1932

Abstract

Autophagy is a cellular homeostatic program for the turnover of cellular organelles and proteins, in which double-membraned vesicles (autophagosomes) sequester cytoplasmic cargos, which are subsequently delivered to the lysosome for degradation. Emerging evidence implicates autophagy as an important modulator of human disease. Macroautophagy and selective autophagy (e.g., mitophagy, aggrephagy) can influence cellular processes, including cell death, inflammation, and immune responses, and thereby exert both adaptive and maladaptive roles in disease pathogenesis. Autophagy has been implicated in acute kidney injury, which can arise in response to nephrotoxins, sepsis, and ischemia/reperfusion, and in chronic kidney diseases. The latter includes comorbidities of diabetes and recent evidence for chronic obstructive pulmonary disease–associated kidney injury. Roles of autophagy in polycystic kidney disease and kidney cancer have also been described. Targeting the autophagy pathway may have therapeutic benefit in the treatment of kidney disorders.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021119-034658
2020-02-10
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/physiol/82/1/annurev-physiol-021119-034658.html?itemId=/content/journals/10.1146/annurev-physiol-021119-034658&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Levine B, Kroemer G. 2019. Biological functions of autophagy genes: a disease perspective. Cell 176:1–211–42
    [Google Scholar]
  2. 2. 
    Mizushima N. 2018. A brief history of autophagy from cell biology to physiology and disease. Nat. Cell Biol. 20:5521–27
    [Google Scholar]
  3. 3. 
    Mizushima N, Komatsu M. 2011. Autophagy: renovation of cells and tissues. Cell 147:728–41
    [Google Scholar]
  4. 4. 
    Yin Z, Pascual C, Klionsky DJ 2016. Autophagy: machinery and regulation. Microb. Cell 3:12588–96
    [Google Scholar]
  5. 5. 
    Tekirdag K, Cuervo AM. 2018. Chaperone-mediated autophagy and endosomal microautophagy: joint by a chaperone. J. Biol. Chem. 293:155414–24
    [Google Scholar]
  6. 6. 
    Oku M, Sakai Y. 2018. Three distinct types of microautophagy based on membrane dynamics and molecular machineries. Bioessays 40:6e1800008
    [Google Scholar]
  7. 7. 
    Lamark T, Svenning S, Johansen T 2017. Regulation of selective autophagy: the p62/SQSTM1 paradigm. Essays Biochem 61:6609–24
    [Google Scholar]
  8. 8. 
    Youle RJ, Narendra DP. 2011. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 12:19–14
    [Google Scholar]
  9. 9. 
    Leidal AM, Levine B, Debnath J 2018. Autophagy and the cell biology of age-related disease. Nat. Cell Biol. 20:121338–48
    [Google Scholar]
  10. 10. 
    Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M et al. 2010. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol. Rev. 90:1383–435
    [Google Scholar]
  11. 11. 
    Levine B, Kroemer G. 2008. Autophagy in the pathogenesis of disease. Cell 132:127–42
    [Google Scholar]
  12. 12. 
    Levine B, Klionsky DJ. 2017. Autophagy wins the 2016 Nobel Prize in Physiology or Medicine: breakthroughs in baker's yeast fuel advances in biomedical research. PNAS 114:2201–5
    [Google Scholar]
  13. 13. 
    Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y 2004. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol. Biol. Cell 15:31101–11
    [Google Scholar]
  14. 14. 
    Galluzzi L, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM et al. 2017. Molecular definitions of autophagy and related processes. EMBO J 36:131811–36
    [Google Scholar]
  15. 15. 
    Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D et al. 2018. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25:3486–541
    [Google Scholar]
  16. 16. 
    Deretic V, Levine B. 2018. Autophagy balances inflammation in innate immunity. Autophagy 14:2243–51
    [Google Scholar]
  17. 17. 
    Deretic V, Saitoh T, Akira S 2013. Autophagy in infection, inflammation and immunity. Nat. Rev. Immunol. 13:10722–37
    [Google Scholar]
  18. 18. 
    Lahiri V, Hawkins WD, Klionsky DJ 2019. Watch what you (self-) eat: autophagic mechanisms that modulate metabolism. Cell Metab 29:4803–26
    [Google Scholar]
  19. 19. 
    Galluzzi L, Bravo-San Pedro JM, Levine B, Green DR, Kroemer G 2017. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat. Rev. Drug Discov. 16:7487–511
    [Google Scholar]
  20. 20. 
    Rubinsztein DC, Codogno P, Levine B 2012. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat. Rev. Drug Discov. 11:9709–30
    [Google Scholar]
  21. 21. 
    Galluzzi L, Pietrocola F, Levine B, Kroemer G 2014. Metabolic control of autophagy. Cell 159:61263–76
    [Google Scholar]
  22. 22. 
    Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A et al. 2009. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell 20:1981–91
    [Google Scholar]
  23. 23. 
    Jung CH, Jun CB, Ro SH, Kim YM, Otto NM et al. 2009. ULK–Atg13–FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 20:1992–2003
    [Google Scholar]
  24. 24. 
    Kim J, Kundu M, Viollet B, Guan KL 2011. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13:132–41
    [Google Scholar]
  25. 25. 
    Liang XH, Jackson S, Seaman M, Brown K, Kempkes B et al. 1999. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402:672–76
    [Google Scholar]
  26. 26. 
    He C, Levine B. 2010. The beclin 1 interactome. Curr. Opin. Cell Biol. 22:140–49
    [Google Scholar]
  27. 27. 
    Itakura E, Kishi C, Inoue K, Mizushima N 2008. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol. Biol. Cell 19:5360–72
    [Google Scholar]
  28. 28. 
    Zhang D, Wang W, Sun X, Xu D, Wang C et al. 2016. AMPK regulates autophagy by phosphorylating BECN1 at threonine 388. Autophagy 12:1447–59
    [Google Scholar]
  29. 29. 
    Yang Z, Klionsky DJ. 2010. Mammalian autophagy: core molecular machinery and signaling regulation. Curr. Opin. Cell Biol. 22:124–31
    [Google Scholar]
  30. 30. 
    Dooley HC, Razi M, Polson HE, Girardin SE, Wilson MI et al. 2014. WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12–5-16L1. Mol. Cell 55:2238–52
    [Google Scholar]
  31. 31. 
    Chan EY. 2012. Regulation and function of uncoordinated-51 like kinase proteins. Antioxid. Redox Signal. 17:775–85
    [Google Scholar]
  32. 32. 
    Valverde DP, Yu S, Boggavarapu V, Kumar N, Lees JA et al. 2019. ATG2 transports lipids to promote autophagosome biogenesis. J. Cell Biol. 218:61787
    [Google Scholar]
  33. 33. 
    Tsuboyama K, Koyama-Honda I, Sakamaki Y, Koike M, Morishita H et al. 2016. The ATG conjugation systems are important for degradation of the inner autophagosomal membrane. Science 354:63151036–41
    [Google Scholar]
  34. 34. 
    Tanida I. 2011. Autophagy basics. Microbiol. Immunol. 55:1–11
    [Google Scholar]
  35. 35. 
    Kriegenburg F, Ungermann C, Reggiori F 2018. Coordination of autophagosome-lysosome fusion by Atg8 family members. Curr. Biol. 28:8R512–18
    [Google Scholar]
  36. 36. 
    Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA et al. 2010. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLOS Biol 8:e1000298
    [Google Scholar]
  37. 37. 
    Gegg ME, Cooper JM, Chau KY, Rojo M, Schapira AH et al. 2010. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum. Mol. Genet. 19:4861–70
    [Google Scholar]
  38. 38. 
    Koyano F, Okatsu K, Kosako H, Tamura Y, Go E et al. 2014. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510:162–66
    [Google Scholar]
  39. 39. 
    Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C et al. 2015. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524:7565309–14
    [Google Scholar]
  40. 40. 
    Padman BS, Nguyen TN, Uoselis L, Skulsuppaisarn M, Nguyen LK et al. 2019. LC3/GABARAPs drive ubiquitin-independent recruitment of Optineurin and NDP52 to amplify mitophagy. Nat. Commun. 10:1408
    [Google Scholar]
  41. 41. 
    Trancikova A, Tsika E, Moore DJ 2012. Mitochondrial dysfunction in genetic animal models of Parkinson's disease. Antioxid. Redox Signal. 216:896–919
    [Google Scholar]
  42. 42. 
    Ding WX, Ni HM, Li M, Liao Y, Chen X et al. 2010. Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming. J. Biol. Chem. 285:27879–90
    [Google Scholar]
  43. 43. 
    Cybulsky AV. 2017. Endoplasmic reticulum stress, the unfolded protein response and autophagy in kidney diseases. Nat. Rev. Nephrol. 13:11681–96
    [Google Scholar]
  44. 44. 
    Maekawa H, Inagi R. 2017. Stress signal network between hypoxia and ER stress in chronic kidney disease. Front. Physiol. 8:74
    [Google Scholar]
  45. 45. 
    Stolz A, Ernst A, Dikic I 2014. Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol. 16:495–501
    [Google Scholar]
  46. 46. 
    Yamamoto A, Simonsen A. 2011. The elimination of accumulated and aggregated proteins: a role for aggrephagy in neurodegeneration. Neurobiol. Dis. 43:17–28
    [Google Scholar]
  47. 47. 
    Sureshbabu A, Ryter SW, Choi ME 2015. Oxidative stress and autophagy: crucial modulators of kidney injury. Redox Biol 4:208–14
    [Google Scholar]
  48. 48. 
    Di Meo S, Reed TT, Venditti P, Victor VM 2016. Role of ROS and RNS sources in physiological and pathological conditions. Oxid. Med. Cell. Longev. 2016:1245049
    [Google Scholar]
  49. 49. 
    Azad MB, Chen Y, Gibson SB 2009. Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment. Antioxid. Redox Signal. 11:4777–90
    [Google Scholar]
  50. 50. 
    Chen Y, McMillan-Ward E, Kong J, Israels SJ, Gibson SB 2007. Mitochondrial electron-transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by reactive oxygen species. J. Cell Sci. 120:Part 234155–66
    [Google Scholar]
  51. 51. 
    Lee SJ, Ryter SW, Xu JF, Nakahira K, Kim HP et al. 2011. Carbon monoxide activates autophagy via mitochondrial reactive oxygen species formation. Am. J. Respir. Cell Mol. Biol. 45:4867–73
    [Google Scholar]
  52. 52. 
    Sureshbabu A, Patino E, Ma KC, Laursen K, Finkelsztein EJ et al. 2018. RIPK3 promotes sepsis-induced acute kidney injury via mitochondrial dysfunction. JCI Insight 3:11e98411
    [Google Scholar]
  53. 53. 
    Bánhegyi G, Baumeister P, Benedetti A, Dong D, Fu Y et al. 2007. Endoplasmic reticulum stress. Ann. N. Y. Acad. Sci. 1113:58–71
    [Google Scholar]
  54. 54. 
    Schröder M, Kaufman RJ. 2005. The mammalian unfolded protein response. Annu. Rev. Biochem. 74:739–89
    [Google Scholar]
  55. 55. 
    Li J, Ni M, Lee B, Barron E, Hinton DR et al. 2008. The unfolded protein response regulator GRP78/BiP is required for endoplasmic reticulum integrity and stress-induced autophagy in mammalian cells. Cell Death Differ 15:91460–71
    [Google Scholar]
  56. 56. 
    Chandrika BB, Yang C, Ou Y, Feng X, Muhoza D et al. 2015. Endoplasmic reticulum stress-induced autophagy provides cytoprotection from chemical hypoxia and oxidant injury and ameliorates renal ischemia-reperfusion injury. PLOS ONE 10:10e0140025
    [Google Scholar]
  57. 57. 
    Gallazzini M, Pallet N. 2018. Endoplasmic reticulum stress and kidney dysfunction. Biol. Cell 110:9205–16
    [Google Scholar]
  58. 58. 
    Appenzeller-Herzog C, Hall MN. 2012. Bidirectional crosstalk between endoplasmic reticulum stress and mTOR signaling. Trends Cell Biol 22:274–82
    [Google Scholar]
  59. 59. 
    Rzymski T, Milani M, Pike L, Buffa F, Mellor HR et al. 2010. Regulation of autophagy by ATF4 in response to severe hypoxia. Oncogene 29:4424–35
    [Google Scholar]
  60. 60. 
    Jiang M, Liu K, Luo J, Dong Z 2010. Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury. Am. J. Pathol. 176:31181–92
    [Google Scholar]
  61. 61. 
    El Karoui K, Viau A, Dellis O, Bagattin A, Nguyen C et al. 2016. Endoplasmic reticulum stress drives proteinuria-induced kidney lesions via Lipocalin 2. Nat. Commun. 7:10330
    [Google Scholar]
  62. 62. 
    Zhou R, Yazdi AS, Menu P, Tschopp J 2011. A role for mitochondria in NLRP3 inflammasome activation. Nature 469:7329221–25
    [Google Scholar]
  63. 63. 
    Nakahira K, Haspel JA, Rathinam VA, Lee SJ, Dolinay T et al. 2011. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12:3222–30
    [Google Scholar]
  64. 64. 
    Shi CS, Shenderov K, Huang NN, Kabat J, Abu-Asab M et al. 2012. Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nat. Immunol. 13:3255–63
    [Google Scholar]
  65. 65. 
    Hartleben B, Gödel M, Meyer-Schwesinger C, Liu S, Ulrich T et al. 2010. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J. Clin. Investig. 120:41084–96
    [Google Scholar]
  66. 66. 
    Kawakami T, Gomez IG, Ren S, Hudkins K, Roach A et al. 2015. Deficient autophagy results in mitochondrial dysfunction and FSGS. J. Am. Soc. Nephrol. 26:51040–52
    [Google Scholar]
  67. 67. 
    Yi M, Zhang L, Liu Y, Livingston MJ, Chen JK et al. 2017. Autophagy is activated to protect against podocyte injury in adriamycin-induced nephropathy. Am. J. Physiol. Renal Physiol. 313:1F74–84
    [Google Scholar]
  68. 68. 
    Matsuda J, Namba T, Takabatake Y, Kimura T, Takahashi A et al. 2018. Antioxidant role of autophagy in maintaining the integrity of glomerular capillaries. Autophagy 14:153–65
    [Google Scholar]
  69. 69. 
    Periyasamy-Thandavan S, Jiang M, Wei Q, Smith R, Yin XM et al. 2008. Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells. Kidney Int 74:631–40
    [Google Scholar]
  70. 70. 
    Inoue K, Kuwana H, Shimamura Y, Ogata K, Taniguchi Y et al. 2010. Cisplatin-induced macroautophagy occurs prior to apoptosis in proximal tubules in vivo. Clin. Exp. Nephrol. 14:112–22
    [Google Scholar]
  71. 71. 
    Takahashi A, Kimura T, Takabatake Y, Namba T, Kaimori J et al. 2012. Autophagy guards against cisplatin-induced acute kidney injury. Am. J. Pathol. 180:517–25
    [Google Scholar]
  72. 72. 
    Amini FG, Rafieian-Kopaei M, Nematbakhsh M, Baradaran A, Nasri H 2012. Ameliorative effects of metformin on renal histologic and biochemical alterations of gentamicin-induced renal toxicity in Wistar rats. J. Res. Med. Sci. 17:7621–25
    [Google Scholar]
  73. 73. 
    Li J, Gui Y, Ren J, Liu X, Feng Y et al. 2016. Metformin protects against cisplatin-induced tubular cell apoptosis and acute kidney injury via AMPKα-regulated autophagy induction. Sci. Rep. 6:23975
    [Google Scholar]
  74. 74. 
    Lynch MR, Tran MT, Ralto KM, Zsengeller ZK, Raman V et al. 2019. TFEB-driven lysosomal biogenesis is pivotal for PGC1α-dependent renal stress resistance. JCI Insight 5:e126749
    [Google Scholar]
  75. 75. 
    Leventhal JS, Ni J, Osmond M, Lee K, Gusella GL et al. 2016. Autophagy limits endotoxemic acute kidney injury and alters renal tubular epithelial cell cytokine expression. PLOS ONE 11:3e0150001
    [Google Scholar]
  76. 76. 
    Mei S, Livingston M, Hao J, Li L, Mei C et al. 2016. Autophagy is activated to protect against endotoxic acute kidney injury. Sci. Rep. 6:22171
    [Google Scholar]
  77. 77. 
    Wu Y, Zhang Y, Wang L, Diao Z, Liu W 2015. The role of autophagy in kidney inflammatory injury via the NF-κB route induced by LPS. Int. J. Med. Sci. 12:8655–67
    [Google Scholar]
  78. 78. 
    Howell GM, Gomez H, Collage RD, Loughran P, Zhang X et al. 2013. Augmenting autophagy to treat acute kidney injury during endotoxemia in mice. PLOS ONE 8:7e69520
    [Google Scholar]
  79. 79. 
    Takahashi W, Watanabe E, Fujimura L, Watanabe-Takano H, Yoshidome H et al. 2013. Kinetics and protective role of autophagy in a mouse cecal ligation and puncture-induced sepsis. Crit. Care 17:4R160
    [Google Scholar]
  80. 80. 
    Sunahara S, Watanabe E, Hatano M, Swanson PE, Oami T et al. 2018. Influence of autophagy on acute kidney injury in a murine cecal ligation and puncture sepsis model. Sci. Rep. 8:11050
    [Google Scholar]
  81. 81. 
    Hsiao HW, Tsai KL, Wang LF, Chen YH, Chiang PC et al. 2012. The decline of autophagy contributes to proximal tubular dysfunction during sepsis. Shock 37:3289–96
    [Google Scholar]
  82. 82. 
    Zhao W, Zhang L, Chen R, Lu H, Sui M et al. 2018. SIRT3 protects against acute kidney injury via AMPK/mTOR-regulated autophagy. Front. Physiol. 9:1526
    [Google Scholar]
  83. 83. 
    Chien CT, Shyue SK, Lai MK 2007. Bcl-xL augmentation potentially reduces ischemia/reperfusion induced proximal and distal tubular apoptosis and autophagy. Transplantation 84:1183–90
    [Google Scholar]
  84. 84. 
    Suzuki C, Isaka Y, Takabatake Y, Tanaka H, Koike M et al. 2008. Participation of autophagy in renal ischemia/reperfusion injury. Biochem. Biophys. Res. Commun. 368:100–106
    [Google Scholar]
  85. 85. 
    He L, Livingston MJ, Dong Z 2014. Autophagy in acute kidney injury and repair. Nephron. Clin. Pract. 127:56–60
    [Google Scholar]
  86. 86. 
    Jiang M, Liu K, Luo J, Dong Z 2010. Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury. Am. J. Pathol. 176:1181–92
    [Google Scholar]
  87. 87. 
    Jiang M, Wei Q, Dong G, Komatsu M, Su Y et al. 2012. Autophagy in proximal tubules protects against acute kidney injury. Kidney Int 82:1271–83
    [Google Scholar]
  88. 88. 
    Liu S, Hartleben B, Kretz O, Wiech T, Igarashi P et al. 2012. Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia-reperfusion injury. Autophagy 8:826–83
    [Google Scholar]
  89. 89. 
    Kimura T, Takabatake Y, Takahashi A, Kaimori JY, Matsui I et al. 2011. Autophagy protects the proximal tubule from degeneration and acute ischemic injury. J. Am. Soc. Nephrol. 22:5902–13
    [Google Scholar]
  90. 90. 
    Tang C, Han H, Yan M, Zhu S, Liu J et al. 2018. PINK1-PRKN/PARK2 pathway of mitophagy is activated to protect against renal ischemia-reperfusion injury. Autophagy 14:5880–97
    [Google Scholar]
  91. 91. 
    Li L, Kang H, Zhang Q, D'Agati VD, Al-Awqati Q et al. 2019. FoxO3 activation in hypoxic tubules prevents chronic kidney disease. J. Clin. Investig. 129:2374–89
    [Google Scholar]
  92. 92. 
    Natl. Inst. Diabetes Dig. Kidney Dis 2019. Kidney disease statistics for the United States https://www.niddk.nih.gov/health-information/health-statistics/kidney-disease
  93. 93. 
    Lee SY, Kim SI, Choi ME 2015. Therapeutic targets for treating fibrotic kidney diseases. Transl. Res. 165:512–30
    [Google Scholar]
  94. 94. 
    Tanaka T. 2017. A mechanistic link between renal ischemia and fibrosis. Med. Mol. Morphol. 50:1 https://doi.org/10.1007/s00795-016-0146-3
    [Crossref] [Google Scholar]
  95. 95. 
    Liu N, Shi Y, Zhuang S 2016. Autophagy in chronic kidney diseases. Kidney Dis 2:37–45
    [Google Scholar]
  96. 96. 
    Lin TA, Wu VC, Wang CY 2019. Autophagy in chronic kidney diseases. Cells 8:161
    [Google Scholar]
  97. 97. 
    De Rechter S, Decuypere JP, Ivanova E, van den Heuvel LP, De Smedt H et al. 2016. Autophagy in renal diseases. Pediatr. Nephrol. 31:5737–52
    [Google Scholar]
  98. 98. 
    Ding Y, Choi ME. 2015. Autophagy in diabetic nephropathy. J. Endocrinol. 224:R15–30
    [Google Scholar]
  99. 99. 
    Ding Y, Kim SI, Lee SY, Koo JK, Wang Z et al. 2014. Autophagy regulates TGF-β expression and suppresses kidney fibrosis induced by unilateral ureteral obstruction. J. Am. Soc. Nephrol. 25:122835–46
    [Google Scholar]
  100. 100. 
    Kim WY, Nam SA, Song HC, Ko JS, Park SH et al. 2012. The role of autophagy in unilateral ureteral obstruction rat model. Nephrology 17:2148–59
    [Google Scholar]
  101. 101. 
    Li H, Peng X, Wang Y, Cao S, Xiong L et al. 2016. Atg5-mediated autophagy deficiency in proximal tubules promotes cell cycle G2/M arrest and renal fibrosis. Autophagy 12:91472–86
    [Google Scholar]
  102. 102. 
    Peng X, Wang Y, Li H, Fan J, Shen J et al. 2019. ATG5-mediated autophagy suppresses NF-κB signaling to limit epithelial inflammatory response to kidney injury. Cell Death Dis 10:4253
    [Google Scholar]
  103. 103. 
    Kim SI, Na HJ, Ding Y, Wang Z, Lee SJ et al. 2012. Autophagy promotes intracellular degradation of type I collagen induced by transforming growth factor (TGF)-β1. J. Biol. Chem. 287:1511677–88
    [Google Scholar]
  104. 104. 
    Nam SA, Kim WY, Kim JW, Park SH, Kim HL et al. 2019. Autophagy attenuates tubulointerstital fibrosis through regulating transforming growth factor-β and NLRP3 inflammasome signaling pathway. Cell Death Dis 10:278
    [Google Scholar]
  105. 105. 
    Yang S, Abdulla R, Lu C, Zhang L 2018. Inhibition of microRNA-376b protects against renal interstitial fibrosis via inducing macrophage autophagy by upregulating Atg5 in mice with chronic kidney disease. Kidney Blood Press. Res 43:61749–64
    [Google Scholar]
  106. 106. 
    Livingston MJ, Ding HF, Huang S, Hill JA, Yin XM et al. 2016. Persistent activation of autophagy in kidney tubular cells promotes renal interstitial fibrosis during unilateral ureteral obstruction. Autophagy 12:6976–98
    [Google Scholar]
  107. 107. 
    Singh L, Singh G, Dinda AK 2015. Understanding podocytopathy and its relevance to clinical nephrology. Indian J. Nephrol. 25:11–7
    [Google Scholar]
  108. 108. 
    Fang L, Zhou Y, Cao H, Wen P, Jiang L et al. 2013. Autophagy attenuates diabetic glomerular damage through protection of hyperglycemia-induced podocyte injury. PLOS ONE 8:e60546
    [Google Scholar]
  109. 109. 
    Zeng C, Fan Y, Wu J, Shi S, Chen Z et al. 2014. Podocyte autophagic activity plays a protective role in renal injury and delays the progression of podocytopathies. J. Pathol. 234:203–13
    [Google Scholar]
  110. 110. 
    Xu D, Chen P, Wang B, Wang Y, Miao N et al. 2019. NIX-mediated mitophagy protects against proteinuria-induced tubular cell apoptosis and renal injury. Am. J. Physiol. Renal Physiol. 316:F382–95
    [Google Scholar]
  111. 111. 
    Kawakami T, Gomez IG, Ren S, Hudkins K, Roach A et al. 2015. Deficient autophagy results in mitochondrial dysfunction and FSGS. J. Am. Soc. Nephrol. 26:51040–52
    [Google Scholar]
  112. 112. 
    Huang SS, Ding DF, Chen S, Dong CL, Ye XL et al. 2017. Resveratrol protects podocytes against apoptosis via stimulation of autophagy in a mouse model of diabetic nephropathy. Sci. Rep. 7:45692
    [Google Scholar]
  113. 113. 
    Kitada M, Ogura Y, Monno I, Koya D 2017. Regulating autophagy as a therapeutic target for diabetic nephropathy. Curr. Diab. Rep. 17:753
    [Google Scholar]
  114. 114. 
    Gödel M, Hartleben B, Herbach N, Shuya L, Zschiedrich S et al. 2011. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J. Clin. Investig. 121:2197–209
    [Google Scholar]
  115. 115. 
    Inoki K, Mori H, Wang J, Tsukasa S, Hong SK et al. 2011. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J. Clin. Investig. 121:2181–96
    [Google Scholar]
  116. 116. 
    Ma T, Zhu J, Chen X, Zha D, Singhai PC et al. 2013. High glucose induces autophagy in podocytes. Exp. Cell Res. 319:779–89
    [Google Scholar]
  117. 117. 
    Lenoir O, Jasiek M, Henique C, Guyonnet L, Hartleben B et al. 2015. Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis. Autophagy 11:1130–45
    [Google Scholar]
  118. 118. 
    Dong C, Zheng H, Huang S, You N, Xu J et al. 2015. Heme oxygenase-1 enhances autophagy in podocytes as a protective mechanism against high glucose-induced apoptosis. Exp. Cell Res. 337:2146–59
    [Google Scholar]
  119. 119. 
    Xiao T, Guan X, Nie L, Wang S, Sun L et al. 2014. Rapamycin promotes podocyte autophagy and ameliorates renal injury in diabetic mice. Mol. Cell Biochem. 394:1–2145–54
    [Google Scholar]
  120. 120. 
    Tagawa A, Yasuda M, Kume S, Yamahara K, Nakazawa J et al. 2016. Impaired podocyte autophagy exacerbates proteinuria in diabetic nephropathy. Diabetes 65:755–67
    [Google Scholar]
  121. 121. 
    Li X, Li C, Sun G 2016. Histone acetylation and its modifiers in the pathogenesis of diabetic nephropathy. J. Diabetes Res. 2016:4065382
    [Google Scholar]
  122. 122. 
    Wei Q, Dong Z. 2014. HDAC4 blocks autophagy to trigger podocyte injury: non-epigenetic action in diabetic nephropathy. Kidney Int 86:666–68
    [Google Scholar]
  123. 123. 
    Wang X, Liu J, Zhen J, Zhang C, Wan Q et al. 2014. Histone deacetylase 4 selectively contributes to podocyte injury in diabetic nephropathy. Kidney Int 86:4712–25
    [Google Scholar]
  124. 124. 
    Wang W, Sun W, Cheng Y, Xu Z, Cai L 2019. Role of sirtuin-1 in diabetic nephropathy. J. Mol. Med. 97:3291–309
    [Google Scholar]
  125. 125. 
    Hasegawa K, Wakino S, Simic P, Sakamaki Y, Minakuchi H et al. 2013. Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes. Nat. Med. 19:111496–504
    [Google Scholar]
  126. 126. 
    Wen D, Huang X, Zhang M, Zhang L, Chen J et al. 2013. Resveratrol attenuates diabetic nephropathy via modulating angiogenesis. PLOS ONE 8:e82336
    [Google Scholar]
  127. 127. 
    Liu M, Liang K, Zhen J, Zhou M, Wang X et al. 2017. Sirt6 deficiency exacerbates podocyte injury and proteinuria through targeting Notch signaling. Nat. Commun. 8:1413
    [Google Scholar]
  128. 128. 
    Sooparb S, Price SR, Shaoguang J, Franch HA 2004. Suppression of chaperone mediated autophagy in the renal cortex during acute diabetes mellitus. Kidney Int 65:2135–44
    [Google Scholar]
  129. 129. 
    Naguib M, Rashed LA. 2018. Serum level of the autophagy biomarker Beclin-1 in patients with diabetic kidney disease. Diabetes Res. Clin. Pract. 143:56–61
    [Google Scholar]
  130. 130. 
    Wakino S, Hasegawa K, Itoh H 2015. Sirtuin and metabolic kidney disease. Kidney Int 201588:4691–98
    [Google Scholar]
  131. 131. 
    Casanova C, de Torres JP, Navarro J, Aguirre-Jaíme A, Toledo P et al. 2010. Microalbuminuria and hypoxemia in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 182:81004–10
    [Google Scholar]
  132. 132. 
    Romundstad S, Naustdal T, Romundstad PR, Sorger H, Langhammer A 2014. COPD and microalbuminuria: a 12-year follow-up study. Eur. Respir. J. 43:41042–50
    [Google Scholar]
  133. 133. 
    Oelsner EC, Balte PP, Grams ME, Cassano PA, Jacobs DR et al. 2019. Albuminuria, lung function decline, and risk of incident chronic obstructive pulmonary disease. The NHLBI Pooled Cohorts Study. Am. J. Respir. Crit. Care Med. 199:3321–32
    [Google Scholar]
  134. 134. 
    Polverino F, Laucho-Contreras ME, Petersen H, Bijol V, Sholl LM et al. 2017. A pilot study linking endothelial injury in lungs and kidneys in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 195:111464–76
    [Google Scholar]
  135. 135. 
    Pabón MA, Patino E, Bhatia D, Rojas-Quintero J, Ma KC et al. 2018. Beclin-1 regulates cigarette smoke-induced kidney injury in a murine model of chronic obstructive pulmonary disease. JCI Insight 3:1899592
    [Google Scholar]
  136. 136. 
    Lam HC, Cloonan SM, Bhashyam AR, Haspel JA, Singh A et al. 2013. Histone deacetylase 6-mediated selective autophagy regulates COPD-associated cilia dysfunction. J. Clin. Investig. 123:125212–30
    [Google Scholar]
  137. 137. 
    Mizumura K, Cloonan SM, Nakahira K, Bhashyam AR, Cervo M et al. 2014. Mitophagy-dependent necroptosis contributes to the pathogenesis of COPD. J. Clin. Investig. 124:93987–4003
    [Google Scholar]
  138. 138. 
    Chen ZH, Lam HC, Jin Y, Kim HP, Cao J et al. 2010. Autophagy protein microtubule-associated protein 1 light chain-3B (LC3B) activates extrinsic apoptosis during cigarette smoke-induced emphysema. PNAS 107:4418880–85
    [Google Scholar]
  139. 139. 
    Boletta A. 2009. Emerging evidence of a link between the polycystins and the mTOR pathways. PathoGenetics 2:16
    [Google Scholar]
  140. 140. 
    Zafar I, Ravichandran K, Belibi FA, Doctor RB, Edelstein CL 2010. Sirolimus attenuates disease progression in an orthologous mouse model of human autosomal dominant polycystic kidney disease. Kidney Int 78:8754–61
    [Google Scholar]
  141. 141. 
    Belibi F, Ravichandran K, Zafar I, He Z, Edelstein CL 2011. mTORC1/2 and rapamycin in female Han:SPRD rats with polycystic kidney disease. Am. J. Physiol. Renal Physiol. 300:1F236–44
    [Google Scholar]
  142. 142. 
    Belibi F, Zafar I, Ravichandran K, Segvic AB, Jani A et al. 2011. Hypoxia-inducible factor-1α (HIF-1α) and autophagy in polycystic kidney disease (PKD). Am. J. Physiol. Renal Physiol. 300:5F1235–43
    [Google Scholar]
  143. 143. 
    Zhu P, Sieben CJ, Xu X, Harris PC, Lin X 2017. Autophagy activators suppress cystogenesis in an autosomal dominant polycystic kidney disease model. Hum. Mol. Genet. 26:1158–72
    [Google Scholar]
  144. 144. 
    Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H et al. 2003. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Investig. 112:1809–20
    [Google Scholar]
  145. 145. 
    White E. 2012. Deconvoluting the context dependent role for autophagy in cancer. Nat. Rev. Cancer 12:401–10
    [Google Scholar]
  146. 146. 
    Deng Q, Wang Z, Wang L, Zhang L, Xiang X et al. 2013. Lower mRNA and protein expression levels of LC3 and Beclin1, markers of autophagy, were correlated with progression of renal clear cell carcinoma. Jpn. J. Clin. Oncol. 43:121261–68
    [Google Scholar]
  147. 147. 
    Liu XD, Yao J, Tripathi DN, Ding Z, Xu Y et al. 2015. Autophagy mediates HIF2α degradation and suppresses renal tumorigenesis. Oncogene 34:192450–60
    [Google Scholar]
  148. 148. 
    Kang HM, Noh KH, Chang TK, Park D, Cho HS et al. 2019. Ubiquitination of MAP1LC3B by pVHL is associated with autophagy and cell death in renal cell carcinoma. Cell Death Dis 10:427
    [Google Scholar]
  149. 149. 
    Chai D, Shan H, Wang G, Li H, Fang L et al. 2018. AIM2 is a potential therapeutic target in human renal carcinoma and suppresses its invasion and metastasis via enhancing autophagy induction. Exp. Cell Res. 370:2561–70
    [Google Scholar]
  150. 150. 
    Haas NB, Appleman LJ, Stein M, Redlinger M, Wilks M et al. 2019. Autophagy inhibition to augment mTOR inhibition: a phase I/II trial of everolimus and hydroxychloroquine in patients with previously treated renal cell carcinoma. Clin. Cancer Res. 25:72080–87
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-021119-034658
Loading
/content/journals/10.1146/annurev-physiol-021119-034658
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error