1932

Abstract

Astrocytes are an abundant and evolutionarily conserved central nervous system cell type. Despite decades of evidence that astrocytes are integral to neural circuit function, it seems as though astrocytic and neuronal biology continue to advance in parallel to each other, to the detriment of both. Recent advances in molecular biology and optical imaging are being applied to astrocytes in new and exciting ways but without fully considering their unique biology. From this perspective, we explore the reasons that astrocytes remain enigmatic, arguing that their responses to neuronal and environmental cues shape form and function in dynamic ways. Here, we provide a roadmap for future experiments to explore the nature of astrocytes in situ.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021317-121125
2018-02-10
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/physiol/80/1/annurev-physiol-021317-121125.html?itemId=/content/journals/10.1146/annurev-physiol-021317-121125&mimeType=html&fmt=ahah

Literature Cited

  1. Allen NJ, Bennett ML, Foo LC, Wang GX, Chakraborty C. 1.  et al. 2012. Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature 486:7403410–14 [Google Scholar]
  2. Christopherson KS, Ullian EM, Stokes CCA, Mullowney CE, Hell JW. 2.  et al. 2005. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120:3421–33 [Google Scholar]
  3. Singh SK, Stogsdill JA, Pulimood NS, Dingsdale H, Kim YH. 3.  et al. 2016. Astrocytes assemble thalamocortical synapses by bridging NRX1α and NL1 via hevin. Cell 164:1–2183–96 [Google Scholar]
  4. Paukert M, Agarwal A, Cha J, Doze VA, Kang JU, Bergles DE. 4.  2014. Norepinephrine controls astroglial responsiveness to local circuit activity. Neuron 82:61263–70 [Google Scholar]
  5. Xie L, Kang H, Xu Q, Chen MJ, Liao Y. 5.  et al. 2013. Sleep drives metabolite clearance from the adult brain. Science 342:6156373–77 [Google Scholar]
  6. Poskanzer KE, Yuste R. 6.  2016. Astrocytes regulate cortical state switching in vivo. PNAS 113:19E2675–84 [Google Scholar]
  7. Molofsky AV, Deneen B. 7.  2015. Astrocyte development: a guide for the perplexed. Glia 63:81320–29 [Google Scholar]
  8. Molofsky AV, Krenick R, Ullian E, Tsai H, Deneen B. 8.  et al. 2012. Astrocytes and disease: a neurodevelopmental perspective. Genes Dev 26:9891–907 [Google Scholar]
  9. Hochstim C, Deneen B, Lukaszewicz A, Zhou Q, Anderson DJ. 9.  2008. Identification of positionally distinct astrocyte subtypes whose identities are specified by a homeodomain code. Cell 133:3510–22 [Google Scholar]
  10. Tsai H-H, Li H, Fuentealba LC, Molofsky AV, Taveira-Marques R. 10.  et al. 2012. Regional astrocyte allocation regulates CNS synaptogenesis and repair. Science 337:6092358–62 [Google Scholar]
  11. Dasen JS, Jessell TM. 11.  2009. Hox networks and the origins of motor neuron diversity. Curr. Top. Dev. Biol. 88:169–200 [Google Scholar]
  12. Arber S.12.  2012. Motor circuits in action: specification, connectivity, and function. Neuron 74:6975–89 [Google Scholar]
  13. Lu QR, Sun T, Zhu Z, Ma N, Garcia M. 13.  et al. 2002. Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 109:175–86 [Google Scholar]
  14. Zhou Q, Anderson DJ. 14.  2002. The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 109:161–73 [Google Scholar]
  15. Stolt CC, Lommes P, Sock E, Chaboissier M-C, Schedl A, Wegner M. 15.  2003. The Sox9 transcription factor determines glial fate choice in the developing spinal cord. Genes Dev 17:131677–89 [Google Scholar]
  16. Kang P, Lee HK, Glasgow SM, Finley M, Donti T. 16.  et al. 2012. Sox9 and NFIA coordinate a transcriptional regulatory cascade during the initiation of gliogenesis. Neuron 74:179–94 [Google Scholar]
  17. Deneen B, Ho R, Lukaszewicz A, Hochstim CJ, Gronostajski RM, Anderson DJ. 17.  2006. The transcription factor NFIA controls the onset of gliogenesis in the developing spinal cord. Neuron 52:6953–68 [Google Scholar]
  18. Glasgow SM, Zhu W, Stolt CC, Huang T-W, Chen F. 18.  et al. 2014. Mutual antagonism between Sox10 and NFIA regulates diversification of glial lineages and glioma subtypes. Nat. Neurosci. 17:101322–29 [Google Scholar]
  19. Sun W, Cornwell A, Li J, Peng S, Osorio MJ. 19.  et al. 2017. SOX9 is an astrocyte-specific nuclear marker in the adult brain outside the neurogenic regions. J. Neurosci. 37:174493–507 [Google Scholar]
  20. Scott CE, Wynn SL, Sesay A, Cruz C, Cheung M. 20.  et al. 2010. SOX9 induces and maintains neural stem cells. Nat. Neurosci. 13:101181–89 [Google Scholar]
  21. Zhang L, He X, Liu L, Jiang M, Zhao C. 21.  et al. 2016. Hdac3 interaction with p300 histone acetyltransferase regulates the oligodendrocyte and astrocyte lineage fate switch. Dev. Cell 36:3316–30 [Google Scholar]
  22. Levy DE, Darnell JE. 22.  2002. Stats: transcriptional control and biological impact. Nat. Rev. Mol. Cell Biol. 3:9651–62 [Google Scholar]
  23. Ben Haim L, Ceyzériat K, Carrillo-de Sauvage MA, Aubry F, Auregan G. 23.  et al. 2015. The JAK/STAT3 pathway is a common inducer of astrocyte reactivity in Alzheimer's and Huntington's diseases. J. Neurosci. 35:62817–29 [Google Scholar]
  24. Burda JE, Sofroniew MV. 24.  2014. Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 81:2229–48 [Google Scholar]
  25. Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L. 25.  et al. 2012. Genomic analysis of reactive astrogliosis. J. Neurosci. 32:186391–410 [Google Scholar]
  26. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ. 26.  et al. 2017. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:7638481–87 [Google Scholar]
  27. Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA. 27.  et al. 2013. Global epigenomic reconfiguration during mammalian brain development. Science 341:61461237905 [Google Scholar]
  28. Kellogg RA, Tian C, Etzrodt M, Tay S. 28.  2017. Cellular decision making by non-integrative processing of TLR inputs. Cell Rep 19:1125–35 [Google Scholar]
  29. Gourine AV, Kasymov V, Marina N, Tang F, Figueiredo MF. 29.  et al. 2010. Astrocytes control breathing through pH-dependent release of ATP. Science 329:5991571–75 [Google Scholar]
  30. Molofsky AV, Kelley KW, Tsai H-H, Redmond SA, Chang SM. 30.  et al. 2014. Astrocyte-encoded positional cues maintain sensorimotor circuit integrity. Nature 509:7499189–94 [Google Scholar]
  31. John Lin C-C, Yu K, Hatcher A, Huang T-W, Lee HK. 31.  et al. 2017. Identification of diverse astrocyte populations and their malignant analogs. Nat. Neurosci. 20:3396–405 [Google Scholar]
  32. Farmer WT, Abrahamsson T, Chierzi S, Lui C, Zaelzer C. 32.  et al. 2016. Neurons diversify astrocytes in the adult brain through sonic hedgehog signaling. Science 351:6275849–54 [Google Scholar]
  33. Zhang Y, Sloan SA, Clarke LE, Caneda C, Plaza CA. 33.  et al. 2016. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89:137–53 [Google Scholar]
  34. Mount CW, Monje M. 34.  2017. Wrapped to adapt: experience-dependent myelination. Neuron 95:4743–56 [Google Scholar]
  35. Sun W, McConnell E, Pare J-F, Xu Q, Chen M. 35.  et al. 2013. Glutamate-dependent neuroglial calcium signaling differs between young and adult brain. Science 339:6116197–200 [Google Scholar]
  36. Meier SD, Kafitz KW, Rose CR. 36.  2008. Developmental profile and mechanisms of GABA-induced calcium signaling in hippocampal astrocytes. Glia 56:101127–37 [Google Scholar]
  37. Bekar LK, He W, Nedergaard M. 37.  2008. Locus coeruleus α-adrenergic-mediated activation of cortical astrocytes in vivo. Cereb. Cortex 18:122789–95 [Google Scholar]
  38. Morel L, Higashimori H, Tolman M, Yang Y. 38.  2014. VGluT1+ neuronal glutamatergic signaling regulates postnatal developmental maturation of cortical protoplasmic astroglia. J. Neurosci. 34:3310950–62 [Google Scholar]
  39. Srinivasan R, Huang BS, Venugopal S, Johnston AD, Chai H. 39.  et al. 2015. Ca2+ signaling in astrocytes from Ip3r2−/− mice in brain slices and during startle responses in vivo. . Nat. Neurosci. 18:5708–17 [Google Scholar]
  40. Nimmerjahn A, Mukamel EA, Schnitzer MJ. 40.  2009. Motor behavior activates Bergmann glial networks. Neuron 62:3400–12 [Google Scholar]
  41. Ding F, O'Donnell J, Thrane AS, Zeppenfeld D, Kang H. 41.  et al. 2013. α1-Adrenergic receptors mediate coordinated Ca2+ signaling of cortical astrocytes in awake, behaving mice. Cell Calcium 54:6387–94 [Google Scholar]
  42. Hamilton NB, Attwell D. 42.  2010. Do astrocytes really exocytose neurotransmitters?. Nat. Rev. Neurosci. 11:4227–38 [Google Scholar]
  43. Chen T-W, Wardill TJ, Sun Y, Pulver SR, Renninger SL. 43.  et al. 2013. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499:7458295–300 [Google Scholar]
  44. Marvin JS, Borghuis BG, Tian L, Cichon J, Harnett MT. 44.  et al. 2013. An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat. Methods 10:2162–70 [Google Scholar]
  45. Reeves AMB, Shigetomi E, Khakh BS. 45.  2011. Bulk loading of calcium indicator dyes to study astrocyte physiology: key limitations and improvements using morphological maps. J. Neurosci. 31:259353–58 [Google Scholar]
  46. Bazargani N, Attwell D. 46.  2016. Astrocyte calcium signaling: the third wave. Nat. Neurosci. 19:2182–89 [Google Scholar]
  47. Shigetomi E, Patel S, Khakh BS. 47.  2016. Probing the complexities of astrocyte calcium signaling. Trends Cell Biol 26:4300–12 [Google Scholar]
  48. Murphy-Royal C, Dupuis JP, Varela JA, Panatier A, Pinson B. 48.  et al. 2015. Surface diffusion of astrocytic glutamate transporters shapes synaptic transmission. Nat. Neurosci. 18:2219–26 [Google Scholar]
  49. Bindocci E, Savtchouk I, Liaudet N, Becker D, Carriero G, Volterra A. 49.  2017. Three-dimensional Ca2+ imaging advances understanding of astrocyte biology. Science 356:6339eaai8185 [Google Scholar]
  50. Haustein MD, Kracun S, Lu X-H, Shih T, Jackson-Weaver O. 50.  et al. 2014. Conditions and constraints for astrocyte calcium signaling in the hippocampal mossy fiber pathway. Neuron 82:2413–29 [Google Scholar]
  51. Agarwal A, Wu P-H, Hughes EG, Fukaya M, Tischfield MA. 51.  et al. 2017. Transient opening of the mitochondrial permeability transition pore induces microdomain calcium transients in astrocyte processes. Neuron 93:3587–605.e7 [Google Scholar]
  52. Armbruster M, Hanson E, Dulla CG. 52.  2016. Glutamate clearance is locally modulated by presynaptic neuronal activity in the cerebral cortex. J. Neurosci. 36:4010404–15 [Google Scholar]
  53. Hefendehl JK, LeDue J, Ko RWY, Mahler J, Murphy TH, MacVicar BA. 53.  2016. Mapping synaptic glutamate transporter dysfunction in vivo to regions surrounding Aβ plaques by iGluSnFR two-photon imaging. Nat. Comm. 7:13441 [Google Scholar]
  54. Wang D, Miller D, Poskanzer K, Tian L, Yu G. 54.  2016. Graphical time warping for joint alignment of multiple curves. Adv. Neural Inf. Process. Syst. 29:3648–56 [Google Scholar]
  55. Dana H, Mohar B, Sun Y, Narayan S, Gordus A. 55.  et al. 2016. Sensitive red protein calcium indicators for imaging neural activity. eLife 5:413 [Google Scholar]
  56. Ma Z, Stork T, Bergles DE, Freeman MR. 56.  2016. Neuromodulators signal through astrocytes to alter neural circuit activity and behaviour. Nature 539:7629428–32 [Google Scholar]
  57. Enger R, Dukefoss DB, Tang W, Pettersen KH, Bjørnstad DM. 57.  et al. 2017. Deletion of aquaporin-4 curtails extracellular glutamate elevation in cortical spreading depression in awake mice. Cereb. Cortex 27:124–33 [Google Scholar]
  58. Brancaccio M, Patton AP, Chesham JE, Maywood ES, Hastings MH. 58.  2017. Astrocytes control circadian timekeeping in the suprachiasmatic nucleus via glutamatergic signaling. Neuron 93:61420–25 [Google Scholar]
  59. Yang W, Yuste R. 59.  2017. In vivo imaging of neural activity. Nat. Methods 14:4349–59 [Google Scholar]
  60. Cajal SR.60.  1895. Algunas conjeturas sobre el mecanismo anatómico de la ideación, asociación y atención. Rev. Med. Cir. Pract. 36:497–508 [Google Scholar]
  61. Bellesi M, de Vivo L, Tononi G, Cirelli C. 61.  2015. Effects of sleep and wake on astrocytes: clues from molecular and ultrastructural studies. BMC Biol 13:166 [Google Scholar]
  62. Korogod N, Petersen CCH, Knott GW. 62.  2015. Ultrastructural analysis of adult mouse neocortex comparing aldehyde perfusion with cryo fixation. eLife 4:241 [Google Scholar]
  63. Theodosis DT, Poulain DA. 63.  1993. Activity-dependent neuronal-glial and synaptic plasticity in the adult mammalian hypothalamus. Neuroscience 57:3501–35 [Google Scholar]
  64. Gordon GRJ, Iremonger KJ, Kantevari S, Ellis-Davies GCR, MacVicar BA, Bains JS. 64.  2009. Astrocyte-mediated distributed plasticity at hypothalamic glutamate synapses. Neuron 64:3391–403 [Google Scholar]
  65. Panatier A, Theodosis DT, Mothet J-P, Touquet B, Pollegioni L. 65.  et al. 2006. Glia-derived D-serine controls NMDA receptor activity and synaptic memory. Cell 125:4775–84 [Google Scholar]
  66. Haber M, Zhou L, Murai KK. 66.  Cooperative astrocyte and dendritic spine dynamics at hippocampal excitatory synapses. J. Neurosci 26:8881–91 [Google Scholar]
  67. Bernardinelli Y, Randall J, Janett E, Nikonenko I, König S. 67.  et al. 2014. Activity-dependent structural plasticity of perisynaptic astrocytic domains promotes excitatory synapse stability. Curr. Biol. 24:151679–88 [Google Scholar]
  68. Pannasch U, Freche D, Dallérac G, Ghézali G, Escartin C. 68.  et al. 2014. Connexin 30 sets synaptic strength by controlling astroglial synapse invasion. Nat. Neurosci. 17:4549–58 [Google Scholar]
  69. Chung W-S, Clarke LE, Wang GX, Stafford BK, Sher A. 69.  et al. 2013. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 504:7480394–400 [Google Scholar]
  70. Keifer J, Summers CH. 70.  2016. Putting the “biology” back into “neurobiology”: the strength of diversity in animal model systems for neuroscience research. Front. Syst. Neurosci. 10:69 [Google Scholar]
  71. Freeman MR, Rowitch DH. 71.  2013. Evolving concepts of gliogenesis: a look way back and ahead to the next 25 years. Neuron 80:3613–23 [Google Scholar]
  72. Vasile F, Dossi E, Rouach N. 72.  2017. Human astrocytes: structure and functions in the healthy brain. Brain Struct. Funct. 222:2017–29 [Google Scholar]
  73. Verkhratsky A, Nedergaard M. 73.  2016. The homeostatic astroglia emerges from evolutionary specialization of neural cells. Phil. Trans. R. Soc. B 371:170020150428 [Google Scholar]
  74. Hosoya T, Takizawa K, Nitta K, Hotta Y. 74.  1995. Glial cells missing: a binary switch between neuronal and glial determination in Drosophila. Cell 82:61025–36 [Google Scholar]
  75. Jones BW, Fetter RD, Tear G, Goodman CS. 75.  1995. Glial cells missing: a genetic switch that controls glial versus neuronal fate. Cell 82:61013–23 [Google Scholar]
  76. Kim J, Jones BW, Zock C, Chen Z, Wang H. 76.  et al. 1998. Isolation and characterization of mammalian homologs of the Drosophila gene glial cells missing. . PNAS 95:2112364–69 [Google Scholar]
  77. Shaham S.77.  2015. Glial development and function in the nervous system of Caenorhabditis elegans. . Cold Spring Harb. Perspect. Biol. 7:4a020578 [Google Scholar]
  78. Perens EA, Shaham S. 78.  2005. C. elegans daf-6 encodes a patched-related protein required for lumen formation. Dev. Cell 8:6893–906 [Google Scholar]
  79. Shao Z, Watanabe S, Christensen R, Jorgensen EM, Colón-Ramos DA. 79.  2013. Synapse location during growth depends on glia location. Cell 154:2337–50 [Google Scholar]
  80. Alvarez-Buylla A, Buskirk DR, Nottebohm F. 80.  1987. Monoclonal antibody reveals radial glia in adult avian brain. J. Comp. Neurol. 264:2159–70 [Google Scholar]
  81. Lyons DA, Talbot WS. 81.  2014. Glial cell development and function in zebrafish. Cold Spring Harb. Perspect. Biol. 7:2a020586 [Google Scholar]
  82. Sakers K, Lake AM, Khazanchi R, Ouwenga R, Vasek MJ. 82.  et al. 2017. Astrocytes locally translate transcripts in their peripheral processes. PNAS 114:19E3830–38 [Google Scholar]
  83. Stork T, Sheehan A, Tasdemir-Yilmaz OE, Freeman MR. 83.  2014. Neuron-glia interactions through the Heartless FGF receptor signaling pathway mediate morphogenesis of Drosophila astrocytes. Neuron 83:2388–403 [Google Scholar]
  84. Pringle NP, Yu W-P, Howell M, Colvin JS, Ornitz DM, Richardson WD. 84.  2003. Fgfr3 expression by astrocytes and their precursors: evidence that astrocytes and oligodendrocytes originate in distinct neuroepithelial domains. Development 130:193–102 [Google Scholar]
  85. Jennings A, Tyurikova O, Bard L, Zheng K, Semyanov A. 85.  et al. 2017. Dopamine elevates and lowers astroglial Ca2+ through distinct pathways depending on local synaptic circuitry. Glia 65:3447–59 [Google Scholar]
  86. Muthukumar AK, Stork T, Freeman MR. 86.  2014. Activity-dependent regulation of astrocyte GAT levels during synaptogenesis. Nat. Neurosci. 17:101340–50 [Google Scholar]
  87. Beenhakker MP, Huguenard JR. 87.  2010. Astrocytes as gatekeepers of GABAB receptor function. J. Neurosci. 30:4515262–76 [Google Scholar]
  88. Shigetomi E, Tong X, Kwan KY, Corey DP, Khakh BS. 88.  2012. TRPA1 channels regulate astrocyte resting calcium and inhibitory synapse efficacy through GAT-3. Nat. Neurosci. 15:170–80 [Google Scholar]
  89. Peco E, Davla S, Camp D, Stacey SM, Landgraf M, van Meyel DJ. 89.  2016. Drosophila astrocytes cover specific territories of the CNS neuropil and are instructed to differentiate by Prospero, a key effector of Notch. Development 143:71170–81 [Google Scholar]
  90. Doherty J, Logan MA, Taşdemir ÖE, Freeman MR. 90.  2009. Ensheathing glia function as phagocytes in the adult Drosophila brain. J. Neurosci. 29:154768–81 [Google Scholar]
  91. Oberheim NA, Takano T, Han X, He W, Lin JHC. 91.  et al. 2009. Uniquely hominid features of adult human astrocytes. J. Neurosci. 29:103276–87 [Google Scholar]
  92. Colombo JA, Reisin HD. 92.  2004. Interlaminar astroglia of the cerebral cortex: a marker of the primate brain. Brain Res 1006:1126–31 [Google Scholar]
  93. Han X, Chen M, Wang F, Windrem M, Wang S. 93.  et al. 2013. Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. Cell Stem Cell 12:3342–53 [Google Scholar]
  94. Birey F, Andersen J, Makinson CD, Islam S, Wei W. 94.  et al. 2017. Assembly of functionally integrated human forebrain spheroids. Nature 545:765254–59 [Google Scholar]
  95. Sloan SA, Darmanis S, Huber N, Khan TA, Birey F. 95.  et al. 2017. Human astrocyte maturation captured in 3D cerebral cortical spheroids derived from pluripotent stem cells. Neuron 95:4779–90.e6 [Google Scholar]
  96. Panda S, Hogenesch JB, Kay SA. 96.  2002. Circadian rhythms from flies to human. Nature 417:6886329–35 [Google Scholar]
  97. Takahashi JS.97.  2017. Transcriptional architecture of the mammalian circadian clock. Nat. Rev. Genet. 18:3164–79 [Google Scholar]
  98. Yang Y, Vidensky S, Jin L, Jie C, Lorenzini I. 98.  et al. 2011. Molecular comparison of GLT1+ and ALDH1L1+ astrocytes in vivo in astroglial reporter mice. Glia 59:2200–7 [Google Scholar]
/content/journals/10.1146/annurev-physiol-021317-121125
Loading
/content/journals/10.1146/annurev-physiol-021317-121125
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error