1932

Abstract

The interplay between diet, the gut microbiome, and host health is complex. Diets associated with health have many similarities: high fiber, unsaturated fatty acids, and polyphenols while being low in saturated fats, sodium, and refined carbohydrates. Over the past several decades, dietary patterns have changed significantly in Westernized nations with the increased consumption of calorically dense ultraprocessed foods low in fiber and high in saturated fats, salt, and refined carbohydrates, leading to numerous negative health consequences including obesity, metabolic syndrome, and cardiovascular disease. The gut microbiota is an environmental factor that interacts with diet and may also have an impact on health outcomes, many of which involve metabolites produced by the microbiota from dietary components that can impact the host. This review focuses on our current understanding of the complex relationship between diet, the gut microbiota, and host health, with examples of how diet can support health, increase an individual's risk for disease, and be used as a therapy for specific diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-031522-092054
2023-02-10
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/physiol/85/1/annurev-physiol-031522-092054.html?itemId=/content/journals/10.1146/annurev-physiol-031522-092054&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Gantenbein KV, Kanaka-Gantenbein C. 2021. Mediterranean diet as an antioxidant: the impact on metabolic health and overall wellbeing. Nutrients 13:1951
    [Google Scholar]
  2. 2.
    Katz DL, Meller S. 2014. Can we say what diet is best for health?. Annu. Rev. Public Health 35:83–103
    [Google Scholar]
  3. 3.
    Esposito K, Marfella R, Ciotola M, Di Palo C, Giugliano F et al. 2004. Effect of a Mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome. JAMA 292:1440
    [Google Scholar]
  4. 4.
    Albenberg LG, Wu GD. 2014. Diet and the intestinal microbiome: associations, functions, and implications for health and disease. Gastroenterology 146:1564–72
    [Google Scholar]
  5. 5.
    Meslier V, Laiola M, Roager HM, De Filippis F, Roume H et al. 2020. Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake. Gut 69:1258–68
    [Google Scholar]
  6. 6.
    Mozaffarian D, Hao T, Rimm EB, Willett WC, Hu FB. 2011. Changes in diet and lifestyle and long-term weight gain in women and men. N. Engl. J. Med. 364:2392–404
    [Google Scholar]
  7. 7.
    Qayed E. 2020. Gastroenterology Clinical Focus: High Yield GI and Hepatology Review for Boards and Practice Atlanta, GA: E Qayed. , 3rd ed..
  8. 8.
    Gerasimidis K, Bertz M, Hanske L, Junick J, Biskou O et al. 2014. Decline in presumptively protective gut bacterial species and metabolites are paradoxically associated with disease improvement in pediatric Crohn's disease during enteral nutrition. Inflamm. Bowel Dis. 20:861–71
    [Google Scholar]
  9. 9.
    Quince C, Ijaz UZ, Loman N, Eren AM, Saulnier D et al. 2015. Extensive modulation of the fecal metagenome in children with Crohn's disease during exclusive enteral nutrition. Am. J. Gastroenterol. 110:1718–29
    [Google Scholar]
  10. 10.
    Guarner F, Malagelada J-R. 2003. Gut flora in health and disease. Lancet N. Am. Ed. 361:512–19
    [Google Scholar]
  11. 11.
    Sonnenburg ED, Sonnenburg JL. 2014. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab. 20:779–86
    [Google Scholar]
  12. 12.
    Penders J, Thijs C, Vink C, Stelma FF, Snijders B et al. 2006. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118:511–21
    [Google Scholar]
  13. 13.
    Roswall J, Olsson LM, Kovatcheva-Datchary P, Nilsson S, Tremaroli V et al. 2021. Developmental trajectory of the healthy human gut microbiota during the first 5 years of life. Cell Host Microbe 29:765–76.e3
    [Google Scholar]
  14. 14.
    Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG et al. 2012. Human gut microbiome viewed across age and geography. Nature 486:222–27
    [Google Scholar]
  15. 15.
    Milani C, Duranti S, Bottacini F, Casey E, Turroni F et al. 2017. The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota. Microbiol. Mol. Biol. Rev. 81:e00036–17
    [Google Scholar]
  16. 16.
    Neuman H, Debelius JW, Knight R, Koren O. 2015. Microbial endocrinology: the interplay between the microbiota and the endocrine system. FEMS Microbiol. Rev. 39:509–21
    [Google Scholar]
  17. 17.
    Haiser HJ, Gootenberg DB, Chatman K, Sirasani G, Balskus EP, Turnbaugh PJ. 2013. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science 341:295–98
    [Google Scholar]
  18. 18.
    Sjogren K, Engdahl C, Henning P, Lerner UH, Tremaroli V et al. 2012. The gut microbiota regulates bone mass in mice. J. Bone Miner. Res. 27:1357–67
    [Google Scholar]
  19. 19.
    Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA et al. 2016. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167:1339–53.e21
    [Google Scholar]
  20. 20.
    Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY et al. 2011. Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–8
    [Google Scholar]
  21. 21.
    Wu GD, Compher C, Chen EZ, Smith SA, Shah RD et al. 2016. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut 65:63–72
    [Google Scholar]
  22. 22.
    Renson A, Herd P, Dowd JB. 2020. Sick individuals and sick (microbial) populations: challenges in epidemiology and the microbiome. Annu. Rev. Public Health 41:63–80
    [Google Scholar]
  23. 23.
    Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. 2009. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl. Med. 1:6ra14
    [Google Scholar]
  24. 24.
    Barber TM, Kabisch S, Pfeiffer AFH, Weickert MO. 2020. The health benefits of dietary fibre. Nutrients 12:3209
    [Google Scholar]
  25. 25.
    Makki K, Deehan EC, Walter J, Backhed F. 2018. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 23:705–15
    [Google Scholar]
  26. 26.
    Dhingra D, Michael M, Rajput H, Patil RT. 2012. Dietary fibre in foods: a review. J. Food Sci. Technol. 49:255–66
    [Google Scholar]
  27. 27.
    Lockyer S, Nugent AP. 2017. Health effects of resistant starch. Nutr. Bull. 42:10–41
    [Google Scholar]
  28. 28.
    Reynolds A, Mann J, Cummings J, Winter N, Mete E, Te Morenga L. 2019. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet N. Am. Ed. 393:434–45
    [Google Scholar]
  29. 29.
    Kopf JC, Suhr MJ, Clarke J, Eyun SI, Riethoven JM et al. 2018. Role of whole grains versus fruits and vegetables in reducing subclinical inflammation and promoting gastrointestinal health in individuals affected by overweight and obesity: a randomized controlled trial. Nutr. J. 17:72
    [Google Scholar]
  30. 30.
    Roager HM, Vogt JK, Kristensen M, Hansen LBS, Ibrugger S et al. 2019. Whole grain-rich diet reduces body weight and systemic low-grade inflammation without inducing major changes of the gut microbiome: a randomised cross-over trial. Gut 68:83–93
    [Google Scholar]
  31. 31.
    Hills R, Pontefract B, Mishcon H, Black C, Sutton S, Theberge C. 2019. Gut microbiome: profound implications for diet and disease. Nutrients 11:1613
    [Google Scholar]
  32. 32.
    Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR et al. 2008. Evolution of mammals and their gut microbes. Science 320:1647–51
    [Google Scholar]
  33. 33.
    Schnorr SL, Candela M, Rampelli S, Centanni M, Consolandi C et al. 2014. Gut microbiome of the Hadza hunter-gatherers. Nat. Commun. 5:3654
    [Google Scholar]
  34. 34.
    Wastyk HC, Fragiadakis GK, Perelman D, Dahan D, Merrill BD et al. 2021. Gut-microbiota-targeted diets modulate human immune status. Cell 184:4137–53.e14
    [Google Scholar]
  35. 35.
    Roberfroid MB. 2007. Inulin-type fructans: functional food ingredients. J. Nutr. 137:2493S–502S
    [Google Scholar]
  36. 36.
    Roberfroid MB. 2005. Introducing inulin-type fructans. Br. J. Nutr. 93:Suppl. 1S13–25
    [Google Scholar]
  37. 37.
    Moshfegh AJ, Friday JE, Goldman JP, Ahuja JK. 1999. Presence of inulin and oligofructose in the diets of Americans. J. Nutr. 129:1407S–11S
    [Google Scholar]
  38. 38.
    Reimer RA, Willis HJ, Tunnicliffe JM, Park H, Madsen KL, Soto-Vaca A. 2017. Inulin-type fructans and whey protein both modulate appetite but only fructans alter gut microbiota in adults with overweight/obesity: a randomized controlled trial. Mol. Nutr. Food Res. 61:1700484
    [Google Scholar]
  39. 39.
    Vandeputte D, Falony G, Vieira-Silva S, Wang J, Sailer M et al. 2017. Prebiotic inulin-type fructans induce specific changes in the human gut microbiota. Gut 66:1968–74
    [Google Scholar]
  40. 40.
    Healey G, Murphy R, Butts C, Brough L, Whelan K, Coad J. 2018. Habitual dietary fibre intake influences gut microbiota response to an inulin-type fructan prebiotic: a randomised, double-blind, placebo-controlled, cross-over, human intervention study. Br. J. Nutr. 119:176–89
    [Google Scholar]
  41. 41.
    Chambers ES, Byrne CS, Morrison DJ, Murphy KG, Preston T et al. 2019. Dietary supplementation with inulin-propionate ester or inulin improves insulin sensitivity in adults with overweight and obesity with distinct effects on the gut microbiota, plasma metabolome and systemic inflammatory responses: a randomised cross-over trial. Gut 68:1430–38
    [Google Scholar]
  42. 42.
    Chambers ES, Viardot A, Psichas A, Morrison DJ, Murphy KG et al. 2015. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 64:1744–54
    [Google Scholar]
  43. 43.
    Pingitore A, Chambers ES, Hill T, Maldonado IR, Liu B et al. 2017. The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro. Diabetes Obes. Metab. 19:257–65
    [Google Scholar]
  44. 44.
    Chambers ES, Byrne CS, Rugyendo A, Morrison DJ, Preston T et al. 2019. The effects of dietary supplementation with inulin and inulin-propionate ester on hepatic steatosis in adults with non-alcoholic fatty liver disease. Diabetes Obes. Metab. 21:372–76
    [Google Scholar]
  45. 45.
    Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G et al. 2013. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504:446–50
    [Google Scholar]
  46. 46.
    Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA et al. 2013. The microbial metabolites, short-chain fatty acids, regulate colonic T reg cell homeostasis. Science 341:569–73
    [Google Scholar]
  47. 47.
    Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N et al. 2014. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20:159–66
    [Google Scholar]
  48. 48.
    Wrzosek L, Miquel S, Noordine M-L, Bouet S, Chevalier-Curt MJ et al. 2013. Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Biol. 11:61
    [Google Scholar]
  49. 49.
    Cox LM, Blaser MJ. 2013. Pathways in microbe-induced obesity. Cell Metab. 17:883–94
    [Google Scholar]
  50. 50.
    Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL. 2016. Diet-induced extinctions in the gut microbiota compound over generations. Nature 529:212–15
    [Google Scholar]
  51. 51.
    De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB et al. 2010. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. PNAS 107:14691–96
    [Google Scholar]
  52. 52.
    Kovatcheva-Datchary P, Nilsson A, Akrami R, Lee YS, De Vadder F et al. 2015. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell Metab. 22:971–82
    [Google Scholar]
  53. 53.
    Brand-Miller J, Hayne S, Petocz P, Colagiuri S. 2003. Low-glycemic index diets in the management of diabetes. Diabetes Care 26:2261–67
    [Google Scholar]
  54. 54.
    Gupta D, Georgiopoulou VV, Kalogeropoulos AP, Dunbar SB, Reilly CM et al. 2012. Dietary sodium intake in heart failure. Circulation 126:479–85
    [Google Scholar]
  55. 55.
    Harvey-Berino J. 1999. Calorie restriction is more effective for obesity treatment than dietary fat restriction. Ann. Behav. Med. 21:35–39
    [Google Scholar]
  56. 56.
    Chuang C-C, Mcintosh MK. 2011. Potential mechanisms by which polyphenol-rich grapes prevent obesity-mediated inflammation and metabolic diseases. Annu. Rev. Nutr. 31:155–76
    [Google Scholar]
  57. 57.
    Johnson AJ, Vangay P, Al-Ghalith GA, Hillmann BM, Ward TL et al. 2019. Daily sampling reveals personalized diet-microbiome associations in humans. Cell Host Microbe 25:789–802.e5
    [Google Scholar]
  58. 58.
    Ursell LK, Clemente JC, Rideout JR, Gevers D, Caporaso JG, Knight R. 2012. The interpersonal and intrapersonal diversity of human-associated microbiota in key body sites. J. Allergy Clin. Immunol. 129:1204–8
    [Google Scholar]
  59. 59.
    Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D et al. 2015. Personalized nutrition by prediction of glycemic responses. Cell 163:1079–94
    [Google Scholar]
  60. 60.
    Estruch R, Ros E, Salas-Salvadó J, Covas M-I, Corella D et al. 2018. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N. Engl. J. Med. 378:e34
    [Google Scholar]
  61. 61.
    Koloverou E, Panagiotakos DB, Pitsavos C, Chrysohoou C, Georgousopoulou EN et al. 2016. Adherence to Mediterranean diet and 10-year incidence (2002–2012) of diabetes: correlations with inflammatory and oxidative stress biomarkers in the ATTICA cohort study. Diabetes Metab. Res. Rev. 32:73–81
    [Google Scholar]
  62. 62.
    Eleftheriou D, Benetou V, Trichopoulou A, La Vecchia C, Bamia C 2018. Mediterranean diet and its components in relation to all-cause mortality: meta-analysis. Br. J. Nutr. 120:1081–97
    [Google Scholar]
  63. 63.
    Guasch-Ferre M, Merino J, Sun Q, Fito M, Salas-Salvado J. 2017. Dietary polyphenols, Mediterranean diet, prediabetes, and type 2 diabetes: a narrative review of the evidence. Oxid. Med. Cell. Longev. 2017:6723931
    [Google Scholar]
  64. 64.
    Pandey KB, Rizvi SI. 2009. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2:270–78
    [Google Scholar]
  65. 65.
    Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C et al. 2006. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–42
    [Google Scholar]
  66. 66.
    Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C et al. 2006. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 127:1109–22
    [Google Scholar]
  67. 67.
    Timmers S, Konings E, Bilet L, Houtkooper RH, van de Weijer T et al. 2011. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab. 14:612–22
    [Google Scholar]
  68. 68.
    De Carvalho C, Caramujo M. 2018. The various roles of fatty acids. Molecules 23:2583
    [Google Scholar]
  69. 69.
    Schwingshackl L, Hoffmann G. 2012. Monounsaturated fatty acids and risk of cardiovascular disease: synopsis of the evidence available from systematic reviews and meta-analyses. Nutrients 4:1989–2007
    [Google Scholar]
  70. 70.
    Paniagua JA, Perez-Martinez P, Gjelstad IM, Tierney AC, Delgado-Lista J et al. 2011. A low-fat high-carbohydrate diet supplemented with long-chain n-3 PUFA reduces the risk of the metabolic syndrome. Atherosclerosis 218:443–50
    [Google Scholar]
  71. 71.
    Bialonska D, Ramnani P, Kasimsetty SG, Muntha KR, Gibson GR, Ferreira D. 2010. The influence of pomegranate by-product and punicalagins on selected groups of human intestinal microbiota. Int. J. Food Microbiol. 140:175–82
    [Google Scholar]
  72. 72.
    Queipo-Ortuno MI, Boto-Ordonez M, Murri M, Gomez-Zumaquero JM, Clemente-Postigo M et al. 2012. Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers. Am. J. Clin. Nutr. 95:1323–34
    [Google Scholar]
  73. 73.
    De Filippis F, Pellegrini N, Vannini L, Jeffery IB, La Storia A et al. 2016. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 65:1812–21
    [Google Scholar]
  74. 74.
    Tindall AM, McLimans CJ, Petersen KS, Kris-Etherton PM, Lamendella R. 2020. Walnuts and vegetable oils containing oleic acid differentially affect the gut microbiota and associations with cardiovascular risk factors: follow-up of a randomized, controlled, feeding trial in adults at risk for cardiovascular disease. J. Nutr. 150:806–17
    [Google Scholar]
  75. 75.
    Vetrani C, Maukonen J, Bozzetto L, Della Pepa G, Vitale M et al. 2020. Diets naturally rich in polyphenols and/or long-chain n-3 polyunsaturated fatty acids differently affect microbiota composition in high-cardiometabolic-risk individuals. Acta Diabetol. 57:853–60
    [Google Scholar]
  76. 76.
    Watson H, Mitra S, Croden FC, Taylor M, Wood HM et al. 2018. A randomised trial of the effect of omega-3 polyunsaturated fatty acid supplements on the human intestinal microbiota. Gut 67:1974–83
    [Google Scholar]
  77. 77.
    Ghiboub M, Verburgt CM, Sovran B, Benninga MA, De Jonge WJ, Van Limbergen JE. 2020. Nutritional therapy to modulate tryptophan metabolism and aryl hydrocarbon-receptor signaling activation in human diseases. Nutrients 12:2846
    [Google Scholar]
  78. 78.
    Natividad JM, Agus A, Planchais J, Lamas B, Jarry AC et al. 2018. Impaired aryl hydrocarbon receptor ligand production by the gut microbiota is a key factor in metabolic syndrome. Cell Metab. 28:737–49.e4
    [Google Scholar]
  79. 79.
    Wei GZ, Martin KA, Xing PY, Agrawal R, Whiley L et al. 2021. Tryptophan-metabolizing gut microbes regulate adult neurogenesis via the aryl hydrocarbon receptor. PNAS 118:e2021091118
    [Google Scholar]
  80. 80.
    Rothhammer V, Mascanfroni ID, Bunse L, Takenaka MC, Kenison JE et al. 2016. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat. Med. 22:586–97
    [Google Scholar]
  81. 81.
    Innes JK, Calder PC. 2020. Marine omega-3 (n-3) fatty acids for cardiovascular health: an update for 2020. Int. J. Mol. Sci. 21:1362
    [Google Scholar]
  82. 82.
    Wang Z, Zhao Y. 2018. Gut microbiota derived metabolites in cardiovascular health and disease. Protein Cell 9:416–31
    [Google Scholar]
  83. 83.
    Guasti L, Galliazzo S, Molaro M, Visconti E, Pennella B et al. 2021. TMAO as a biomarker of cardiovascular events: a systematic review and meta-analysis. Intern. Emerg. Med. 16:201–7
    [Google Scholar]
  84. 84.
    Djekic D, Shi L, Brolin H, Carlsson F, Sarnqvist C et al. 2020. Effects of a vegetarian diet on cardiometabolic risk factors, gut microbiota, and plasma metabolome in subjects with ischemic heart disease: a randomized, crossover study. J. Am. Heart Assoc. 9:e016518
    [Google Scholar]
  85. 85.
    Koeth RA, Wang Z, Levison BS, Buffa JA, Org E et al. 2013. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19:576–85
    [Google Scholar]
  86. 86.
    Koeth RA, Lam-Galvez BR, Kirsop J, Wang Z, Levison BS et al. 2019. l-Carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans. J. Clin. Investig. 129:373–87
    [Google Scholar]
  87. 87.
    Crimarco A, Springfield S, Petlura C, Streaty T, Cunanan K et al. 2020. A randomized crossover trial on the effect of plant-based compared with animal-based meat on trimethylamine-N-oxide and cardiovascular disease risk factors in generally healthy adults: Study With Appetizing Plantfood-Meat Eating Alternative Trial (SWAP-MEAT). Am. J. Clin. Nutr. 112:1188–99
    [Google Scholar]
  88. 88.
    van Soest APM, Hermes GDA, Berendsen AAM, van de Rest O, Zoetendal EG et al. 2020. Associations between pro- and anti-inflammatory gastro-intestinal microbiota, diet, and cognitive functioning in Dutch healthy older adults: the NU-AGE study. Nutrients 12:3471
    [Google Scholar]
  89. 89.
    Rodriguez-Carrio J, Salazar N, Margolles A, Gonzalez S, Gueimonde M et al. 2017. Free fatty acids profiles are related to gut microbiota signatures and short-chain fatty acids. Front. Immunol. 8:823
    [Google Scholar]
  90. 90.
    Varady KA, Bhutani S, Church EC, Klempel MC. 2009. Short-term modified alternate-day fasting: a novel dietary strategy for weight loss and cardioprotection in obese adults. Am. J. Clin. Nutr. 90:1138–43
    [Google Scholar]
  91. 91.
    Johnson JB, Summer W, Cutler RG, Martin B, Hyun D-H et al. 2007. Alternate day calorie restriction improves clinical findings and reduces markers of oxidative stress and inflammation in overweight adults with moderate asthma. Free Radic. Biol. Med. 42:665–74
    [Google Scholar]
  92. 92.
    Chaix A, Zarrinpar A, Miu P, Panda S. 2014. Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges. Cell Metab. 20:991–1005
    [Google Scholar]
  93. 93.
    Rynders CA, Thomas EA, Zaman A, Pan Z, Catenacci VA, Melanson EL. 2019. Effectiveness of intermittent fasting and time-restricted feeding compared to continuous energy restriction for weight loss. Nutrients 11:2442
    [Google Scholar]
  94. 94.
    Gill S, Panda S. 2015. A smartphone app reveals erratic diurnal eating patterns in humans that can be modulated for health benefits. Cell Metab. 22:789–98
    [Google Scholar]
  95. 95.
    Wilkinson MJ, Manoogian ENC, Zadourian A, Lo H, Fakhouri S et al. 2020. Ten-hour time-restricted eating reduces weight, blood pressure, and atherogenic lipids in patients with metabolic syndrome. Cell Metab. 31:92–104.e5
    [Google Scholar]
  96. 96.
    Sutton EF, Beyl R, Early KS, Cefalu WT, Ravussin E, Peterson CM. 2018. Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metab. 27:1212–21.e3
    [Google Scholar]
  97. 97.
    Lowe DA, Wu N, Rohdin-Bibby L, Moore AH, Kelly N et al. 2020. Effects of time-restricted eating on weight loss and other metabolic parameters in women and men with overweight and obesity. JAMA Intern. Med. 180:1491
    [Google Scholar]
  98. 98.
    Cignarella F, Cantoni C, Ghezzi L, Salter A, Dorsett Y et al. 2018. Intermittent fasting confers protection in CNS autoimmunity by altering the gut microbiota. Cell Metab 27:1222–35.e6
    [Google Scholar]
  99. 99.
    Harvie MN, Pegington M, Mattson MP, Frystyk J, Dillon B et al. 2011. The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: a randomized trial in young overweight women. Int. J. Obes. 35:714–27
    [Google Scholar]
  100. 100.
    Zarrinpar A, Chaix A, Yooseph S, Panda S. 2014. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab. 20:1006–17
    [Google Scholar]
  101. 101.
    Neal EG, Chaffe H, Schwartz RH, Lawson MS, Edwards N et al. 2008. The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial. Lancet Neurol. 7:500–6
    [Google Scholar]
  102. 102.
    Hall KD, Chen KY, Guo J, Lam YY, Leibel RL et al. 2016. Energy expenditure and body composition changes after an isocaloric ketogenic diet in overweight and obese men. Am. J. Clin. Nutr. 104:324–33
    [Google Scholar]
  103. 103.
    Hall KD, Guo J, Courville AB, Boring J, Brychta R et al. 2021. Effect of a plant-based, low-fat diet versus an animal-based, ketogenic diet on ad libitum energy intake. Nat. Med. 27:344–53
    [Google Scholar]
  104. 104.
    Ang QY, Alexander M, Newman JC, Tian Y, Cai J et al. 2020. Ketogenic diets alter the gut microbiome resulting in decreased intestinal Th17 cells. Cell 181:1263–75.e16
    [Google Scholar]
  105. 105.
    Olson CA, Vuong HE, Yano JM, Liang QY, Nusbaum DJ, Hsiao EY. 2018. The gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell 173:1728–41.e13
    [Google Scholar]
  106. 106.
    Kopp W. 2019. How Western diet and lifestyle drive the pandemic of obesity and civilization diseases. Diabetes Metab. Syndr. Obesity Targets Therapy 12:2221–36
    [Google Scholar]
  107. 107.
    Ecklu-Mensah G, Gilbert J, Devkota S 2022. Dietary selection pressures and their impact on the gut microbiome. Cell. Mol. Gastroenterol. Hepatol. 13:7–18
    [Google Scholar]
  108. 108.
    Statovci D, Aguilera M, MacSharry J, Melgar S. 2017. The impact of Western diet and nutrients on the microbiota and immune response at mucosal interfaces. Front. Immunol. 8:838
    [Google Scholar]
  109. 109.
    Leeming ER, Johnson AJ, Spector TD, Le Roy CI 2019. Effect of diet on the gut microbiota: rethinking intervention duration. Nutrients 11:2862
    [Google Scholar]
  110. 110.
    Dinicolantonio JJ, Lucan SC, O'Keefe JH. 2016. The evidence for saturated fat and for sugar related to coronary heart disease. Prog. Cardiovasc. Dis. 58:464–72
    [Google Scholar]
  111. 111.
    Ramsden CE, Faurot KR, Carrera-Bastos P, Cordain L, De Lorgeril M, Sperling LS. 2009. Dietary fat quality and coronary heart disease prevention: a unified theory based on evolutionary, historical, global, and modern perspectives. Curr. Treat. Options Cardiovasc. Med. 11:289–301
    [Google Scholar]
  112. 112.
    Sacks FM, Lichtenstein AH, Wu JHY, Appel LJ, Creager MA et al. 2017. Dietary fats and cardiovascular disease: a presidential advisory from the American Heart Association. Circulation 136:e1–23
    [Google Scholar]
  113. 113.
    Hales CM, Carroll MD, Fryar CD, Ogden CL. 2020. Prevalence of obesity and severe obesity among adults: United States, 2017–2018 NCHS Data Brief 360 US Dep. Health Hum. Serv., Cent. Dis. Contr. Prev. Atlanta: https://www.cdc.gov/nchs/data/databriefs/db360-h.pdf
  114. 114.
    Ludwig DS, Apovian CM, Aronne LJ, Astrup A, Cantley LC et al. 2022. Competing paradigms of obesity pathogenesis: energy balance versus carbohydrate-insulin models. Eur. J. Clin. Nutr. 76:1209–21
    [Google Scholar]
  115. 115.
    Santarelli RL, Vendeuvre JL, Naud N, Tache S, Gueraud F et al. 2010. Meat processing and colon carcinogenesis: cooked, nitrite-treated, and oxidized high-heme cured meat promotes mucin-depleted foci in rats. Cancer Prev. Res. 3:852–64
    [Google Scholar]
  116. 116.
    Bastide N, Morois S, Cadeau C, Kangas S, Serafini M et al. 2016. Heme iron intake, dietary antioxidant capacity, and risk of colorectal adenomas in a large cohort study of French women. Cancer Epidemiol. Biomarkers Prev. 25:640–47
    [Google Scholar]
  117. 117.
    Bastide NM, Chenni F, Audebert M, Santarelli RL, Tache S et al. 2015. A central role for heme iron in colon carcinogenesis associated with red meat intake. Cancer Res. 75:870–79
    [Google Scholar]
  118. 118.
    De Filippo C, Di Paola M, Ramazzotti M, Albanese D, Pieraccini G et al. 2017. Diet, environments, and gut microbiota. A preliminary investigation in children living in rural and urban Burkina Faso and Italy. Front. Microbiol 8:1979
    [Google Scholar]
  119. 119.
    Vangay P, Johnson AJ, Ward TL, Al-Ghalith GA, Shields-Cutler RR et al. 2018. US immigration westernizes the human gut microbiome. Cell 175:962–72.e10
    [Google Scholar]
  120. 120.
    Chassaing B, Koren O, Goodrich JK, Poole AC, Srinivasan S et al. 2015. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519:92–96
    [Google Scholar]
  121. 121.
    Chassaing B, Compher C, Bonhomme B, Liu Q, Tian Y et al. 2022. Randomized controlled-feeding study of dietary emulsifier carboxymethylcellulose reveals detrimental impacts on the gut microbiota and metabolome. Gastroenterology 162:743–56
    [Google Scholar]
  122. 122.
    Zhu W, Gregory JC, Org E, Buffa JA, Gupta N et al. 2016. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 165:111–24
    [Google Scholar]
  123. 123.
    Zhu W, Wang Z, Tang WHW, Hazen SL. 2017. Gut microbe-generated trimethylamine N-oxide from dietary choline is prothrombotic in subjects. Circulation 135:1671–73
    [Google Scholar]
  124. 124.
    Tang WH, Hazen SL. 2017. The gut microbiome and its role in cardiovascular diseases. Circulation 135:1008–10
    [Google Scholar]
  125. 125.
    Schiattarella GG, Sannino A, Toscano E, Giugliano G, Gargiulo G et al. 2017. Gut microbe-generated metabolite trimethylamine-N-oxide as cardiovascular risk biomarker: a systematic review and dose-response meta-analysis. Eur. Heart J. 38:2948–56
    [Google Scholar]
  126. 126.
    Koeth RA, Levison BS, Culley MK, Buffa JA, Wang Z et al. 2014. γ-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of l-carnitine to TMAO. Cell Metab. 20:799–812
    [Google Scholar]
  127. 127.
    Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB et al. 2013. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 368:1575–84
    [Google Scholar]
  128. 128.
    Janeiro MH, Ramirez MJ, Milagro FI, Martinez JA, Solas M. 2018. Implication of trimethylamine N-oxide (TMAO) in disease: potential biomarker or new therapeutic target. Nutrients 10:1398
    [Google Scholar]
  129. 129.
    Gao X, Xu J, Jiang C, Zhang Y, Xue Y et al. 2015. Fish oil ameliorates trimethylamine N-oxide-exacerbated glucose intolerance in high-fat diet-fed mice. Food Funct. 6:1117–25
    [Google Scholar]
  130. 130.
    Griffin LE, Djuric Z, Angiletta CJ, Mitchell CM, Baugh ME et al. 2019. A Mediterranean diet does not alter plasma trimethylamine N-oxide concentrations in healthy adults at risk for colon cancer. Food Funct. 10:2138–47
    [Google Scholar]
  131. 131.
    Adamji M, Day AS. 2019. An overview of the role of exclusive enteral nutrition for complicated Crohn's disease. Intest. Res. 17:171–76
    [Google Scholar]
  132. 132.
    Lee D, Albenberg L, Compher C, Baldassano R, Piccoli D et al. 2015. Diet in the pathogenesis and treatment of inflammatory bowel diseases. Gastroenterology 148:1087–106
    [Google Scholar]
  133. 133.
    Lee D, Baldassano RN, Otley AR, Albenberg L, Griffiths AM et al. 2015. Comparative effectiveness of nutritional and biological therapy in North American children with active Crohnʼs disease. Inflamm. Bowel Dis. 21:1786–93
    [Google Scholar]
  134. 134.
    Pigneur B, Lepage P, Mondot S, Schmitz J, Goulet O et al. 2019. Mucosal healing and bacterial composition in response to enteral nutrition vs steroid-based induction therapy-a randomised prospective clinical trial in children with Crohn's disease. J. Crohns Colitis 13:846–55
    [Google Scholar]
  135. 135.
    Tanes C, Bittinger K, Gao Y, Friedman ES, Nessel L et al. 2021. Role of dietary fiber in the recovery of the human gut microbiome and its metabolome. Cell Host Microbe 29:394–407.e5
    [Google Scholar]
  136. 136.
    Levine A, Wine E, Assa A, Sigall Boneh R, Shaoul R et al. 2019. Crohn's disease exclusion diet plus partial enteral nutrition induces sustained remission in a randomized controlled trial. Gastroenterology 157:440–50.e8
    [Google Scholar]
  137. 137.
    Lewis JD, Sandler RS, Brotherton C, Brensinger C, Li H et al. 2021. A randomized trial comparing the specific carbohydrate diet to a Mediterranean diet in adults with Crohn's disease. Gastroenterology 161:837–52.e9
    [Google Scholar]
  138. 138.
    Cox SR, Lindsay JO, Fromentin S, Stagg AJ, McCarthy NE et al. 2020. Effects of low FODMAP diet on symptoms, fecal microbiome, and markers of inflammation in patients with quiescent inflammatory bowel disease in a randomized trial. Gastroenterology 158:176–88.e7
    [Google Scholar]
  139. 139.
    Huaman JW, Mego M, Manichanh C, Canellas N, Canueto D et al. 2018. Effects of prebiotics versus a diet low in FODMAPs in patients with functional gut disorders. Gastroenterology 155:1004–7
    [Google Scholar]
  140. 140.
    McIntosh K, Reed DE, Schneider T, Dang F, Keshteli AH et al. 2017. FODMAPs alter symptoms and the metabolome of patients with IBS: a randomised controlled trial. Gut 66:1241–51
    [Google Scholar]
  141. 141.
    Staudacher HM, Lomer MCE, Farquharson FM, Louis P, Fava F et al. 2017. A diet low in FODMAPs reduces symptoms in patients with irritable bowel syndrome and a probiotic restores Bifidobacterium species: a randomized controlled trial. Gastroenterology 153:936–47
    [Google Scholar]
  142. 142.
    Caio G, Volta U, Sapone A, Leffler DA, De Giorgio R et al. 2019. Celiac disease: a comprehensive current review. BMC Med. 17:142
    [Google Scholar]
  143. 143.
    Collado MC, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y. 2009. Specific duodenal and faecal bacterial groups associated with paediatric coeliac disease. J. Clin. Pathol. 62:264–69
    [Google Scholar]
  144. 144.
    Nistal E, Caminero A, Herran AR, Arias L, Vivas S et al. 2012. Differences of small intestinal bacteria populations in adults and children with/without celiac disease: effect of age, gluten diet, and disease. Inflamm. Bowel Dis. 18:649–56
    [Google Scholar]
  145. 145.
    Wacklin P, Laurikka P, Lindfors K, Collin P, Salmi T et al. 2014. Altered duodenal microbiota composition in celiac disease patients suffering from persistent symptoms on a long-term gluten-free diet. Am. J. Gastroenterol. 109:1933–41
    [Google Scholar]
  146. 146.
    Caminero A, McCarville JL, Galipeau HJ, Deraison C, Bernier SP et al. 2019. Duodenal bacterial proteolytic activity determines sensitivity to dietary antigen through protease-activated receptor-2. Nat. Commun. 10:1198
    [Google Scholar]
  147. 147.
    Lamas B, Hernandez-Galan L, Galipeau HJ, Constante M, Clarizio A et al. 2020. Aryl hydrocarbon receptor ligand production by the gut microbiota is decreased in celiac disease leading to intestinal inflammation. Sci. Transl. Med. 12:eaba0624
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-031522-092054
Loading
/content/journals/10.1146/annurev-physiol-031522-092054
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error