM, Saer BR et al. 2019. Circadian variation in pulmonary inflammatory responses is independent of rhythmic glucocorticoid signaling in airway epithelial cells. FASEB J 33:126–39
    [Google Scholar]
  92. 92. 
    Abraham U, Granada AE, Westermark PO, Heine M, Kramer A, Herzel H 2010. Coupling governs entrainment range of circadian clocks. Mol. Syst. Biol. 6:438
    [Google Scholar]
  93. 93. 
    Yamazaki S, Straume M, Tei H, Sakaki Y, Menaker M, Block GD 2002. Effects of aging on central and peripheral mammalian clocks. PNAS 99:10801–6
    [Google Scholar]
  94. 94. 
    Reyfman PA, Walter JM, Joshi N, Anekalla KR, McQuattie-Pimentel AC et al. 2019. Single-cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 199:1517–36
    [Google Scholar]
  95. 95. 
    Montoro DT, Haber AL, Biton M, Vinarsky V, Lin B et al. 2018. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature 560:319–24
    [Google Scholar]
  96. 96. 
    Williams J, Yang N, Wood A, Zindy E, Meng QJ, Streuli CH 2018. Epithelial and stromal circadian clocks are inversely regulated by their mechano-matrix environment. J. Cell Sci. 131: jcs208223
    [Google Scholar]
  97. 97. 
    Gibbs JE, Beesley S, Plumb J, Singh D, Farrow S et al. 2009. Circadian timing in the lung; a specific role for bronchiolar epithelial cells. Endocrinology 150:268–76
    [Google Scholar]
  98. 98. 
    Du Y, Kitzmiller JA, Sridharan A, Perl AK, Bridges JP et al. 2017. Lung Gene Expression Analysis (LGEA): an integrative web portal for comprehensive gene expression data analysis in lung development. Thorax 72:481–84
    [Google Scholar]
  99. 99. 
    Pariollaud M, Gibbs JE, Hopwood TW, Brown S, Begley N et al. 2018. Circadian clock component REV-ERBα controls homeostatic regulation of pulmonary inflammation. J. Clin. Investig. 128:2281–96
    [Google Scholar]
  100. 100. 
    Halberg F, Johnson EA, Brown BW, Bittner JJ 1960. Susceptibility rhythm to E. coli endotoxin and bioassay. Proc. Soc. Exp. Biol. Med. 103:142–44
    [Google Scholar]
  101. 101. 
    Gibbs JE, Blaikley J, Beesley S, Matthews L, Simpson KD et al. 2012. The nuclear receptor REV-ERBα mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines. PNAS 109:582–87
    [Google Scholar]
  102. 102. 
    Ryzhikov M, Ehlers A, Steinberg D, Xie W, Oberlander E et al. 2019. Diurnal rhythms spatially and temporally organize autophagy. Cell Rep 26:1880–92.e6
    [Google Scholar]
  103. 103. 
    Oishi K, Ohkura N, Kadota K, Kasamatsu M, Shibusawa K et al. 2006. Clock mutation affects circadian regulation of circulating blood cells. J. Circadian Rhythms 4:13
    [Google Scholar]
  104. 104. 
    Scheiermann C, Kunisaki Y, Lucas D, Chow A, Jang JE et al. 2012. Adrenergic nerves govern circadian leukocyte recruitment to tissues. Immunity 37:290–301
    [Google Scholar]
  105. 105. 
    Zhao Y, Liu M, Chan XY, Tan SY, Subramaniam S et al. 2017. Uncovering the mystery of opposite circadian rhythms between mouse and human leukocytes in humanized mice. Blood 130:1995–2005
    [Google Scholar]
  106. 106. 
    Casanova-Acebes M, Pitaval C, Weiss LA, Nombela-Arrieta C, Chevre R et al. 2013. Rhythmic modulation of the hematopoietic niche through neutrophil clearance. Cell 153:1025–35
    [Google Scholar]
  107. 107. 
    He W, Holtkamp S, Hergenhan SM, Kraus K, de Juan A et al. 2018. Circadian expression of migratory factors establishes lineage-specific signatures that guide the homing of leukocyte subsets to tissues. Immunity 49:1175–90.e7
    [Google Scholar]
  108. 108. 
    A-Gonzalez N, Quintana JA, García-Silva S, Mazariegos M, González de la, Aleja A et al. 2017. Phagocytosis imprints heterogeneity in tissue-resident macrophages. J. Exp. Med. 214:1281–96
    [Google Scholar]
  109. 109. 
    Druzd D, Matveeva O, Ince L, Harrison U, He W et al. 2017. Lymphocyte circadian clocks control lymph node trafficking and adaptive immune responses. Immunity 46:120–32
    [Google Scholar]
  110. 110. 
    Adrover JM, Del Fresno C, Crainiciuc G, Cuartero MI, Casanova-Acebes M et al. 2019. A neutrophil timer coordinates immune defense and vascular protection. Immunity 50:390–402.e10
    [Google Scholar]
  111. 111. 
    Casanova-Acebes M, Nicolas-Avila JA, Li JL, Garcia-Silva S, Balachander A et al. 2018. Neutrophils instruct homeostatic and pathological states in naive tissues. J. Exp. Med. 215:2778–95
    [Google Scholar]
  112. 112. 
    Hriscu ML. 2005. Modulatory factors of circadian phagocytic activity. Ann. N. Y. Acad. Sci. 1057:403–30
    [Google Scholar]
  113. 113. 
    Pavord ID, Beasley R, Agusti A, Anderson GP, Bel E et al. 2018. After asthma: redefining airways diseases. Lancet 391:350–400
    [Google Scholar]
  114. 114. 
    Ehlers A, Xie W, Agapov E, Brown S, Steinberg D et al. 2018. BMAL1 links the circadian clock to viral airway pathology and asthma phenotypes. Mucosal Immunol 11:97–111
    [Google Scholar]
  115. 115. 
    Majumdar T, Dhar J, Patel S, Kondratov R, Barik S 2017. Circadian transcription factor BMAL1 regulates innate immunity against select RNA viruses. Innate Immunity 23:147–54
    [Google Scholar]
  116. 116. 
    Zaslona Z, Case S, Early JO, Lalor SJ, McLoughlin RM et al. 2017. The circadian protein BMAL1 in myeloid cells is a negative regulator of allergic asthma. Am. J. Physiol. Lung Cell. Mol. Physiol. 312:L855–60
    [Google Scholar]
  117. 117. 
    Falliers CJ. 1981. Time-dependent processes in allergy and asthma. Ann. Allergy 47:253–59
    [Google Scholar]
  118. 118. 
    Gervais P, Reinberg A, Gervais C, Smolensky M, DeFrance O 1977. Twenty-four-hour rhythm in the bronchial hyperreactivity to house dust in asthmatics. J. Allergy Clin. Immunol. 59:207–13
    [Google Scholar]
  119. 119. 
    Wenzel S, Holgate ST. 2006. The mouse trap: it still yields few answers in asthma. Am. J. Respir. Crit. Care Med. 174:1173–76
    [Google Scholar]
  120. 120. 
    Meltzer LJ, Faino A, Szefler SJ, Strand M, Gelfand EW, Beebe DW 2015. Experimentally manipulated sleep duration in adolescents with asthma: feasibility and preliminary findings. Pediatr. Pulmonol. 50:1360–67
    [Google Scholar]
  121. 121. 
    Noonan M, Karpel JP, Bensch GW, Ramsdell JW, Webb DR et al. 2001. Comparison of once-daily to twice-daily treatment with mometasone furoate dry powder inhaler. Ann. Allergy Asthma Immunol. 86:36–43
    [Google Scholar]
  122. 122. 
    Tsai CL, Brenner BE, Camargo CA Jr 2007. Circadian-rhythm differences among emergency department patients with chronic obstructive pulmonary disease exacerbation. Chronobiol. Int. 24:699–713
    [Google Scholar]
  123. 123. 
    Hwang JW, Sundar IK, Yao H, Sellix MT, Rahman I 2014. Circadian clock function is disrupted by environmental tobacco/cigarette smoke, leading to lung inflammation and injury via a SIRT1-BMAL1 pathway. FASEB J 28:176–94
    [Google Scholar]
  124. 124. 
    Sundar IK, Ahmad T, Yao H, Hwang JW, Gerloff J et al. 2015. Influenza A virus-dependent remodeling of pulmonary clock function in a mouse model of COPD. Sci. Rep. 4:9927
    [Google Scholar]
  125. 125. 
    Lederer DJ, Martinez FJ. 2018. Idiopathic pulmonary fibrosis. N. Engl. J. Med. 378:1811–23
    [Google Scholar]
  126. 126. 
    Nureki SI, Tomer Y, Venosa A, Katzen J, Russo SJ et al. 2018. Expression of mutant Sftpc in murine alveolar epithelia drives spontaneous lung fibrosis. J. Clin. Investig. 128:4008–24
    [Google Scholar]
  127. 127. 
    Mora AL, Bueno M, Rojas M 2017. Mitochondria in the spotlight of aging and idiopathic pulmonary fibrosis. J. Clin. Investig. 127:405–14
    [Google Scholar]
  128. 128. 
    Dik WA, McAnulty RJ, Versnel MA, Naber BA, Zimmermann LJ et al. 2003. Short course dexamethasone treatment following injury inhibits bleomycin induced fibrosis in rats. Thorax 58:765–71
    [Google Scholar]
  129. 129. 
    Pekovic-Vaughan V, Gibbs J, Yoshitane H, Yang N, Pathiranage D et al. 2014. The circadian clock regulates rhythmic activation of the NRF2/glutathione-mediated antioxidant defense pathway to modulate pulmonary fibrosis. Genes Dev 28:548–60
    [Google Scholar]
  130. 130. 
    Dong C, Gongora R, Sosulski ML, Luo F, Sanchez CG 2016. Regulation of transforming growth factor-beta1 (TGF-β1)-induced pro-fibrotic activities by circadian clock gene BMAL1.Respirat. Res 17:4
    [Google Scholar]
  131. 131. 
    Sengupta S, Tang SY, Devine J, Nayak S, Zhang S et al. 2019. Circadian control of lung inflammation in influenza infection. Nat. Commun. 10:4107
    [Google Scholar]
  132. 132. 
    Edgar RS, Stangherlin A, Nagy AD, Nicoll MP, Efstathiou S et al. 2016. Cell autonomous regulation of herpes and influenza virus infection by the circadian clock. PNAS 113:10085–90
    [Google Scholar]
  133. 133. 
    Keeler SP, Agapov EV, Hinojosa ME, Letvin AN, Wu K, Holtzman MJ 2018. Influenza A virus infection causes chronic lung disease linked to sites of active viral RNA remnants. J. Immunol. 201:2354–68
    [Google Scholar]
  134. 134. 
    Walter MJ, Morton JD, Kajiwara N, Agapov E, Holtzman MJ 2002. Viral induction of a chronic asthma phenotype and genetic segregation from the acute response. J. Clin. Investig. 110:165–75
    [Google Scholar]
  135. 135. 
    Masri S, Sassone-Corsi P. 2018. The emerging link between cancer, metabolism, and circadian rhythms. Nat. Med. 24:1795–803
    [Google Scholar]
  136. 136. 
    Sulli G, Rommel A, Wang X, Kolar MJ, Puca F et al. 2018. Pharmacological activation of REV-ERBs is lethal in cancer and oncogene-induced senescence. Nature 553:351–55
    [Google Scholar]
  137. 137. 
    Logan RW, Zhang C, Murugan S, O'Connell S, Levitt D et al. 2012. Chronic shift-lag alters the circadian clock of NK cells and promotes lung cancer growth in rats. J. Immunol. 188:2583–91
    [Google Scholar]
  138. 138. 
    Deng W, Zhu S, Zeng L, Liu J, Kang R et al. 2018. The circadian clock controls immune checkpoint pathway in sepsis. Cell Rep 24:366–78
    [Google Scholar]
  139. 139. 
    Yu H, Boyle TA, Zhou C, Rimm DL, Hirsch FR 2016. PD-L1 expression in lung cancer. J. Thorac. Oncol. 11:964–75
    [Google Scholar]
  140. 140. 
    Smolensky MH, Lemmer B, Reinberg AE 2007. Chronobiology and chronotherapy of allergic rhinitis and bronchial asthma. Adv. Drug Deliv. Rev. 59:852–82
    [Google Scholar]
  141. 141. 
    Hughes ME, Abruzzi KC, Allada R, Anafi R, Arpat AB et al. 2017. Guidelines for genome-scale analysis of biological rhythms. J. Biol. Rhythms 32:380–93
    [Google Scholar]
  142. 142. 
    Honma S, Kawamoto T, Takagi Y, Fujimoto K, Sato F et al. 2002. Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature 419:841–44
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-021119-034602
Loading
/content/journals/10.1146/annurev-physiol-021119-034602
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error