1932

Abstract

Uromodulin, a protein exclusively produced by the kidney, is the most abundant urinary protein in physiological conditions. Already described several decades ago, uromodulin has gained the spotlight in recent years, since the discovery that mutations in its encoding gene cause a renal Mendelian disease (autosomal dominant tubulointerstitial kidney disease) and that common polymorphisms are associated with multifactorial disorders, such as chronic kidney disease, hypertension, and cardiovascular diseases. Moreover, variations in uromodulin levels in urine and/or blood reflect kidney functioning mass and are of prognostic value for renal function, cardiovascular events, and overall mortality. The clinical relevance of uromodulin reflects its multifunctional nature, playing a role in renal ion transport and immunomodulation, in protection against urinary tract infections and renal stones, and possibly as a systemic antioxidant. Here, we discuss the multifaceted roles of this protein in kidney physiology and its translational relevance.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-031620-092817
2021-02-10
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/physiol/83/1/annurev-physiol-031620-092817.html?itemId=/content/journals/10.1146/annurev-physiol-031620-092817&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Tamm I, Horsfall FL. 1950. Characterisation and separation of an inhibitor of viral hemagglutination present in urine. Proc. Soc. Exp. Biol. Med. 74:108–14
    [Google Scholar]
  2. 2. 
    Muchmore AV, Decker JM. 1985. Uromodulin: a unique 85-kilodalton immunosuppressive glycoprotein isolated from urine of pregnant women. Science 229:479–81
    [Google Scholar]
  3. 3. 
    Pennica D, Kohr WJ, Kuang WJ, Glaister D, Aggarwal BB et al. 1987. Identification of human uromodulin as the Tamm-Horsfall urinary glycoprotein. Science 236:83–88
    [Google Scholar]
  4. 4. 
    Tokonami N, Takata T, Beyeler J, Ehrbar I, Yoshifuji A et al. 2018. Uromodulin is expressed in the distal convoluted tubule, where it is critical for regulation of the sodium chloride cotransporter NCC. Kidney Int 94:701–15
    [Google Scholar]
  5. 5. 
    Cavallone D, Malagolini N, Serafini-Cessi F 2001. Mechanism of release of urinary Tamm-Horsfall glycoprotein from the kidney GPI-anchored counterpart. Biochem. Biophys. Res. Commun. 280:110–14
    [Google Scholar]
  6. 6. 
    Serafini-Cessi F, Malagolini N, Hoops TC, Rindler MJ 1993. Biosynthesis and oligosaccharide processing of human Tamm-Horsfall glycoprotein permanently expressed in HeLa cells. Biochem. Biophys. Res. Commun. 194:784–90
    [Google Scholar]
  7. 7. 
    van Rooijen JJ, Voskamp AF, Kamerling JP, Vliegenthart JF 1999. Glycosylation sites and site-specific glycosylation in human Tamm-Horsfall glycoprotein. Glycobiology 9:21–30
    [Google Scholar]
  8. 8. 
    Schnierle P, Hering F, Seiler H 1996. Isoelectric focusing of Tamm-Horsfall glycoproteins: a simple tool for recognizing recurrent calcium oxalate renal stone formers. Urol. Res. 24:79–82
    [Google Scholar]
  9. 9. 
    Easton RL, Patankar MS, Clark GF, Morris HR, Dell A 2000. Pregnancy-associated changes in the glycosylation of Tamm-Horsfall glycoprotein. Expression of sialyl Lewisx sequences on core 2 type O-glycans derived from uromodulin. J. Biol. Chem. 275:21928–38
    [Google Scholar]
  10. 10. 
    Donald AS, Yates AD, Soh CP, Morgan WT, Watkins WM 1983. A blood group Sda-active pentasaccharide isolated from Tamm-Horsfall urinary glycoprotein. Biochem. Biophys. Res. Commun. 115:625–31
    [Google Scholar]
  11. 11. 
    Porter KR, Tamm I. 1955. Direct visualization of a mucoprotein component of urine. J. Biol. Chem. 212:135–40
    [Google Scholar]
  12. 12. 
    Brunati M, Perucca S, Han L, Cattaneo A, Consolato F et al. 2015. The serine protease hepsin mediates urinary secretion and polymerization of Zona Pellucida domain protein uromodulin. eLife 4:e08887
    [Google Scholar]
  13. 13. 
    Jovine L, Qi H, Williams Z, Litscher E, Wassarman PM 2002. The ZP domain is a conserved module for polymerization of extracellular proteins. Nat. Cell Biol. 4:457–61
    [Google Scholar]
  14. 14. 
    Schaeffer C, Santambrogio S, Perucca S, Casari G, Rampoldi L 2009. Analysis of uromodulin polymerization provides new insights into the mechanisms regulating ZP domain-mediated protein assembly. Mol. Biol. Cell 20:589–99
    [Google Scholar]
  15. 15. 
    Olinger E, Lake J, Sheehan S, Schiano G, Takata T et al. 2019. Hepsin-mediated processing of uromodulin is crucial for salt-sensitivity and thick ascending limb homeostasis. Sci. Rep. 9:12287
    [Google Scholar]
  16. 16. 
    Bokhove M, Nishimura K, Brunati M, Han L, de Sanctis D et al. 2016. A structured interdomain linker directs self-polymerization of human uromodulin. PNAS 113:1552–57
    [Google Scholar]
  17. 17. 
    Weiss GL, Stanisich JJ, Sauer MM, Lin CW, Eras J et al. 2020. Architecture and function of human uromodulin filaments in urinary tract infections. Science 369:1005–10
    [Google Scholar]
  18. 18. 
    Stanisich JJ, Zyla DS, Afanasyev P, Xu J, Kipp A et al. 2020. The cryo-EM structure of the human uromodulin filament core reveals a unique assembly mechanism. eLife 9:e60265
    [Google Scholar]
  19. 19. 
    Badgett A, Kumar S. 1998. Phylogeny of Tamm-Horsfall protein. Urol. Int. 61:72–75
    [Google Scholar]
  20. 20. 
    Howie AJ, Lote CJ, Cunningham AA, Zaccone G, Fasulo S 1993. Distribution of immunoreactive Tamm-Horsfall protein in various species in the vertebrate classes. Cell Tissue Res 274:15–19
    [Google Scholar]
  21. 21. 
    Stoner LC. 1977. Isolated perfused amphibian renal tubules: the diluting segment. Am. J. Physiol. 233:F438–44
    [Google Scholar]
  22. 22. 
    Lote CJ. 1974. Proceedings: Effect of furosemide on the short-circuit current and chloride flux across frog (Rana temporaria) skin. J. Physiol. 241:27P–28P
    [Google Scholar]
  23. 23. 
    Rossier BC, Bochud M, Devuyst O 2017. The hypertension pandemic: an evolutionary perspective. Physiology 32:112–25
    [Google Scholar]
  24. 24. 
    Brunskill EW, Aronow BJ, Georgas K, Rumballe B, Valerius MT et al. 2008. Atlas of gene expression in the developing kidney at microanatomic resolution. Dev. Cell 15:781–91
    [Google Scholar]
  25. 25. 
    Wallace AC, Nairn RC. 1971. Tamm-Horsfall protein in kidneys of human embyros and foreign species. Pathology 3:303–10
    [Google Scholar]
  26. 26. 
    Cheval L, Pierrat F, Dossat C, Genete M, Imbert-Teboul M et al. 2011. Atlas of gene expression in the mouse kidney: new features of glomerular parietal cells. Physiol. Genom. 43:161–73
    [Google Scholar]
  27. 27. 
    Lee JW, Chou CL, Knepper MA 2015. Deep sequencing in microdissected renal tubules identifies nephron segment-specific transcriptomes. J. Am. Soc. Nephrol. 26:2669–77
    [Google Scholar]
  28. 28. 
    Zhu X, Cheng J, Gao J, Lepor H, Zhang ZT et al. 2002. Isolation of mouse THP gene promoter and demonstration of its kidney-specific activity in transgenic mice. Am. J. Physiol. Ren. Physiol. 282:F608–17
    [Google Scholar]
  29. 29. 
    Bernascone I, Janas S, Ikehata M, Trudu M, Corbelli A et al. 2010. A transgenic mouse model for uromodulin-associated kidney diseases shows specific tubulo-interstitial damage, urinary concentrating defect and renal failure. Hum. Mol. Genet. 19:2998–3010
    [Google Scholar]
  30. 30. 
    Gresh L, Fischer E, Reimann A, Tanguy M, Garbay S et al. 2004. A transcriptional network in polycystic kidney disease. EMBO J 23:1657–68
    [Google Scholar]
  31. 31. 
    Trudu M, Janas S, Lanzani C, Debaix H, Schaeffer C et al. 2013. Common noncoding UMOD gene variants induce salt-sensitive hypertension and kidney damage by increasing uromodulin expression. Nat. Med. 19:1655–60
    [Google Scholar]
  32. 32. 
    Gillies CE, Putler R, Menon R, Otto E, Yasutake K et al. 2018. An eQTL landscape of kidney tissue in human nephrotic syndrome. Am. J. Hum. Genet. 103:232–44
    [Google Scholar]
  33. 33. 
    Srivastava R, Micanovic R, El-Achkar TM, Janga SC 2014. An intricate network of conserved DNA upstream motifs and associated transcription factors regulate the expression of uromodulin gene. J. Urol. 192:981–89
    [Google Scholar]
  34. 34. 
    Troyanov S, Delmas-Frenette C, Bollee G, Youhanna S, Bruat V et al. 2016. Clinical, genetic, and urinary factors associated with uromodulin excretion. Clin. J. Am. Soc. Nephrol. 11:62–69
    [Google Scholar]
  35. 35. 
    Ledo N, Ko YA, Park AS, Kang HM, Han SY et al. 2015. Functional genomic annotation of genetic risk loci highlights inflammation and epithelial biology networks in CKD. J. Am. Soc. Nephrol. 26:692–714
    [Google Scholar]
  36. 36. 
    Sato S, Kaneto S, Shibata N, Takahashi Y, Okura H et al. 2013. Transcription factor Spi-B-dependent and -independent pathways for the development of Peyer's patch M cells. Mucosal Immunol 6:838–46
    [Google Scholar]
  37. 37. 
    Yanagihara S, Kanaya T, Fukuda S, Nakato G, Hanazato M et al. 2017. Uromodulin-SlpA binding dictates Lactobacillus acidophilus uptake by intestinal epithelial M cells. Int. Immunol. 29:357–63
    [Google Scholar]
  38. 38. 
    Pruijm M, Ponte B, Ackermann D, Paccaud F, Guessous I et al. 2016. Associations of urinary uromodulin with clinical characteristics and markers of tubular function in the general population. Clin. J. Am. Soc. Nephrol. 11:70–80
    [Google Scholar]
  39. 39. 
    Pang S, Urquhart P, Hooper NM 2004. N-glycans, not the GPI anchor, mediate the apical targeting of a naturally glycosylated, GPI-anchored protein in polarised epithelial cells. J. Cell Sci. 117:5079–86
    [Google Scholar]
  40. 40. 
    Tokonami N, Olinger E, Debaix H, Houillier P, Devuyst O 2018. The excretion of uromodulin is modulated by the calcium-sensing receptor. Kidney Int 94:882–86
    [Google Scholar]
  41. 41. 
    Olden M, Corre T, Hayward C, Toniolo D, Ulivi S et al. 2014. Common variants in UMOD associate with urinary uromodulin levels: a meta-analysis. J. Am. Soc. Nephrol. 25:1869–82
    [Google Scholar]
  42. 42. 
    Schiano G, Glaudemans B, Olinger E, Goelz N, Muller M et al. 2019. The urinary excretion of uromodulin is regulated by the potassium channel ROMK. Sci. Rep. 9:19517
    [Google Scholar]
  43. 43. 
    Thornley C, Dawnay A, Cattell WR 1985. Human Tamm-Horsfall glycoprotein: urinary and plasma levels in normal subjects and patients with renal disease determined by a fully validated radioimmunoassay. Clin. Sci. 68:529–35
    [Google Scholar]
  44. 44. 
    Dawnay AB, Cattell WR. 1981. Serum Tamm-Horsfall glycoprotein levels in health and in renal disease. Clin. Nephrol. 15:5–8
    [Google Scholar]
  45. 45. 
    Micanovic R, Khan S, Janosevic D, Lee ME, Hato T et al. 2018. Tamm-Horsfall protein regulates mononuclear phagocytes in the kidney. J. Am. Soc. Nephrol. 29:841–56
    [Google Scholar]
  46. 46. 
    Bachmann S, Koeppen-Hagemann I, Kriz W 1985. Ultrastructural localization of Tamm-Horsfall glycoprotein (THP) in rat kidney as revealed by protein A-gold immunocytochemistry. Histochemistry 83:531–38
    [Google Scholar]
  47. 47. 
    El-Achkar TM, McCracken R, Liu Y, Heitmeier MR, Bourgeois S et al. 2013. Tamm-Horsfall protein translocates to the basolateral domain of thick ascending limbs, interstitium, and circulation during recovery from acute kidney injury. Am. J. Physiol. Ren. Physiol. 304:F1066–75
    [Google Scholar]
  48. 48. 
    Scherberich JE, Gruber R, Nockher WA, Christensen EI, Schmitt H et al. 2018. Serum uromodulin—a marker of kidney function and renal parenchymal integrity. Nephrol. Dial. Transplant. 33:284–95
    [Google Scholar]
  49. 49. 
    Orskov I, Ferencz A, Orskov F 1980. Tamm-Horsfall protein or uromucoid is the normal urinary slime that traps type 1 fimbriated Escherichia coli. Lancet 315:887–88
    [Google Scholar]
  50. 50. 
    Bjugn R, Flood PR. 1988. Scanning electron microscopy of human urine and purified Tamm-Horsfall's glycoprotein. Scand. J. Urol. Nephrol. 22:313–15
    [Google Scholar]
  51. 51. 
    Pak J, Pu Y, Zhang ZT, Hasty DL, Wu XR 2001. Tamm-Horsfall protein binds to type 1 fimbriated Escherichia coli and prevents E. coli from binding to uroplakin Ia and Ib receptors. J. Biol. Chem. 276:9924–30
    [Google Scholar]
  52. 52. 
    Cavallone D, Malagolini N, Monti A, Wu XR, Serafini-Cessi F 2004. Variation of high mannose chains of Tamm-Horsfall glycoprotein confers differential binding to type 1-fimbriated Escherichia coli. J. Biol. . Chem 279:216–22
    [Google Scholar]
  53. 53. 
    Mo L, Zhu XH, Huang HY, Shapiro E, Hasty DL, Wu XR 2004. Ablation of the Tamm-Horsfall protein gene increases susceptibility of mice to bladder colonization by type 1-fimbriated Escherichia coli. Am. J. Physiol. Ren. . Physiol 286:F795–802
    [Google Scholar]
  54. 54. 
    Bates JM, Raffi HM, Prasadan K, Mascarenhas R, Laszik Z et al. 2004. Tamm-Horsfall protein knockout mice are more prone to urinary tract infection: rapid communication. Kidney Int 65:791–97
    [Google Scholar]
  55. 55. 
    Raffi HS, Bates JM Jr, Laszik Z, Kumar S 2005. Tamm-Horsfall protein acts as a general host-defense factor against bacterial cystitis. Am. J. Nephrol 25:570–78
    [Google Scholar]
  56. 56. 
    Raffi HS, Bates JM Jr, Laszik Z, Kumar S 2009. Tamm-Horsfall protein protects against urinary tract infection by proteus mirabilis. J. Urol 181:2332–38
    [Google Scholar]
  57. 57. 
    Coady A, Ramos AR, Olson J, Nizet V, Patras KA 2018. Tamm-Horsfall protein protects the urinary tract against Candida albicans. Infect. . Immun 86:e00451–18
    [Google Scholar]
  58. 58. 
    Garimella PS, Bartz TM, Ix JH, Chonchol M, Shlipak MG et al. 2017. Urinary uromodulin and risk of urinary tract infections: the cardiovascular health study. Am. J. Kidney Dis. 69:744–51
    [Google Scholar]
  59. 59. 
    van der Starre WE, van Nieuwkoop C, Thomson U, Zijderveld-Voshart MS, Koopman JP et al. 2015. Urinary proteins, vitamin D and genetic polymorphisms as risk factors for febrile urinary tract infection and relation with bacteremia: a case control study. PLOS ONE 10:e0121302
    [Google Scholar]
  60. 60. 
    Ghirotto S, Tassi F, Barbujani G, Pattini L, Hayward C et al. 2016. The uromodulin gene locus shows evidence of pathogen adaptation through human evolution. J. Am. Soc. Nephrol. 27:2983–96
    [Google Scholar]
  61. 61. 
    Grant AM, Baker LR, Neuberger A 1973. Urinary Tamm-Horsfall glycoprotein in certain kidney diseases and its content in renal and bladder calculi. Clin. Sci. 44:377–84
    [Google Scholar]
  62. 62. 
    Hess B. 1992. Tamm-Horsfall glycoprotein–inhibitor or promoter of calcium oxalate monohydrate crystallization processes. Urol. Res. 20:83–86
    [Google Scholar]
  63. 63. 
    Mo L, Huang HY, Zhu XH, Shapiro E, Hasty DL, Wu XR 2004. Tamm-Horsfall protein is a critical renal defense factor protecting against calcium oxalate crystal formation. Kidney Int 66:1159–66
    [Google Scholar]
  64. 64. 
    Mo L, Liaw L, Evan AP, Sommer AJ, Lieske JC, Wu XR 2007. Renal calcinosis and stone formation in mice lacking osteopontin, Tamm-Horsfall protein, or both. Am. J. Physiol. Ren. Physiol. 293:F1935–43
    [Google Scholar]
  65. 65. 
    Liu Y, Mo L, Goldfarb DS, Evan AP, Liang F et al. 2010. Progressive renal papillary calcification and ureteral stone formation in mice deficient for Tamm-Horsfall protein. Am. J. Physiol. Ren. Physiol. 299:F469–78
    [Google Scholar]
  66. 66. 
    Romero MC, Nocera S, Nesse AB 1997. Decreased Tamm-Horsfall protein in lithiasic patients. Clin. Biochem. 30:63–67
    [Google Scholar]
  67. 67. 
    Glauser A, Hochreiter W, Jaeger P, Hess B 2000. Determinants of urinary excretion of Tamm-Horsfall protein in non-selected kidney stone formers and healthy subjects. Nephrol. Dial. Transplant. 15:1580–87
    [Google Scholar]
  68. 68. 
    Lau WH, Leong WS, Ismail Z, Gam LH 2008. Qualification and application of an ELISA for the determination of Tamm Horsfall protein (THP) in human urine and its use for screening of kidney stone disease. Int. J. Biol. Sci. 4:215–22
    [Google Scholar]
  69. 69. 
    Gudbjartsson DF, Holm H, Indridason OS, Thorleifsson G, Edvardsson V et al. 2010. Association of variants at UMOD with chronic kidney disease and kidney stones-role of age and comorbid diseases. PLOS Genet 6:e1001039
    [Google Scholar]
  70. 70. 
    Wolf MT, Wu XR, Huang CL 2013. Uromodulin upregulates TRPV5 by impairing caveolin-mediated endocytosis. Kidney Int 84:130–37
    [Google Scholar]
  71. 71. 
    Ying WZ, Sanders PW. 1998. Dietary salt regulates expression of Tamm-Horsfall glycoprotein in rats. Kidney Int 54:1150–56
    [Google Scholar]
  72. 72. 
    Torffvit O, Melander O, Hulten UL 2004. Urinary excretion rate of Tamm-Horsfall protein is related to salt intake in humans. Nephron Physiol 97:31–36
    [Google Scholar]
  73. 73. 
    Bachmann S, Mutig K, Bates J, Welker P, Geist B et al. 2005. Renal effects of Tamm-Horsfall protein (uromodulin) deficiency in mice. Am. J. Physiol. Ren. Physiol. 288:F559–67
    [Google Scholar]
  74. 74. 
    Mutig K, Kahl T, Saritas T, Godes M, Persson P et al. 2011. Activation of the bumetanide-sensitive Na+,K+,2Cl cotransporter (NKCC2) is facilitated by Tamm-Horsfall protein in a chloride-sensitive manner. J. Biol. Chem. 286:30200–10
    [Google Scholar]
  75. 75. 
    Liu Y, Goldfarb DS, El-Achkar TM, Lieske JC, Wu XR 2018. Tamm-Horsfall protein/uromodulin deficiency elicits tubular compensatory responses leading to hypertension and hyperuricemia. Am. J. Physiol. Ren. Physiol. 314:F1062–76
    [Google Scholar]
  76. 76. 
    Renigunta A, Renigunta V, Saritas T, Decher N, Mutig K, Waldegger S 2011. Tamm-Horsfall glycoprotein interacts with renal outer medullary potassium channel ROMK2 and regulates its function. J. Biol. Chem. 286:2224–35
    [Google Scholar]
  77. 77. 
    Padmanabhan S, Melander O, Johnson T, Di Blasio AM, Lee WK et al. 2010. Genome-wide association study of blood pressure extremes identifies variant near UMOD associated with hypertension. PLOS Genet 6:e1001177
    [Google Scholar]
  78. 78. 
    Algharably EAH, Bolbrinker J, Lezius S, Reibis R, Wegscheider K et al. 2017. Uromodulin associates with cardiorenal function in patients with hypertension and cardiovascular disease. J. Hypertens. 35:2053–58
    [Google Scholar]
  79. 79. 
    Graham LA, Padmanabhan S, Fraser NJ, Kumar S, Bates JM et al. 2014. Validation of uromodulin as a candidate gene for human essential hypertension. Hypertension 63:551–58
    [Google Scholar]
  80. 80. 
    Nie M, Bal MS, Liu J, Yang Z, Rivera C et al. 2018. Uromodulin regulates renal magnesium homeostasis through the ion channel transient receptor potential melastatin 6 (TRPM6). J. Biol. Chem. 293:16488–502
    [Google Scholar]
  81. 81. 
    Loffing J, Loffing-Cueni D, Valderrabano V, Klausli L, Hebert SC et al. 2001. Distribution of transcellular calcium and sodium transport pathways along mouse distal nephron. Am. J. Physiol. Ren. Physiol. 281:F1021–27
    [Google Scholar]
  82. 82. 
    Nijenhuis T, Hoenderop JG, van der Kemp AW, Bindels RJ 2003. Localization and regulation of the epithelial Ca2+ channel TRPV6 in the kidney. J. Am. Soc. Nephrol. 14:2731–40
    [Google Scholar]
  83. 83. 
    de Baaij JH, Groot Koerkamp MJ, Lavrijsen M, van Zeeland F, Meijer H et al. 2013. Elucidation of the distal convoluted tubule transcriptome identifies new candidate genes involved in renal Mg2+ handling. Am. J. Physiol. Ren. Physiol. 305:F1563–73
    [Google Scholar]
  84. 84. 
    Wolf MTF, Zhang J, Nie M 2019. Uromodulin in mineral metabolism. Curr. Opin. Nephrol. Hypertens. 28:481–89
    [Google Scholar]
  85. 85. 
    Horton JK, Davies M, Topley N, Thomas D, Williams JD 1990. Activation of the inflammatory response of neutrophils by Tamm-Horsfall glycoprotein. Kidney Int 37:717–26
    [Google Scholar]
  86. 86. 
    Schmid M, Prajczer S, Gruber LN, Bertocchi C, Gandini R et al. 2010. Uromodulin facilitates neutrophil migration across renal epithelial monolayers. Cell. Physiol. Biochem. 26:311–18
    [Google Scholar]
  87. 87. 
    Thomas DB, Davies M, Peters JR, Williams JD 1993. Tamm Horsfall protein binds to a single class of carbohydrate specific receptors on human neutrophils. Kidney Int 44:423–29
    [Google Scholar]
  88. 88. 
    Siao SC, Li KJ, Hsieh SC, Wu CH, Lu MC et al. 2011. Tamm-Horsfall glycoprotein enhances PMN phagocytosis by binding to cell surface-expressed lactoferrin and cathepsin G that activates MAP kinase pathway. Molecules 16:2119–34
    [Google Scholar]
  89. 89. 
    Thomas DB, Davies M, Williams JD 1993. Release of gelatinase and superoxide from human mononuclear phagocytes in response to particulate Tamm Horsfall protein. Am. J. Pathol. 142:249–60
    [Google Scholar]
  90. 90. 
    Saemann MD, Weichhart T, Zeyda M, Staffler G, Schunn M et al. 2005. Tamm-Horsfall glycoprotein links innate immune cell activation with adaptive immunity via a Toll-like receptor-4-dependent mechanism. J. Clin. Investig. 115:468–75
    [Google Scholar]
  91. 91. 
    Pfistershammer K, Klauser C, Leitner J, Stockl J, Majdic O et al. 2008. Identification of the scavenger receptors SREC-I, Cla-1 (SR-BI), and SR-AI as cellular receptors for Tamm-Horsfall protein. J. Leukoc. Biol. 83:131–38
    [Google Scholar]
  92. 92. 
    Darisipudi MN, Thomasova D, Mulay SR, Brech D, Noessner E et al. 2012. Uromodulin triggers IL-1β-dependent innate immunity via the NLRP3 inflammasome. J. Am. Soc. Nephrol. 23:1783–89
    [Google Scholar]
  93. 93. 
    El-Achkar TM, Wu XR, Rauchman M, McCracken R, Kiefer S, Dagher PC 2008. Tamm-Horsfall protein protects the kidney from ischemic injury by decreasing inflammation and altering TLR4 expression. Am. J. Physiol. Ren. Physiol. 295:F534–44
    [Google Scholar]
  94. 94. 
    El-Achkar TM, McCracken R, Rauchman M, Heitmeier MR, Al-Aly Z et al. 2011. Tamm-Horsfall protein-deficient thick ascending limbs promote injury to neighboring S3 segments in an MIP-2-dependent mechanism. Am. J. Physiol. Ren. Physiol. 300:F999–1007
    [Google Scholar]
  95. 95. 
    Hession C, Decker JM, Sherblom AP, Kumar S, Yue CC et al. 1987. Uromodulin (Tamm-Horsfall glycoprotein): a renal ligand for lymphokines. Science 237:1479–84
    [Google Scholar]
  96. 96. 
    Liu Y, El-Achkar TM, Wu XR 2012. Tamm-Horsfall protein regulates circulating and renal cytokines by affecting glomerular filtration rate and acting as a urinary cytokine trap. J. Biol. Chem. 287:16365–78
    [Google Scholar]
  97. 97. 
    Rhodes DC. 2006. Importance of carbohydrate in the interaction of Tamm-Horsfall protein with complement 1q and inhibition of classical complement activation. Immunol. Cell Biol. 84:357–65
    [Google Scholar]
  98. 98. 
    Gong K, Xia M, Wang Y, Bai L, Ying W et al. 2020. Importance of glycosylation in the interaction of Tamm-Horsfall protein with collectin-11 and acute kidney injury. J. Cell. Mol. Med. 24:3572–81
    [Google Scholar]
  99. 99. 
    Micanovic R, Chitteti BR, Dagher PC, Srour EF, Khan S et al. 2015. Tamm-Horsfall protein regulates granulopoiesis and systemic neutrophil homeostasis. J. Am. Soc. Nephrol. 26:2172–82
    [Google Scholar]
  100. 100. 
    LaFavers KA, Macedo E, Garimella PS, Lima C, Khan S et al. 2019. Circulating uromodulin inhibits systemic oxidative stress by inactivating the TRPM2 channel. Sci. Transl. Med. 11:512eaaw3639
    [Google Scholar]
  101. 101. 
    Alesutan I, Luong TTD, Schelski N, Masyout J, Hille S et al. 2020. Circulating uromodulin inhibits vascular calcification by interfering with pro-inflammatory cytokine signalling. Cardiovasc. Res. https://doi.org/10.1093/cvr/cvaa081
    [Crossref] [Google Scholar]
  102. 102. 
    Köttgen A, Glazer NL, Dehghan A, Hwang SJ, Katz R et al. 2009. Multiple loci associated with indices of renal function and chronic kidney disease. Nat. Genet. 41:712–17
    [Google Scholar]
  103. 103. 
    Köttgen A, Pattaro C, Böger CA, Fuchsberger C, Olden M et al. 2010. New loci associated with kidney function and chronic kidney disease. Nat. Genet. 42:376–84
    [Google Scholar]
  104. 104. 
    Pattaro C, De Grandi A, Vitart V, Hayward C, Franke A et al. 2010. A meta-analysis of genome-wide data from five European isolates reveals an association of COL22A1, SYT1, and GABRR2 with serum creatinine level. BMC Med. Genet. 11:41
    [Google Scholar]
  105. 105. 
    Pattaro C, Köttgen A, Teumer A, Garnaas M, Böger CA et al. 2012. Genome-wide association and functional follow-up reveals new loci for kidney function. PLOS Genet 8:e1002584
    [Google Scholar]
  106. 106. 
    Liu CT, Garnaas MK, Tin A, Köttgen A, Franceschini N et al. 2011. Genetic association for renal traits among participants of African ancestry reveals new loci for renal function. PLOS Genet 7:e1002264
    [Google Scholar]
  107. 107. 
    Okada Y, Sim X, Go MJ, Wu JY, Gu D et al. 2012. Meta-analysis identifies multiple loci associated with kidney function-related traits in east Asian populations. Nat. Genet. 44:904–9
    [Google Scholar]
  108. 108. 
    Pattaro C, Teumer A, Gorski M, Chu AY, Li M et al. 2016. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function. Nat. Commun. 7:10023
    [Google Scholar]
  109. 109. 
    Morris AP, Le TH, Wu H, Akbarov A, van der Most PJ et al. 2019. Trans-ethnic kidney function association study reveals putative causal genes and effects on kidney-specific disease aetiologies. Nat. Commun. 10:29
    [Google Scholar]
  110. 110. 
    Wuttke M, Li Y, Li M, Sieber KB, Feitosa MF et al. 2019. A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nat. Genet. 51:957–72
    [Google Scholar]
  111. 111. 
    Böger CA, Gorski M, Li M, Hoffmann MM, Huang C et al. 2011. Association of eGFR-related loci identified by GWAS with incident CKD and ESRD. PLOS Genet 7:e1002292
    [Google Scholar]
  112. 112. 
    Gorski M, Tin A, Garnaas M, McMahon GM, Chu AY et al. 2015. Genome-wide association study of kidney function decline in individuals of European descent. Kidney Int 87:1017–29
    [Google Scholar]
  113. 113. 
    Schulz CA, Engström G, Christensson A, Nilsson PM, Melander O, Orho-Melander M 2019. Genetic predisposition for renal dysfunction and incidence of CKD in the Malmö Diet and Cancer Study. Kidney Int. Rep. 4:1143–51
    [Google Scholar]
  114. 114. 
    Wunnenburger S, Schultheiss UT, Walz G, Hausknecht B, Ekici AB et al. 2017. Associations between genetic risk variants for kidney diseases and kidney disease etiology. Sci. Rep. 7:13944
    [Google Scholar]
  115. 115. 
    Ahluwalia TS, Lindholm E, Groop L, Melander O 2011. Uromodulin gene variant is associated with type 2 diabetic nephropathy. J. Hypertens. 29:1731–34
    [Google Scholar]
  116. 116. 
    van Zuydam NR, Ahlqvist E, Sandholm N, Deshmukh H, Rayner NW et al. 2018. A genome-wide association study of diabetic kidney disease in subjects with type 2 diabetes. Diabetes 67:1414–27
    [Google Scholar]
  117. 117. 
    Prudente S, Di Paola R, Copetti M, Lucchesi D, Lamacchia O et al. 2017. The rs12917707 polymorphism at the UMOD locus and glomerular filtration rate in individuals with type 2 diabetes: evidence of heterogeneity across two different European populations. Nephrol. Dial. Transplant. 32:1718–22
    [Google Scholar]
  118. 118. 
    Guan M, Ma J, Keaton JM, Dimitrov L, Mudgal P et al. 2016. Association of kidney structure-related gene variants with type 2 diabetes-attributed end-stage kidney disease in African Americans. Hum. Genet. 135:1251–62
    [Google Scholar]
  119. 119. 
    Sveinbjornsson G, Mikaelsdottir E, Palsson R, Indridason OS, Holm H et al. 2014. Rare mutations associating with serum creatinine and chronic kidney disease. Hum. Mol. Genet. 23:6935–43
    [Google Scholar]
  120. 120. 
    Leiherer A, Muendlein A, Saely CH, Brandtner EM, Geiger K et al. 2018. The value of uromodulin as a new serum marker to predict decline in renal function. J. Hypertens. 36:110–18
    [Google Scholar]
  121. 121. 
    Maydan O, McDade PG, Liu Y, Wu XR, Matsell DG, Eddy AA 2018. Uromodulin deficiency alters tubular injury and interstitial inflammation but not fibrosis in experimental obstructive nephropathy. Physiol. Rep. 6:e13654
    [Google Scholar]
  122. 122. 
    Tin A, Marten J, Kuhns VLH, Li Y, Wuttke M et al. 2019. Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels. Nat. Genet. 51:1459–74
    [Google Scholar]
  123. 123. 
    Trevisani F, Larcher A, Cinque A, Capitanio U, Ripa F et al. 2019. The association of uromodulin genotype with renal cancer aggressiveness. Eur. Urol. Focus 5:262–65
    [Google Scholar]
  124. 124. 
    Lynn KL, Marshall RD. 1984. Excretion of Tamm-Horsfall glycoprotein in renal disease. Clin. Nephrol. 22:253–57
    [Google Scholar]
  125. 125. 
    Pivin E, Ponte B, de Seigneux S, Ackermann D, Guessous I et al. 2018. Uromodulin and nephron mass. Clin. J. Am. Soc. Nephrol. 13:1556–57
    [Google Scholar]
  126. 126. 
    Risch L, Lhotta K, Meier D, Medina-Escobar P, Nydegger UE, Risch M 2014. The serum uromodulin level is associated with kidney function. Clin. Chem. Lab. Med. 52:1755–61
    [Google Scholar]
  127. 127. 
    Fedak D, Kuźniewski M, Fugiel A, Wieczorek-Surdacka E, Przepiorkowska-Hoyer B et al. 2016. Serum uromodulin concentrations correlate with glomerular filtration rate in patients with chronic kidney disease. Pol. Arch. Med. Wewn. 126:995–1004
    [Google Scholar]
  128. 128. 
    Steubl D, Block M, Herbst V, Nockher WA, Schlumberger W et al. 2016. Plasma uromodulin correlates with kidney function and identifies early stages in chronic kidney disease patients. Medicine 95:e3011
    [Google Scholar]
  129. 129. 
    Smirnov AV, Khasun M, Kayukov IG, Galkina OV, Sipovski VG et al. 2018. Serum uromodulin as an early biomarker of tubular atrophy and interstitial fibrosis in patients with glomerulopathies. Ter. Arkh. 90:41–47
    [Google Scholar]
  130. 130. 
    Leiherer A, Muendlein A, Saely CH, Kinz E, Brandtner EM et al. 2017. Serum uromodulin is associated with impaired glucose metabolism. Medicine 96:e5798
    [Google Scholar]
  131. 131. 
    Wiromrat P, Bjornstad P, Roncal C, Pyle L, Johnson RJ et al. 2019. Serum uromodulin is associated with urinary albumin excretion in adolescents with type 1 diabetes. J. Diabetes Complications 33:648–50
    [Google Scholar]
  132. 132. 
    Bjornstad P, Wiromrat P, Johnson RJ, Sippl R, Cherney DZI et al. 2019. Serum uromodulin predicts less coronary artery calcification and diabetic kidney disease over 12 years in adults with type 1 diabetes: the CACTI study. Diabetes Care 42:297–302
    [Google Scholar]
  133. 133. 
    Then C, Then H, Meisinger C, Heier M, Peters A et al. 2019. Serum uromodulin is associated with but does not predict type 2 diabetes in elderly KORA F4/FF4 study participants. J. Clin. Endocrinol. Metab. 104:3795–802
    [Google Scholar]
  134. 134. 
    Then C, Then H, Lechner A, Huth C, Meisinger C et al. 2019. Serum uromodulin is inversely associated with the metabolic syndrome in the KORA F4 study. Endocr. Connect. 8:1363–71
    [Google Scholar]
  135. 135. 
    Steubl D, Buzkova P, Ix JH, Devarajan P, Bennett MR et al. 2020. Association of serum and urinary uromodulin and their correlates in older adults—The Cardiovascular Health Study. Nephrology 25:522–26
    [Google Scholar]
  136. 136. 
    Youhanna S, Weber J, Beaujean V, Glaudemans B, Sobek J, Devuyst O 2014. Determination of uromodulin in human urine: influence of storage and processing. Nephrol. Dial. Transplant. 29:136–45
    [Google Scholar]
  137. 137. 
    Van JAD, Clotet-Freixas S, Zhou J, Batruch I, Sun C et al. 2020. Peptidomic analysis of urine from youths with early type 1 diabetes reveals novel bioactivity of uromodulin peptides in vitro. Mol. Cell. Proteom 19:501–17
    [Google Scholar]
  138. 138. 
    Garimella PS, Biggs ML, Katz R, Ix JH, Bennett MR et al. 2015. Urinary uromodulin, kidney function, and cardiovascular disease in elderly adults. Kidney Int 88:1126–34
    [Google Scholar]
  139. 139. 
    Garimella PS, Katz R, Ix JH, Fried LF, Kritchevsky SB et al. 2017. Association of urinary uromodulin with kidney function decline and mortality: the health ABC study. Clin. Nephrol. 87:278–86
    [Google Scholar]
  140. 140. 
    Steubl D, Block M, Herbst V, Nockher WA, Schlumberger W et al. 2019. Urinary uromodulin independently predicts end-stage renal disease and rapid kidney function decline in a cohort of chronic kidney disease patients. Medicine 98:e15808
    [Google Scholar]
  141. 141. 
    Tan FJ, Zeng YR, Yan LJ, Zhang DQ 2017. Low plasma uromodulin is a predictor of early stage chronic kidney disease progression. Int. J. Clin. Exp. Med. 10:8055–59
    [Google Scholar]
  142. 142. 
    Lv L, Wang J, Gao B, Wu L, Wang F et al. 2018. Serum uromodulin and progression of kidney disease in patients with chronic kidney disease. J. Transl. Med. 16:316
    [Google Scholar]
  143. 143. 
    Steubl D, Buzkova P, Garimella PS, Ix JH, Devarajan P et al. 2019. Association of serum uromodulin with ESKD and kidney function decline in the elderly: the Cardiovascular Health Study. Am. J. Kidney Dis. 74:501–9
    [Google Scholar]
  144. 144. 
    Askenazi DJ, Koralkar R, Patil N, Halloran B, Ambalavanan N, Griffin R 2016. Acute kidney injury urine biomarkers in very low-birth-weight infants. Clin. J. Am. Soc. Nephrol. 11:1527–35
    [Google Scholar]
  145. 145. 
    Bullen AL, Katz R, Lee AK, Anderson CAM, Cheung AK et al. 2019. The SPRINT trial suggests that markers of tubule cell function in the urine associate with risk of subsequent acute kidney injury while injury markers elevate after the injury. Kidney Int 96:470–79
    [Google Scholar]
  146. 146. 
    Bennett MR, Pyles O, Ma Q, Devarajan P 2018. Preoperative levels of urinary uromodulin predict acute kidney injury after pediatric cardiopulmonary bypass surgery. Pediatr. Nephrol. 33:521–26
    [Google Scholar]
  147. 147. 
    Garimella PS, Jaber BL, Tighiouart H, Liangos O, Bennett MR et al. 2017. Association of preoperative urinary uromodulin with AKI after cardiac surgery. Clin. J. Am. Soc. Nephrol. 12:10–18
    [Google Scholar]
  148. 148. 
    Patidar KR, Garimella PS, Macedo E, Slaven JE, Ghabril MS et al. 2019. Admission plasma uromodulin and the risk of acute kidney injury in hospitalized patients with cirrhosis: a pilot study. Am. J. Physiol. Gastrointest. Liver Physiol. 317:G447–52
    [Google Scholar]
  149. 149. 
    Steubl D, Block M, Herbst V, Schlumberger W, Nockher A et al. 2017. Serum uromodulin predicts graft failure in renal transplant recipients. Biomarkers 22:171–77
    [Google Scholar]
  150. 150. 
    Bostom A, Steubl D, Garimella PS, Franceschini N, Roberts MB et al. 2018. Serum uromodulin: a biomarker of long-term kidney allograft failure. Am. J. Nephrol. 47:275–82
    [Google Scholar]
  151. 151. 
    Leiherer A, Muendlein A, Saely CH, Ebner J, Brandtner EM et al. 2017. Serum uromodulin is a predictive biomarker for cardiovascular events and overall mortality in coronary patients. Int. J. Cardiol. 231:6–12
    [Google Scholar]
  152. 152. 
    Garimella PS, Lee AK, Ambrosius WT, Bhatt U, Cheung AK et al. 2019. Markers of kidney tubule function and risk of cardiovascular disease events and mortality in the SPRINT trial. Eur. Heart J. 40:3486–93
    [Google Scholar]
  153. 153. 
    Delgado GE, Kleber ME, Scharnagl H, Kramer BK, Marz W, Scherberich JE 2017. Serum uromodulin and mortality risk in patients undergoing coronary angiography. J. Am. Soc. Nephrol. 28:2201–10
    [Google Scholar]
  154. 154. 
    Steubl D, Buzkova P, Garimella PS, Ix JH, Devarajan P et al. 2019. Association of serum uromodulin with mortality and cardiovascular disease in the elderly—the Cardiovascular Health Study. Nephrol. Dial. Transplant. 35:1399–1405
    [Google Scholar]
  155. 155. 
    Steubl D, Schneider MP, Meiselbach H, Nadal J, Schmid MC et al. 2020. Association of serum uromodulin with death, cardiovascular events, and kidney failure in CKD. Clin. J. Am. Soc. Nephrol. 15:616–24
    [Google Scholar]
  156. 156. 
    Devuyst O, Pattaro C. 2018. The UMOD locus: insights into the pathogenesis and prognosis of kidney disease. J. Am. Soc. Nephrol. 29:713–26
    [Google Scholar]
  157. 157. 
    Micanovic R, LaFavers K, Garimella PS, Wu XR, El-Achkar TM 2020. Uromodulin (Tamm-Horsfall protein): guardian of urinary and systemic homeostasis. Nephrol. Dial. Transplant. 35:33–43
    [Google Scholar]
  158. 158. 
    Hart TC, Gorry MC, Hart PS, Woodard AS, Shihabi Z et al. 2002. Mutations of the UMOD gene are responsible for medullary cystic kidney disease 2 and familial juvenile hyperuricaemic nephropathy. J. Med. Genet. 39:882–92
    [Google Scholar]
  159. 159. 
    Devuyst O, Olinger E, Weber S, Eckardt KU, Kmoch S et al. 2019. Autosomal dominant tubulointerstitial kidney disease. Nat. Rev. Dis. Primers 5:60
    [Google Scholar]
  160. 160. 
    Olinger E, Hofmann P, Kidd K, Dufour I, Belge H et al. 2020. Clinical and genetic spectra of autosomal dominant tubulointerstitial kidney disease due to mutations in UMOD and MUC1. . Kidney Int 98:P717–31
    [Google Scholar]
  161. 161. 
    Nasr SH, Lucia JP, Galgano SJ, Markowitz GS, D'Agati VD 2008. Uromodulin storage disease. Kidney Int 73:971–76
    [Google Scholar]
  162. 162. 
    Bleyer AJ, Hart TC, Shihabi Z, Robins V, Hoyer JR 2004. Mutations in the uromodulin gene decrease urinary excretion of Tamm-Horsfall protein. Kidney Int 66:974–77
    [Google Scholar]
  163. 163. 
    Satanovskij R, Bader A, Block M, Herbst V, Schlumberger W et al. 2017. A new missense mutation in UMOD gene leads to severely reduced serum uromodulin concentrations—a tool for the diagnosis of uromodulin-associated kidney disease. Clin. Biochem. 50:155–58
    [Google Scholar]
  164. 164. 
    Bernascone I, Vavassori S, Di Pentima A, Santambrogio S, Lamorte G et al. 2006. Defective intracellular trafficking of uromodulin mutant isoforms. Traffic 7:1567–79
    [Google Scholar]
  165. 165. 
    Vylet'al P, Kublova M, Kalbacova M, Hodanova K, Baresova V et al. 2006. Alterations of uromodulin biology: a common denominator of the genetically heterogeneous FJHN/MCKD syndrome. Kidney Int 70:1155–69
    [Google Scholar]
  166. 166. 
    Kemter E, Rathkolb B, Rozman J, Hans W, Schrewe A et al. 2009. Novel missense mutation of uromodulin in mice causes renal dysfunction with alterations in urea handling, energy, and bone metabolism. Am. J. Physiol. Ren. Physiol. 297:F1391–98
    [Google Scholar]
  167. 167. 
    Kemter E, Prueckl P, Sklenak S, Rathkolb B, Habermann FA et al. 2013. Type of uromodulin mutation and allelic status influence onset and severity of uromodulin-associated kidney disease in mice. Hum. Mol. Genet. 22:4148–63
    [Google Scholar]
  168. 168. 
    Ma L, Liu Y, Landry NK, El-Achkar TM, Lieske JC, Wu XR 2017. Point mutation in D8C domain of Tamm-Horsfall protein/uromodulin in transgenic mice causes progressive renal damage and hyperuricemia. PLOS ONE 12:e0186769
    [Google Scholar]
  169. 169. 
    Piret SE, Olinger E, Reed AAC, Nesbit MA, Hough TA et al. 2017. A mouse model for inherited renal fibrosis associated with endoplasmic reticulum stress. Dis. Model. Mech. 10:773–86
    [Google Scholar]
  170. 170. 
    Johnson BG, Dang LT, Marsh G, Roach AM, Levine ZG et al. 2017. Uromodulin p.Cys147Trp mutation drives kidney disease by activating ER stress and apoptosis. J. Clin. Investig. 127:3954–69
    [Google Scholar]
  171. 171. 
    Kemter E, Frohlich T, Arnold GJ, Wolf E, Wanke R 2017. Mitochondrial dysregulation secondary to endoplasmic reticulum stress in autosomal dominant tubulointerstitial kidney disease—UMOD (ADTKD-UMOD). Sci. Rep. 7:42970
    [Google Scholar]
  172. 172. 
    Schaeffer C, Merella S, Pasqualetto E, Lazarevic D, Rampoldi L 2017. Mutant uromodulin expression leads to altered homeostasis of the endoplasmic reticulum and activates the unfolded protein response. PLOS ONE 12:e0175970
    [Google Scholar]
  173. 173. 
    Raffi H, Bates JM, Laszik Z, Kumar S 2006. Tamm-Horsfall protein knockout mice do not develop medullary cystic kidney disease. Kidney Int 69:1914–15
    [Google Scholar]
  174. 174. 
    Bollee G, Dahan K, Flamant M, Moriniere V, Pawtowski A et al. 2011. Phenotype and outcome in hereditary tubulointerstitial nephritis secondary to UMOD mutations. Clin. J. Am. Soc. Nephrol. 6:2429–38
    [Google Scholar]
  175. 175. 
    Moskowitz JL, Piret SE, Lhotta K, Kitzler TM, Tashman AP et al. 2013. Association between genotype and phenotype in uromodulin-associated kidney disease. Clin. J. Am. Soc. Nephrol. 8:1349–57
    [Google Scholar]
  176. 176. 
    Rezende-Lima W, Parreira KS, Garcia-Gonzalez M, Riveira E, Banet JF, Lens XM 2004. Homozygosity for uromodulin disorders: FJHN and MCKD-type 2. Kidney Int 66:558–63
    [Google Scholar]
  177. 177. 
    Edwards N, Olinger E, Adam J, Kelly M, Schiano G et al. 2017. A novel homozygous UMOD mutation reveals gene dosage effects on uromodulin processing and urinary excretion. Nephrol. Dial. Transplant. 32:1994–99
    [Google Scholar]
  178. 178. 
    Trudu M, Schaeffer C, Riba M, Ikehata M, Brambilla P et al. 2017. Early involvement of cellular stress and inflammatory signals in the pathogenesis of tubulointerstitial kidney disease due to UMOD mutations. Sci. Rep. 7:7383
    [Google Scholar]
  179. 179. 
    Kemter E, Sklenak S, Rathkolb B, de Angelis MH, Wolf E et al. 2014. No amelioration of uromodulin maturation and trafficking defect by sodium 4-phenylbutyrate in vivo: studies in mouse models of uromodulin-associated kidney disease. J. Biol. Chem. 289:10715–26
    [Google Scholar]
  180. 180. 
    Dvela-Levitt M, Kost-Alimova M, Emani M, Kohnert E, Thompson R et al. 2019. Small molecule targets TMED9 and promotes lysosomal degradation to reverse proteinopathy. Cell 178:521–35.e23
    [Google Scholar]
  181. 181. 
    Stsiapanava A, Xu C, Brunati M, Zamora-Caballero S, Schaeffer C et al. 2020. Cryo-EM structure of native human uromodulin, a zona pellucida module polymer. EMBO J.
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-031620-092817
Loading
/content/journals/10.1146/annurev-physiol-031620-092817
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error