1932

Abstract

Heart failure (HF) is a global pandemic with a poor prognosis after hospitalization. Despite HF syndrome complexities, evidence of significant sympathetic overactivity in the manifestation and progression of HF is universally accepted. Confirmation of this dogma is observed in guideline-directed use of neurohormonal pharmacotherapies as a standard of care in HF. Despite reductions in morbidity and mortality, a growing patient population is resistant to these medications, while off-target side effects lead to dismal patient adherence to lifelong drug regimens. Novel therapeutic strategies, devoid of these limitations, are necessary to attenuate the progression of HF pathophysiology while continuing to reduce morbidity and mortality. Renal denervation is an endovascular procedure, whereby the ablation of renal nerves results in reduced renal afferent and efferent sympathetic nerve activity in the kidney and globally. In this review, we discuss the current state of preclinical and clinical research related to renal sympathetic denervation to treat HF.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-031620-093431
2021-02-10
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/physiol/83/1/annurev-physiol-031620-093431.html?itemId=/content/journals/10.1146/annurev-physiol-031620-093431&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Savarese G, Lund LH. 2017. Global public health burden of heart failure. Card. Fail. Rev. 3:7–11
    [Google Scholar]
  2. 2. 
    Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW et al. 2020. Heart disease and stroke statistics—2020 update: a report from the American Heart Association. Circulation 141:e139–596
    [Google Scholar]
  3. 3. 
    Heidenreich PA, Albert NM, Allen LA, Bluemke DA, Butler J et al. 2013. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ. Heart Fail. 6:606–19
    [Google Scholar]
  4. 4. 
    Hartupee J, Mann DL. 2017. Neurohormonal activation in heart failure with reduced ejection fraction. Nat. Rev. Cardiol. 14:30–38
    [Google Scholar]
  5. 5. 
    Converse RL Jr., Jacobsen TN, Toto RD, Jost CM, Cosentino F et al. 1992. Sympathetic overactivity in patients with chronic renal failure. N. Engl. J. Med. 327:1912–18
    [Google Scholar]
  6. 6. 
    DiBona GF, Kopp UC. 1997. Neural control of renal function. Physiol. Rev. 77:75–197
    [Google Scholar]
  7. 7. 
    Smith GL, Lichtman JH, Bracken MB, Shlipak MG, Phillips CO et al. 2006. Renal impairment and outcomes in heart failure: systematic review and meta-analysis. J. Am. Coll. Cardiol. 47:1987–96
    [Google Scholar]
  8. 8. 
    Sobotka PA, Mahfoud F, Schlaich MP, Hoppe UC, Bohm M, Krum H 2011. Sympatho-renal axis in chronic disease. Clin. Res. Cardiol. 100:1049–57
    [Google Scholar]
  9. 9. 
    Bozkurt B, Aguilar D, Deswal A, Dunbar SB, Francis GS et al. 2016. Contributory risk and management of comorbidities of hypertension, obesity, diabetes mellitus, hyperlipidemia, and metabolic syndrome in chronic heart failure: a scientific statement from the American Heart Association. Circulation 134:e535–78
    [Google Scholar]
  10. 10. 
    Leong KT, Walton A, Krum H 2014. Renal sympathetic denervation for the treatment of refractory hypertension. Annu. Rev. Med. 65:349–65
    [Google Scholar]
  11. 11. 
    Azizi M, Schmieder RE, Mahfoud F, Weber MA, Daemen J et al. 2018. Endovascular ultrasound renal denervation to treat hypertension (RADIANCE-HTN SOLO): a multicentre, international, single-blind, randomised, sham-controlled trial. Lancet 391:2335–45
    [Google Scholar]
  12. 12. 
    Kandzari DE, Böhm M, Mahfoud F, Townsend RR, Weber MA et al. 2018. Effect of renal denervation on blood pressure in the presence of antihypertensive drugs: 6-month efficacy and safety results from the SPYRAL HTN-ON MED proof-of-concept randomised trial. Lancet 391:2346–55
    [Google Scholar]
  13. 13. 
    Townsend RR, Mahfoud F, Kandzari DE, Kario K, Pocock S et al. 2017. Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomised, sham-controlled, proof-of-concept trial. Lancet 390:2160–70
    [Google Scholar]
  14. 14. 
    Krum H, Schlaich MP, Sobotka PA, Böhm M, Mahfoud F et al. 2014. Percutaneous renal denervation in patients with treatment-resistant hypertension: final 3-year report of the Symplicity HTN-1 study. Lancet 383:622–29
    [Google Scholar]
  15. 15. 
    Symplicity HTN-2 Investigators 2010. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet 376:1903–9
    [Google Scholar]
  16. 16. 
    Bhatt DL, Kandzari DE, O'Neill WW, D'Agostino R, Flack JM et al. 2014. A controlled trial of renal denervation for resistant hypertension. N. Engl. J. Med. 370:1393–401
    [Google Scholar]
  17. 17. 
    Polhemus DJ, Trivedi RK, Gao J, Li Z, Scarborough AL et al. 2017. Renal sympathetic denervation protects the failing heart via inhibition of neprilysin activity in the kidney. J. Am. Coll. Cardiol. 70:2139–53
    [Google Scholar]
  18. 18. 
    Sharp TE, Polhemus DJ, Li Z, Spaletra P, Jenkins JS et al. 2018. Renal denervation prevents heart failure progression via inhibition of the renin-angiotensin system. J. Am. Coll. Cardiol. 72:2609–21
    [Google Scholar]
  19. 19. 
    Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF et al. 2016. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. J. Heart Fail. 18:891–975
    [Google Scholar]
  20. 20. 
    Singh JP, Kandala J, Camm AJ 2013. Non-pharmacological modulation of the autonomic tone to treat heart failure. Eur. Heart J. 35:77–85
    [Google Scholar]
  21. 21. 
    Papin E, Ambard L. 1924. Resection of the nerves of the kidney for nephralgia and small hydronephroses. J. Urol. 11:337–48
    [Google Scholar]
  22. 22. 
    Page IH, Heuer GJ. 1935. The effect of renal denervation on the level of arterial blood pressure and renal function in essential hypertension. J. Clin. Investig. 14:27–30
    [Google Scholar]
  23. 23. 
    Page IH, Heuer GJ. 1935. The effect of renal denervation on patients suffering from nephritis. J. Clin. Investig. 14:443–58
    [Google Scholar]
  24. 24. 
    Smithwick RH, Thompson JE. 1953. Splanchnicectomy for essential hypertension; results in 1,266 cases. J. Am. Med. Assoc. 152:1501–4
    [Google Scholar]
  25. 25. 
    Schauerte P, Scherlag BJ, Scherlag MA, Goli S, Jackman WM, Lazzara R 1999. Ventricular rate control during atrial fibrillation by cardiac parasympathetic nerve stimulation: a transvenous approach. J. Am. Coll. Cardiol. 34:2043–50
    [Google Scholar]
  26. 26. 
    Rippy MK, Zarins D, Barman NC, Wu A, Duncan KL, Zarins CK 2011. Catheter-based renal sympathetic denervation: chronic preclinical evidence for renal artery safety. Clin. Res. Cardiol. 100:1095–101
    [Google Scholar]
  27. 27. 
    Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J et al. 2009. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet 373:1275–81
    [Google Scholar]
  28. 28. 
    Papademetriou V, Stavropoulos K, Doumas M, Tsioufis K 2019. Now that renal denervation works, how do we proceed. Circ. Res. 124:693–95
    [Google Scholar]
  29. 29. 
    Metra M, Teerlink JR. 2017. Heart failure. Lancet 390:1981–95
    [Google Scholar]
  30. 30. 
    Hasking GJ, Esler MD, Jennings GL, Burton D, Johns JA, Korner PI 1986. Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation 73:615–21
    [Google Scholar]
  31. 31. 
    DiBona GF, Esler M. 2010. Translational medicine: the antihypertensive effect of renal denervation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298:R245–53
    [Google Scholar]
  32. 32. 
    Ferguson DW, Berg WJ, Sanders JS, Kempf JS 1990. Clinical and hemodynamic correlates of sympathetic nerve activity in normal humans and patients with heart failure: evidence from direct micronenrographic recordings. J. Am. Coll. Cardiol. 16:1125–34
    [Google Scholar]
  33. 33. 
    Remme WJ. 1995. Neurohormonal modulation in heart failure: ACE inhibition and beyond. Eur. Heart J. 16:73–78
    [Google Scholar]
  34. 34. 
    Braunwald E. 2015. The path to an angiotensin receptor antagonist-neprilysin inhibitor in the treatment of heart failure. J. Am. Coll. Cardiol. 65:1029–41
    [Google Scholar]
  35. 35. 
    Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A et al. 1999. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. New Engl. J. Med. 341:709–17
    [Google Scholar]
  36. 36. 
    Rossignol P, Dobre D, McMurray JJ, Swedberg K, Krum H et al. 2014. Incidence, determinants, and prognostic significance of hyperkalemia and worsening renal function in patients with heart failure receiving the mineralocorticoid receptor antagonist eplerenone or placebo in addition to optimal medical therapy: results from the Eplerenone in Mild Patients Hospitalization and Survival Study in Heart Failure (EMPHASIS-HF). Circ. Heart Fail. 7:51–58
    [Google Scholar]
  37. 37. 
    Fitzgerald AA, Powers JD, Ho PM, Maddox TM, Peterson PN et al. 2011. Impact of medication nonadherence on hospitalizations and mortality in heart failure. J. Card. Fail. 17:664–69
    [Google Scholar]
  38. 38. 
    Polhemus DJ, Gao J, Scarborough AL, Trivedi R, McDonough KH et al. 2016. Radiofrequency renal denervation protects the ischemic heart via inhibition of GRK2 and increased nitric oxide signaling. Circ. Res. 119:470–80
    [Google Scholar]
  39. 39. 
    Chang S-N, Chang S-H, Yu C-C, Wu C-K, Lai L-P et al. 2017. Renal denervation decreases susceptibility to arrhythmogenic cardiac alternans and ventricular arrhythmia in a rat model of post-myocardial infarction heart failure. JACC Basic Transl. Sci. 2:184–93
    [Google Scholar]
  40. 40. 
    Wang HJ, Wang W, Cornish KG, Rozanski GJ, Zucker IH 2014. Cardiac sympathetic afferent denervation attenuates cardiac remodeling and improves cardiovascular dysfunction in rats with heart failure. Hypertension 64:745–55
    [Google Scholar]
  41. 41. 
    Zheng H, Liu X, Sharma NM, Patel KP 2016. Renal denervation improves cardiac function in rats with chronic heart failure: effects on expression of β-adrenoceptors. Am. J. Physiol. Heart Circ. Physiol. 311:H337–46
    [Google Scholar]
  42. 42. 
    Liao SY, Zhen Z, Liu Y, Au KW, Lai WH et al. 2017. Improvement of myocardial function following catheter-based renal denervation in heart failure. JACC Basic Transl. Sci. 2:270–81
    [Google Scholar]
  43. 43. 
    Wang L, Song L, Li C, Feng Q, Xu M et al. 2018. Renal denervation improves cardiac function by attenuating myocardiocyte apoptosis in dogs after myocardial infarction. BMC Cardiovasc. Disord. 18:86
    [Google Scholar]
  44. 44. 
    Troughton RW, Frampton CM, Yandle TG, Espiner EA, Nicholls MG, Richards AM 2000. Treatment of heart failure guided by plasma aminoterminal brain natriuretic peptide (N-BNP) concentrations. Lancet 355:1126–30
    [Google Scholar]
  45. 45. 
    Vodovar N, Seronde MF, Laribi S, Gayat E, Lassus J et al. 2014. Post-translational modifications enhance NT-proBNP and BNP production in acute decompensated heart failure. Eur. Heart J. 35:3434–41
    [Google Scholar]
  46. 46. 
    Zile MR, Claggett BL, Prescott MF, McMurray JJ, Packer M et al. 2016. Prognostic implications of changes in N-terminal pro-B-type natriuretic peptide in patients with heart failure. J. Am. Coll. Cardiol. 68:2425–36
    [Google Scholar]
  47. 47. 
    de Bold AJ, Borenstein HB, Veress AT, Sonnenberg H 1981. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci 28:89–94
    [Google Scholar]
  48. 48. 
    Sudoh T, Kangawa K, Minamino N, Matsuo H 1988. A new natriuretic peptide in porcine brain. Nature 332:78–81
    [Google Scholar]
  49. 49. 
    Sudoh T, Minamino N, Kangawa K, Matsuo H 1990. C-type natriuretic peptide (CNP): a new member of natriuretic peptide family identified in porcine brain. Biochem. Biophys. Res. Commun. 168:863–70
    [Google Scholar]
  50. 50. 
    Yandle TG. 1994. Biochemistry of natriuretic peptides. J. Intern. Med. 235:561–76
    [Google Scholar]
  51. 51. 
    Nishikimi T, Maeda N, Matsuoka H 2006. The role of natriuretic peptides in cardioprotection. Cardiovasc. Res. 69:318–28
    [Google Scholar]
  52. 52. 
    Moro C, Lafontan M. 2013. Natriuretic peptides and cGMP signaling control of energy homeostasis. Am. J. Physiol. Heart Circ. Physiol. 304:H358–68
    [Google Scholar]
  53. 53. 
    Koller KJ, Goeddel DV. 1992. Molecular biology of the natriuretic peptides and their receptors. Circulation 86:1081–88
    [Google Scholar]
  54. 54. 
    King L, Wilkins MR. 2002. Natriuretic peptide receptors and the heart. Heart 87:314–15
    [Google Scholar]
  55. 55. 
    Chinkers M, Singh S, Garbers DL 1991. Adenine nucleotides are required for activation of rat atrial natriuretic peptide receptor/guanylyl cyclase expressed in a baculovirus system. J. Biol. Chem. 266:4088–93
    [Google Scholar]
  56. 56. 
    Airhart N, Yang Y-F, Roberts CT, Silberbach M 2003. Atrial natriuretic peptide induces natriuretic peptide receptor-cGMP-dependent protein kinase interaction. J. Biol. Chem. 278:38693–98
    [Google Scholar]
  57. 57. 
    Oliver PM, Fox JE, Kim R, Rockman HA, Kim HS et al. 1997. Hypertension, cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor A. PNAS 94:14730–35
    [Google Scholar]
  58. 58. 
    Booz GW. 2005. Putting the brakes on cardiac hypertrophy: exploiting the NO-cGMP counter-regulatory system. Hypertension 45:341–46
    [Google Scholar]
  59. 59. 
    Kapoun AM, Liang F, O'Young G, Damm DL, Quon D et al. 2004. B-type natriuretic peptide exerts broad functional opposition to transforming growth factor-β in primary human cardiac fibroblasts: fibrosis, myofibroblast conversion, proliferation, and inflammation. Circ. Res. 94:453–61
    [Google Scholar]
  60. 60. 
    Bayes-Genis A, Barallat J, Richards AM 2016. A test in context: neprilysin: function, inhibition, and biomarker. J. Am. Coll. Cardiol. 68:639–53
    [Google Scholar]
  61. 61. 
    McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP et al. 2013. Dual angiotensin receptor and neprilysin inhibition as an alternative to angiotensin-converting enzyme inhibition in patients with chronic systolic heart failure: rationale for and design of the Prospective Comparison of ARNI with ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure trial (PARADIGM-HF). Eur. J. Heart Fail. 15:1062–73
    [Google Scholar]
  62. 62. 
    McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP et al. 2014. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med. 371:993–1004
    [Google Scholar]
  63. 63. 
    Shen MJ, Zipes DP. 2014. Role of the autonomic nervous system in modulating cardiac arrhythmias. Circ. Res. 114:1004–21
    [Google Scholar]
  64. 64. 
    Opthof T, Misier AR, Coronel R, Vermeulen JT, Verberne HJ et al. 1991. Dispersion of refractoriness in canine ventricular myocardium. Effects of sympathetic stimulation. Circ. Res. 68:1204–15
    [Google Scholar]
  65. 65. 
    Tomaselli GF, Zipes DP. 2004. What causes sudden death in heart failure. Circ. Res. 95:754–63
    [Google Scholar]
  66. 66. 
    Monserrat L, Elliott PM, Gimeno JR, Sharma S, Penas-Lado M, McKenna WJ 2003. Non-sustained ventricular tachycardia in hypertrophic cardiomyopathy: an independent marker of sudden death risk in young patients. J. Am. Coll. Cardiol. 42:873–79
    [Google Scholar]
  67. 67. 
    Jackson N, Gizurarson S, Azam MA, King B, Ramadeen A et al. 2017. Effects of renal artery denervation on ventricular arrhythmias in a postinfarct model. Circ. Cardiovasc. Interv. 10:e004172
    [Google Scholar]
  68. 68. 
    Bradfield JS, Hayase J, Liu K, Moriarty J, Kee ST et al. 2020. Renal denervation as adjunctive therapy to cardiac sympathetic denervation for ablation refractory ventricular tachycardia. Heart Rhythm 17:220–27
    [Google Scholar]
  69. 69. 
    Ukena C, Bauer A, Mahfoud F, Schreieck J, Neuberger HR et al. 2012. Renal sympathetic denervation for treatment of electrical storm: first-in-man experience. Clin. Res. Cardiol. 101:63–67
    [Google Scholar]
  70. 70. 
    Hoffmann BA, Steven D, Willems S, Sydow K 2013. Renal sympathetic denervation as an adjunct to catheter ablation for the treatment of ventricular electrical storm in the setting of acute myocardial infarction. J. Cardiovasc. Electrophysiol. 24:1175–78
    [Google Scholar]
  71. 71. 
    Davies JE, Manisty CH, Petraco R, Barron AJ, Unsworth B et al. 2013. First-in-man safety evaluation of renal denervation for chronic systolic heart failure: primary outcome from REACH-Pilot study. Int. J. Cardiol. 162:189–92
    [Google Scholar]
  72. 72. 
    Shah SJ, Borlaug BA, Kitzman DW, McCulloch AD, Blaxall BC et al. 2020. Research priorities for heart failure with preserved ejection fraction. Circulation 141:1001–26
    [Google Scholar]
  73. 73. 
    Reddy YNV, Borlaug BA. 2016. Heart failure with preserved ejection fraction. Curr. Probl. Cardiol. 41:145–88
    [Google Scholar]
  74. 74. 
    Patel RB, Shah SJ. 2019. Drug targets for heart failure with preserved ejection fraction: a mechanistic approach and review of contemporary clinical trials. Annu. Rev. Pharmacol. Toxicol. 59:41–63
    [Google Scholar]
  75. 75. 
    Kitzman DW, Hundley WG, Brubaker PH, Morgan TM, Moore JB et al. 2010. A randomized double-blind trial of enalapril in older patients with heart failure and preserved ejection fraction: effects on exercise tolerance and arterial distensibility. Circ. Heart Fail. 3:477–85
    [Google Scholar]
  76. 76. 
    Massie BM, Carson PE, McMurray JJ, Komajda M, McKelvie R et al. 2008. Irbesartan in patients with heart failure and preserved ejection fraction. N. Engl. J. Med. 359:2456–67
    [Google Scholar]
  77. 77. 
    Yusuf S, Pfeffer MA, Swedberg K, Granger CB, Held P et al. 2003. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial. Lancet 362:777–81
    [Google Scholar]
  78. 78. 
    Pitt B, Pfeffer MA, Assmann SF, Boineau R, Anand IS et al. 2014. Spironolactone for heart failure with preserved ejection fraction. New Engl. J. Med. 370:1383–92
    [Google Scholar]
  79. 79. 
    Solomon SD, McMurray JJV, Anand IS, Ge J, Lam CSP et al. 2019. Angiotensin–neprilysin inhibition in heart failure with preserved ejection fraction. New Engl. J. Med. 381:1609–20
    [Google Scholar]
  80. 80. 
    Tschöpe C, Lam CSP. 2012. Diastolic heart failure: what we still don't know. Looking for new concepts, diagnostic approaches, and the role of comorbidities. Herz 37:875–79
    [Google Scholar]
  81. 81. 
    Borlaug BA, Anstrom KJ, Lewis GD, Shah SJ, Levine JA et al. 2018. Effect of inorganic nitrite versus placebo on exercise capacity among patients with heart failure with preserved ejection fraction: the INDIE-HFpEF randomized clinical trial. JAMA 320:1764–73
    [Google Scholar]
  82. 82. 
    Pieske B, Maggioni AP, Lam CSP, Pieske-Kraigher E, Filippatos G et al. 2017. Vericiguat in patients with worsening chronic heart failure and preserved ejection fraction: results of the SOluble guanylate Cyclase stimulatoR in heArT failurE patientS with PRESERVED EF (SOCRATES-PRESERVED) study. Eur. Heart J. 38:1119–27
    [Google Scholar]
  83. 83. 
    Verloop WL, Beeftink MMA, Santema BT, Bots ML, Blankestijn PJ et al. 2015. A systematic review concerning the relation between the sympathetic nervous system and heart failure with preserved left ventricular ejection fraction. PLOS ONE 10:e0117332
    [Google Scholar]
  84. 84. 
    Shah SJ, Katz DH, Selvaraj S, Burke MA, Yancy CW et al. 2015. Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation 131:269–79
    [Google Scholar]
  85. 85. 
    Alex L, Russo I, Holoborodko V, Frangogiannis NG 2018. Characterization of a mouse model of obesity-related fibrotic cardiomyopathy that recapitulates features of human heart failure with preserved ejection fraction. Am. J. Physiol. Heart Circ. Physiol. 315:H934–49
    [Google Scholar]
  86. 86. 
    Schwarzl M, Hamdani N, Seiler S, Alogna A, Manninger M et al. 2015. A porcine model of hypertensive cardiomyopathy: implications for heart failure with preserved ejection fraction. Am. J. Physiol. Heart Circ. Physiol. 309:H1407–18
    [Google Scholar]
  87. 87. 
    Valero-Muñoz M, Backman W, Sam F 2017. Murine models of heart failure with preserved ejection fraction: a “fishing expedition. .” JACC Basic Transl. Sci. 2:770–89
    [Google Scholar]
  88. 88. 
    Riehle C, Bauersachs J. 2019. Small animal models of heart failure. Cardiovasc. Res. 115:1838–49
    [Google Scholar]
  89. 89. 
    Houser SR, Margulies KB, Murphy AM, Spinale FG, Francis GS et al. 2012. Animal models of heart failure. Circ. Res. 111:131–50
    [Google Scholar]
  90. 90. 
    Esler M, Kaye D. 2000. Sympathetic nervous system activation in essential hypertension, cardiac failure and psychosomatic heart disease. J. Cardiovasc. Pharmacol. 35:S1–7
    [Google Scholar]
  91. 91. 
    Landsberg L, Troisi R, Parker D, Young JB, Weiss ST 1991. Obesity, blood pressure, and the sympathetic nervous system. Ann. Epidemiol. 1:295–303
    [Google Scholar]
  92. 92. 
    Kaur J, Young BE, Fadel PJ 2017. Sympathetic overactivity in chronic kidney disease: consequences and mechanisms. Int. J. Mol. Sci. 18:1682
    [Google Scholar]
  93. 93. 
    Vaillancourt M, Chia P, Sarji S, Nguyen J, Hoftman N et al. 2017. Autonomic nervous system involvement in pulmonary arterial hypertension. Respir. Res. 18:201
    [Google Scholar]
  94. 94. 
    Chen P-S, Chen LS, Fishbein MC, Lin S-F, Nattel S 2014. Role of the autonomic nervous system in atrial fibrillation: pathophysiology and therapy. Circ. Res. 114:1500–15
    [Google Scholar]
  95. 95. 
    Brandt MC, Mahfoud F, Reda S, Schirmer SH, Erdmann E et al. 2012. Renal sympathetic denervation reduces left ventricular hypertrophy and improves cardiac function in patients with resistant hypertension. J. Am. Coll. Cardiol. 59:901–9
    [Google Scholar]
  96. 96. 
    Mahfoud F, Urban D, Teller D, Linz D, Stawowy P et al. 2014. Effect of renal denervation on left ventricular mass and function in patients with resistant hypertension: data from a multi-centre cardiovascular magnetic resonance imaging trial. Eur. Heart J. 35:2224–31
    [Google Scholar]
  97. 97. 
    Patel HC, Rosen SD, Hayward C, Vassiliou V, Smith GC et al. 2016. Renal denervation in heart failure with preserved ejection fraction (RDT-PEF): a randomized controlled trial. Eur. J. Heart Fail. 18:703–12
    [Google Scholar]
  98. 98. 
    Georgakopoulos D, Little WC, Abraham WT, Weaver FA, Zile MR 2011. Chronic baroreflex activation: a potential therapeutic approach to heart failure with preserved ejection fraction. J. Card. Fail. 17:167–78
    [Google Scholar]
  99. 99. 
    Zile MR, Abraham WT, Weaver FA, Butter C, Ducharme A et al. 2015. Baroreflex activation therapy for the treatment of heart failure with a reduced ejection fraction: safety and efficacy in patients with and without cardiac resynchronization therapy. Eur. J. Heart Fail. 17:1066–74
    [Google Scholar]
  100. 100. 
    Habib N, Mahmoodi BK, Bos WJ, Tromp SC, Suttorp MJ et al. 2015. Initial experience with therapeutic geometric modification of the carotid bulb for true resistant hypertension. EuroIntervention 11:117–20
    [Google Scholar]
  101. 101. 
    Gold MR, Van Veldhuisen DJ, Hauptman PJ, Borggrefe M, Kubo SH et al. 2016. Vagus nerve stimulation for the treatment of heart failure: The INOVATE-HF trial. J. Am. Coll. Cardiol. 68:149–58
    [Google Scholar]
  102. 102. 
    De Ferrari GM, Stolen C, Tuinenburg AE, Wright DJ, Brugada J et al. 2017. Long-term vagal stimulation for heart failure: eighteen month results from the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) trial. Int. J. Cardiol. 244:229–34
    [Google Scholar]
  103. 103. 
    Victor RG. 2015. Carotid baroreflex activation therapy for resistant hypertension. Nat. Rev. Cardiol. 12:451–63
    [Google Scholar]
  104. 104. 
    Spiering W, Williams B, Van der Heyden J, van Kleef M, Lo R et al. 2017. Endovascular baroreflex amplification for resistant hypertension: a safety and proof-of-principle clinical study. Lancet 390:2655–61
    [Google Scholar]
  105. 105. 
    Lohmeier TE, Barrett AM, Irwin ED 2005. Prolonged activation of the baroreflex: A viable approach for the treatment of hypertension. Curr. Hypertens. Rep. 7:193–98
    [Google Scholar]
  106. 106. 
    Abraham WT, Zile MR, Weaver FA, Butter C, Ducharme A et al. 2015. Baroreflex activation therapy for the treatment of heart failure with a reduced ejection fraction. JACC Heart Fail 3:487–96
    [Google Scholar]
  107. 107. 
    Søndergaard L, Reddy V, Kaye D, Malek F, Walton A et al. 2014. Transcatheter treatment of heart failure with preserved or mildly reduced ejection fraction using a novel interatrial implant to lower left atrial pressure. Eur. J. Heart Fail. 16:796–801
    [Google Scholar]
  108. 108. 
    Hasenfuß G, Hayward C, Burkhoff D, Silvestry FE, McKenzie S et al. 2016. A transcatheter intracardiac shunt device for heart failure with preserved ejection fraction (REDUCE LAP-HF): a multicentre, open-label, single-arm, phase 1 trial. Lancet 387:1298–304
    [Google Scholar]
  109. 109. 
    Rodes-Cabau J, Bernier M, Amat-Santos IJ, Ben Gal T, Nombela-Franco L et al. 2018. Interatrial shunting for heart failure: early and late results from the first-in-human experience with the V-wave system. JACC Cardiovasc. Interv. 11:2300–10
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-031620-093431
Loading
/content/journals/10.1146/annurev-physiol-031620-093431
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error